compression.c 46.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
12
#include <linux/kthread.h>
C
Chris Mason 已提交
13 14 15 16 17
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
18
#include <linux/slab.h>
19
#include <linux/sched/mm.h>
20
#include <linux/log2.h>
21
#include <crypto/hash.h>
22
#include "misc.h"
C
Chris Mason 已提交
23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
32
#include "subpage.h"
33
#include "zoned.h"
C
Chris Mason 已提交
34

35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
45 46
	default:
		break;
47 48 49 50 51
	}

	return NULL;
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
86 87 88 89 90 91 92
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
93
		 */
94
		*out_pages = 0;
95 96 97 98
		return -E2BIG;
	}
}

99 100
static int compression_decompress_bio(struct list_head *ws,
				      struct compressed_bio *cb)
101
{
102
	switch (cb->compress_type) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

137
static int btrfs_decompress_bio(struct compressed_bio *cb);
138

139
static void finish_compressed_bio_read(struct compressed_bio *cb)
140 141 142 143
{
	unsigned int index;
	struct page *page;

144 145 146
	if (cb->status == BLK_STS_OK)
		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));

147 148 149 150 151 152 153 154
	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
155
	if (cb->status != BLK_STS_OK)
156
		cb->orig_bio->bi_status = cb->status;
157
	bio_endio(cb->orig_bio);
158 159 160 161 162 163

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

164 165 166 167
/*
 * Verify the checksums and kick off repair if needed on the uncompressed data
 * before decompressing it into the original bio and freeing the uncompressed
 * pages.
C
Chris Mason 已提交
168
 */
169
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
170 171
{
	struct compressed_bio *cb = bio->bi_private;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	struct inode *inode = cb->inode;
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	struct btrfs_inode *bi = BTRFS_I(inode);
	bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
	blk_status_t status = bio->bi_status;
	struct btrfs_bio *bbio = btrfs_bio(bio);
	struct bvec_iter iter;
	struct bio_vec bv;
	u32 offset;

	btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
		u64 start = bbio->file_offset + offset;

		if (!status &&
		    (!csum || !btrfs_check_data_csum(inode, bbio, offset,
						     bv.bv_page, bv.bv_offset))) {
			clean_io_failure(fs_info, &bi->io_failure_tree,
					 &bi->io_tree, start, bv.bv_page,
					 btrfs_ino(bi), bv.bv_offset);
		} else {
			int ret;
194

195 196 197 198 199 200 201 202 203 204
			refcount_inc(&cb->pending_ios);
			ret = btrfs_repair_one_sector(inode, bbio, offset,
						      bv.bv_page, bv.bv_offset,
						      btrfs_submit_data_read_bio);
			if (ret) {
				refcount_dec(&cb->pending_ios);
				status = errno_to_blk_status(ret);
			}
		}
	}
205

206 207
	if (status)
		cb->status = status;
208

209 210 211
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_read(cb);
	btrfs_bio_free_csum(bbio);
C
Chris Mason 已提交
212 213 214 215 216 217 218
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
219 220
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
221
{
222
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
223 224
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
225 226
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
227
	const int errno = blk_status_to_errno(cb->status);
C
Chris Mason 已提交
228 229 230
	int i;
	int ret;

231 232
	if (errno)
		mapping_set_error(inode->i_mapping, errno);
233

C
Chris Mason 已提交
234
	while (nr_pages > 0) {
C
Chris Mason 已提交
235
		ret = find_get_pages_contig(inode->i_mapping, index,
236 237
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
238 239 240 241 242 243
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
244
			if (errno)
245
				SetPageError(pages[i]);
246 247
			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
							 cb->start, cb->len);
248
			put_page(pages[i]);
C
Chris Mason 已提交
249 250 251 252 253 254 255
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

256
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
257
{
258
	struct inode *inode = cb->inode;
259
	unsigned int index;
C
Chris Mason 已提交
260

261 262 263
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
264
	 */
265
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
266
			cb->start, cb->start + cb->len - 1,
267
			cb->status == BLK_STS_OK);
C
Chris Mason 已提交
268

269 270
	if (cb->writeback)
		end_compressed_writeback(inode, cb);
271
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
272 273

	/*
274
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
275 276 277
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
278 279
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
280
		page->mapping = NULL;
281
		put_page(page);
C
Chris Mason 已提交
282 283
	}

284
	/* Finally free the cb struct */
C
Chris Mason 已提交
285 286
	kfree(cb->compressed_pages);
	kfree(cb);
287 288
}

