compression.c 45.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
31
#include "zoned.h"
C
Chris Mason 已提交
32

33 34 35 36 37 38 39 40 41 42
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
43 44
	default:
		break;
45 46 47 48 49
	}

	return NULL;
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
84 85 86 87 88 89 90
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
91
		 */
92
		*out_pages = 0;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

135
static int btrfs_decompress_bio(struct compressed_bio *cb);
136

137
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 139 140
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
141
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 143
}

144
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 146
				 u64 disk_start)
{
147
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
	const u32 csum_size = fs_info->csum_size;
150
	const u32 sectorsize = fs_info->sectorsize;
151
	struct page *page;
152
	unsigned int i;
153
	char *kaddr;
154
	u8 csum[BTRFS_CSUM_SIZE];
155
	struct compressed_bio *cb = bio->bi_private;
156
	u8 *cb_sum = cb->sums;
157

158
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 160
		return 0;

161 162
	shash->tfm = fs_info->csum_shash;

163
	for (i = 0; i < cb->nr_pages; i++) {
164 165
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
166 167
		page = cb->compressed_pages[i];

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
			kaddr = kmap_atomic(page);
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);
			kunmap_atomic(kaddr);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
				if (btrfs_io_bio(bio)->device)
					btrfs_dev_stat_inc_and_print(
						btrfs_io_bio(bio)->device,
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
191 192
		}
	}
193
	return 0;
194 195
}

C
Chris Mason 已提交
196 197 198 199 200 201 202 203 204 205
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
206
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
207 208 209 210
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
211
	unsigned int index;
212
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213
	int ret = 0;
C
Chris Mason 已提交
214

215
	if (bio->bi_status)
C
Chris Mason 已提交
216 217 218 219 220
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
221
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
222 223
		goto out;

224 225 226 227 228 229 230
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

231 232 233 234 235 236 237
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

238
	inode = cb->inode;
239
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
240
				    bio->bi_iter.bi_sector << 9);
241 242 243
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
244 245 246
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
247 248
	ret = btrfs_decompress_bio(cb);

249
csum_failed:
C
Chris Mason 已提交
250 251 252 253 254 255 256 257
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
258
		put_page(page);
C
Chris Mason 已提交
259 260 261
	}

	/* do io completion on the original bio */
262
	if (cb->errors) {
C
Chris Mason 已提交
263
		bio_io_error(cb->orig_bio);
264
	} else {
265
		struct bio_vec *bvec;
266
		struct bvec_iter_all iter_all;
267 268 269 270 271

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
272
		ASSERT(!bio_flagged(bio, BIO_CLONED));
273
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274
			SetPageChecked(bvec->bv_page);
275

276
		bio_endio(cb->orig_bio);
277
	}
C
Chris Mason 已提交
278 279 280 281 282 283 284 285 286 287 288 289

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
290 291
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
292
{
293 294
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
295 296 297 298 299
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

300 301 302
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
303
	while (nr_pages > 0) {
C
Chris Mason 已提交
304
		ret = find_get_pages_contig(inode->i_mapping, index,
305 306
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
307 308 309 310 311 312
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
313 314
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
315
			end_page_writeback(pages[i]);
316
			put_page(pages[i]);
C
Chris Mason 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
332
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
333 334 335 336
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
337
	unsigned int index;
C
Chris Mason 已提交
338

339
	if (bio->bi_status)
C
Chris Mason 已提交
340 341 342 343 344
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
345
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
346 347 348 349 350 351
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
352
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
353
	btrfs_record_physical_zoned(inode, cb->start, bio);
354
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
355
			cb->start, cb->start + cb->len - 1,
356
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
357
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
358

359
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
360 361 362 363 364 365 366 367 368 369
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
370
		put_page(page);
C
Chris Mason 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
389
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
390 391
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
392
				 struct page **compressed_pages,
393
				 unsigned int nr_pages,
394 395
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
396
{
397
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
398 399 400
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
401
	int pg_index = 0;
C
Chris Mason 已提交
402 403
	struct page *page;
	u64 first_byte = disk_start;
404
	blk_status_t ret;
405
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
406 407
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
408

409
	WARN_ON(!PAGE_ALIGNED(start));
410
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
411
	if (!cb)
412
		return BLK_STS_RESOURCE;
413
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
414
	cb->errors = 0;
415
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
416 417
	cb->start = start;
	cb->len = len;
418
	cb->mirror_num = 0;
C
Chris Mason 已提交
419 420 421 422 423
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

424
	bio = btrfs_bio_alloc(first_byte);
425
	bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
426 427
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
428

429
	if (use_append) {
430
		struct btrfs_device *device;
431

432 433
		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
		if (IS_ERR(device)) {
434 435 436 437 438
			kfree(cb);
			bio_put(bio);
			return BLK_STS_NOTSUPP;
		}

439
		bio_set_dev(bio, device->bdev);
440 441
	}

442 443
	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
444
		kthread_associate_blkcg(blkcg_css);
445
	}
446
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
447 448 449

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
450
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
451
		int submit = 0;
452
		int len = 0;
453

454
		page = compressed_pages[pg_index];
455
		page->mapping = inode->vfs_inode.i_mapping;
456
		if (bio->bi_iter.bi_size)
457 458
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
459

460 461 462 463 464 465 466 467 468 469 470
		/*
		 * Page can only be added to bio if the current bio fits in
		 * stripe.
		 */
		if (!submit) {
			if (pg_index == 0 && use_append)
				len = bio_add_zone_append_page(bio, page,
							       PAGE_SIZE, 0);
			else
				len = bio_add_page(bio, page, PAGE_SIZE, 0);
		}
471

C
Chris Mason 已提交
472
		page->mapping = NULL;
473
		if (submit || len < PAGE_SIZE) {
474 475 476 477 478 479
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
480
			refcount_inc(&cb->pending_bios);
481 482
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
483
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
484

485
			if (!skip_sum) {
486
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
487
				BUG_ON(ret); /* -ENOMEM */
488
			}
489

490
			ret = btrfs_map_bio(fs_info, bio, 0);
491
			if (ret) {
492
				bio->bi_status = ret;
493 494
				bio_endio(bio);
			}
C
Chris