289 290 291 292 293 294 295 296
static void btrfs_finish_compressed_write_work(struct work_struct *work)
{
	struct compressed_bio *cb =
		container_of(work, struct compressed_bio, write_end_work);

	finish_compressed_bio_write(cb);
}

297 298 299 300 301 302 303 304 305 306 307
/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
static void end_compressed_bio_write(struct bio *bio)
{
	struct compressed_bio *cb = bio->bi_private;

308 309
	if (bio->bi_status)
		cb->status = bio->bi_status;
310

311
	if (refcount_dec_and_test(&cb->pending_ios)) {
312
		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
313

314 315 316
		btrfs_record_physical_zoned(cb->inode, cb->start, bio);
		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
	}
C
Chris Mason 已提交
317 318 319
	bio_put(bio);
}

320
/*
321 322 323 324 325 326 327 328 329 330 331 332 333
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
334
 */
335 336


337
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
338
					blk_opf_t opf, bio_end_io_t endio_func,
339
					u64 *next_stripe_start)
340
{
341 342 343
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
344
	struct bio *bio;
345
	int ret;
346

347
	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf);
348 349 350 351
	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
	bio->bi_private = cb;
	bio->bi_end_io = endio_func;

352 353 354 355 356
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
357

358 359 360 361 362 363 364 365
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
366
	}
367
	*next_stripe_start = disk_bytenr + geom.len;
368
	refcount_inc(&cb->pending_ios);
369 370 371
	return bio;
}

C
Chris Mason 已提交
372 373 374 375 376 377 378 379 380
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
381
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
382 383
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
384
				 struct page **compressed_pages,
385
				 unsigned int nr_pages,
386
				 blk_opf_t write_flags,
387 388
				 struct cgroup_subsys_state *blkcg_css,
				 bool writeback)
C
Chris Mason 已提交
389
{
390
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
391 392
	struct bio *bio = NULL;
	struct compressed_bio *cb;
393
	u64 cur_disk_bytenr = disk_start;
394
	u64 next_stripe_start;
395
	blk_status_t ret = BLK_STS_OK;
396
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
397
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
398
	const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
399

400 401
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
402
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
403
	if (!cb)
404
		return BLK_STS_RESOURCE;
405
	refcount_set(&cb->pending_ios, 1);
406
	cb->status = BLK_STS_OK;
407
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
408 409 410 411
	cb->start = start;
	cb->len = len;
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
412
	cb->writeback = writeback;
413
	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
C
Chris Mason 已提交
414 415
	cb->nr_pages = nr_pages;

416 417 418
	if (blkcg_css)
		kthread_associate_blkcg(blkcg_css);

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
434
				break;
435
			}
436 437
			if (blkcg_css)
				bio->bi_opf |= REQ_CGROUP_PUNT;
438
		}
439
		/*
440 441
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
442
		 */
443
		ASSERT(cur_disk_bytenr != next_stripe_start);
C
Chris Mason 已提交
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
476
			if (!skip_sum) {
477
				ret = btrfs_csum_one_bio(inode, bio, start, true);
478 479 480 481 482
				if (ret) {
					bio->bi_status = ret;
					bio_endio(bio);
					break;
				}
483
			}
C
Chris Mason 已提交
484

485
			ASSERT(bio->bi_iter.bi_size);
486
			btrfs_submit_bio(fs_info, bio, 0);
487
			bio = NULL;
C
Chris Mason 已提交
488
		}
489
		cond_resched();
C
Chris Mason 已提交
490
	}
491

492 493 494
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

495 496
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_write(cb);
497
	return ret;
C
Chris Mason 已提交
498 499
}

500 501
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
502
	struct bio_vec *last = bio_last_bvec_all(bio);
503 504 505 506

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

507 508 509 510 511 512 513 514 515 516 517
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
518 519 520 521
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
522
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
523
	unsigned long end_index;
524
	u64 cur = bio_end_offset(cb->orig_bio);
525 526 527 528 529 530 531
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
532
	int sectors_missed = 0;
533 534 535 536 537 538 539

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

540 541 542 543 544 545 546 547 548 549
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

550
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
551

552 553 554 555
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
556

557
		if (pg_index > end_index)
558 559
			break;

560
		page = xa_load(&mapping->i_pages, pg_index);
561
		if (page && !xa_is_value(page)) {
562 563 564 565 566
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
567
				break;
568 569 570 571 572 573 574

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
575 576
		}

577 578
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
579 580 581
		if (!page)
			break;

582
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
583
			put_page(page);
584 585 586
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
587 588
		}

589 590 591 592 593 594 595
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

596 597
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
598
		read_lock(&em_tree->lock);
599
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
600
		read_unlock(&em_tree->lock);
601

602 603 604 605 606 607 608
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
609
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
610
			free_extent_map(em);
611
			unlock_extent(tree, cur, page_end);
612
			unlock_page(page);
613
			put_page(page);
614 615 616 617 618
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
619
			size_t zero_offset = offset_in_page(isize);
620 621 622

			if (zero_offset) {
				int zeros;
623
				zeros = PAGE_SIZE - zero_offset;
624
				memzero_page(page, zero_offset, zeros);
625 626 627
			}
		}

628 629 630 631
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
632
			unlock_page(page);
633
			put_page(page);
634 635
			break;
		}
636 637 638 639 640 641 642 643 644
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
645 646 647 648
	}
	return 0;
}

C
Chris Mason 已提交
649 650 651 652 653
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
654
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
655 656 657 658 659
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
660
void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
661
				  int mirror_num)
C
Chris Mason 已提交
662
{
663
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
664 665
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
666
	unsigned int compressed_len;
667 668 669 670
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
671
	u64 file_offset;
672 673
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
674
	struct extent_map *em;
675
	blk_status_t ret;
676 677
	int ret2;
	int i;
C
Chris Mason 已提交
678 679 680

	em_tree = &BTRFS_I(inode)->extent_tree;

681 682 683
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
684
	/* we need the actual starting offset of this extent in the file */
685
	read_lock(&em_tree->lock);
686
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
687
	read_unlock(&em_tree->lock);
688 689 690 691
	if (!em) {
		ret = BLK_STS_IOERR;
		goto out;
	}
C
Chris Mason 已提交
692

693
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
694
	compressed_len = em->block_len;
695
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
696 697
	if (!cb) {
		ret = BLK_STS_RESOURCE;
698
		goto out;
699
	}
700

701
	refcount_set(&cb->pending_ios, 1);
702
	cb->status = BLK_STS_OK;
C
Chris Mason 已提交
703 704
	cb->inode = inode;

705
	cb->start = em->orig_start;
706 707
	em_len = em->len;
	em_start = em->start;
708

C
Christoph Hellwig 已提交
709
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
710
	cb->compressed_len = compressed_len;
711
	cb->compress_type = em->compress_type;
C
Chris Mason 已提交
712 713
	cb->orig_bio = bio;

714 715 716
	free_extent_map(em);
	em = NULL;

717 718
	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
719 720
	if (!cb->compressed_pages) {
		ret = BLK_STS_RESOURCE;
721
		goto fail;
722
	}
723

724 725 726 727
	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
	if (ret2) {
		ret = BLK_STS_RESOURCE;
		goto fail;
C
Chris Mason 已提交
728 729
	}

730
	add_ra_bio_pages(inode, em_start + em_len, cb);
731 732

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
733
	cb->len = bio->bi_iter.bi_size;
734

735 736 737 738 739 740 741
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
742

743 744 745 746 747 748
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
749 750
				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
				break;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
768

769
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
770
		/*
771 772
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
773
		 */
774 775
		ASSERT(added == real_size);
		cur_disk_byte += added;
776

777 778 779
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
780

781 782 783
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
784

785
		if (submit) {
786 787 788
			/* Save the original iter for read repair */
			if (bio_op(comp_bio) == REQ_OP_READ)
				btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
789

790 791 792 793 794 795 796
			/*
			 * Save the initial offset of this chunk, as there
			 * is no direct correlation between compressed pages and
			 * the original file offset.  The field is only used for
			 * priting error messages.
			 */
			btrfs_bio(comp_bio)->file_offset = file_offset;
797

798
			ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
799 800 801 802 803
			if (ret) {
				comp_bio->bi_status = ret;
				bio_endio(comp_bio);
				break;
			}
804

805
			ASSERT(comp_bio->bi_iter.bi_size);
806
			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
807
			comp_bio = NULL;
C
Chris Mason 已提交
808 809
		}
	}
810 811 812

	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_read(cb);
813
	return;
814

815 816 817 818 819 820
fail:
	if (cb->compressed_pages) {
		for (i = 0; i < cb->nr_pages; i++) {
			if (cb->compressed_pages[i])
				__free_page(cb->compressed_pages[i]);
		}
821
	}
822 823 824 825 826

	kfree(cb->compressed_pages);
	kfree(cb);
out:
	free_extent_map(em);
827 828
	bio->bi_status = ret;
	bio_endio(bio);
829
	return;
C
Chris Mason 已提交
830
}
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
867 868

struct heuristic_ws {
869 870
	/* Partial copy of input data */
	u8 *sample;
871
	u32 sample_size;
872 873
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
874 875
	/* Sorting buffer */
	struct bucket_item *bucket_b;
876 877 878
	struct list_head list;
};

879 880
static struct workspace_manager heuristic_wsm;

881 882 883 884 885 886
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

887 888
	kvfree(workspace->sample);
	kfree(workspace->bucket);
889
	kfree(workspace->bucket_b);
890 891 892
	kfree(workspace);
}

893
static struct list_head *alloc_heuristic_ws(unsigned int level)
894 895 896 897 898 899 900
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

901 902 903 904 905 906 907
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
908

909 910 911 912
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

913
	INIT_LIST_HEAD(&ws->list);
914
	return &ws->list;
915 916 917
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
918 919
}

920
const struct btrfs_compress_op btrfs_heuristic_compress = {
921
	.workspace_manager = &heuristic_wsm,
922 923
};

924
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
925 926
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
927
	&btrfs_zlib_compress,
L
Li Zefan 已提交
928
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
929
	&btrfs_zstd_compress,
930 931
};

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

964
static void btrfs_init_workspace_manager(int type)
965
{
966
	struct workspace_manager *wsm;
967
	struct list_head *workspace;
968

969
	wsm = btrfs_compress_op[type]->workspace_manager;
970 971 972 973
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
974

975 976 977 978
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
979
	workspace = alloc_workspace(type, 0);
980 981 982 983
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
984 985 986
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
987 988 989
	}
}

990
static void btrfs_cleanup_workspace_manager(int type)
991
{
992
	struct workspace_manager *wsman;
993 994
	struct list_head *ws;

995
	wsman = btrfs_compress_op[type]->workspace_manager;
996 997 998
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
999
		free_workspace(type, ws);
1000
		atomic_dec(&wsman->total_ws);
1001 1002 1003 1004
	}
}

/*
1005 1006 1007 1008
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1009
 */
1010
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1011
{
1012
	struct workspace_manager *wsm;
1013 1014
	struct list_head *workspace;
	int cpus = num_online_cpus();
1015
	unsigned nofs_flag;
1016 1017 1018 1019 1020 1021
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1022
	wsm = btrfs_compress_op[type]->workspace_manager;
1023 1024 1025 1026 1027
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1028 1029

again:
1030 1031 1032
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1033
		list_del(workspace);
1034
		(*free_ws)--;
1035
		spin_unlock(ws_lock);
1036 1037 1038
		return workspace;

	}
1039
	if (atomic_read(total_ws) > cpus) {
1040 1041
		DEFINE_WAIT(wait);

1042 1043
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1044
		if (atomic_read(total_ws) > cpus && !*free_ws)
1045
			schedule();
1046
		finish_wait(ws_wait, &wait);
1047 1048
		goto again;
	}
1049
	atomic_inc(total_ws);
1050
	spin_unlock(ws_lock);
1051

1052 1053 1054 1055 1056 1057
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1058
	workspace = alloc_workspace(type, level);
1059 1060
	memalloc_nofs_restore(nofs_flag);

1061
	if (IS_ERR(workspace)) {
1062
		atomic_dec(total_ws);
1063
		wake_up(ws_wait);
1064 1065 1066 1067 1068 1069

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1070 1071 1072 1073
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1074
		 */
1075 1076 1077 1078 1079 1080
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1081
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1082 1083
			}
		}
1084
		goto again;
1085 1086 1087 1088
	}
	return workspace;
}

1089
static struct list_head *get_workspace(int type, int level)
1090
{
1091
	switch (type) {
1092
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1093
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1094
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1095 1096 1097 1098 1099 1100 1101 1102
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1103 1104
}

1105 1106 1107 1108
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1109
void btrfs_put_workspace(int type, struct list_head *ws)
1110
{
1111
	struct workspace_manager *wsm;
1112 1113 1114 1115 1116 1117
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1118
	wsm = btrfs_compress_op[type]->workspace_manager;
1119 1120 1121 1122 1123
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1124 1125

	spin_lock(ws_lock);
1126
	if (*free_ws <= num_online_cpus()) {
1127
		list_add(ws, idle_ws);
1128
		(*free_ws)++;
1129
		spin_unlock(ws_lock);
1130 1131
		goto wake;
	}
1132
	spin_unlock(ws_lock);
1133

1134
	free_workspace(type, ws);
1135
	atomic_dec(total_ws);
1136
wake:
1137
	cond_wake_up(ws_wait);
1138 1139
}

1140 1141
static void put_workspace(int type, struct list_head *ws)
{
1142
	switch (type) {
1143 1144 1145
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1146 1147 1148 1149 1150 1151 1152 1153
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1172
/*
1173 1174
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1175
 *
1176 1177 1178 1179 1180
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1181 1182
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1183
 *
1184 1185
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1186 1187 1188
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1189 1190
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1191
 */
1192
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1193
			 u64 start, struct page **pages,
1194 1195
			 unsigned long *out_pages,
			 unsigned long *total_in,
1196
			 unsigned long *total_out)
1197
{
1198
	int type = btrfs_compress_type(type_level);
1199
	int level = btrfs_compress_level(type_level);
1200 1201 1202
	struct list_head *workspace;
	int ret;

1203
	level = btrfs_compress_set_level(type, level);
1204
	workspace = get_workspace(type, level);
1205 1206
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1207
	put_workspace(type, workspace);
1208 1209 1210
	return ret;
}

1211
static int btrfs_decompress_bio(struct compressed_bio *cb)
1212 1213 1214
{
	struct list_head *workspace;
	int ret;
1215
	int type = cb->compress_type;
1216

1217
	workspace = get_workspace(type, 0);
1218
	ret = compression_decompress_bio(workspace, cb);
1219
	put_workspace(type, workspace);
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1235
	workspace = get_workspace(type, 0);
1236 1237
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1238
	put_workspace(type, workspace);
1239

1240 1241 1242
	return ret;
}

1243 1244
void __init btrfs_init_compress(void)
{
1245 1246 1247 1248
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1249 1250
}

1251
void __cold btrfs_exit_compress(void)
1252
{
1253 1254 1255 1256
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1257
}
1258 1259

/*
1260
 * Copy decompressed data from working buffer to pages.
1261
 *
1262 1263 1264 1265 1266 1267
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1268
 *
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1288
 */
1289 1290
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1291
{
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1311

1312 1313 1314
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1315

1316 1317 1318 1319
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1320

1321
		/*
1322 1323
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1324
		 */
1325 1326 1327 1328
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		cur_offset += copy_len;
1329

1330 1331 1332 1333
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1334 1335 1336
	}
	return 1;
}
1337

1338 1339 1340
/*
 * Shannon Entropy calculation
 *
1341
 * Pure byte distribution analysis fails to determine compressibility of data.
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1405
 * Use 16 u32 counters for calculating new position in buf array
1406 1407 1408 1409 1410 1411
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1412
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1413
		       int num)
1414
{
1415 1416 1417 1418 1419 1420 1421 1422
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1423

1424 1425 1426 1427
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1428
	max_num = array[0].count;
1429
	for (i = 1; i < num; i++) {
1430
		buf_num = array[i].count;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1443
			buf_num = array[i].count;
1444 1445 1446 1447 1448 1449 1450 1451
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1452
			buf_num = array[i].count;
1453 1454 1455
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1456
			array_buf[new_addr] = array[i];
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1470
			buf_num = array_buf[i].count;
1471 1472 1473 1474 1475 1476 1477 1478
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1479
			buf_num = array_buf[i].count;
1480 1481 1482
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1483
			array[new_addr] = array_buf[i];
1484 1485 1486 1487
		}

		shift += RADIX_BASE;
	}
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1517
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1573 1574 1575 1576 1577 1578 1579 1580
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1611
		in_data = kmap_local_page(page);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1624
		kunmap_local(in_data);
1625 1626 1627 1628 1629 1630 1631 1632
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1650
	struct list_head *ws_list = get_workspace(0, 0);
1651
	struct heuristic_ws *ws;
1652 1653
	u32 i;
	u8 byte;
1654
	int ret = 0;
1655

1656 1657
	ws = list_entry(ws_list, struct heuristic_ws, list);

1658 1659
	heuristic_collect_sample(inode, start, end, ws);

1660 1661 1662 1663 1664
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1665 1666 1667 1668 1669
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1670 1671
	}

1672 1673 1674 1675 1676 1677
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1718
out:
1719
	put_workspace(0, ws_list);
1720 1721
	return ret;
}
1722

1723 1724 1725 1726 1727
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1728
{
1729 1730 1731 1732
	unsigned int level = 0;
	int ret;

	if (!type)
1733 1734
		return 0;

1735 1736 1737 1738 1739 1740
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1741 1742 1743 1744
	level = btrfs_compress_set_level(type, level);

	return level;
}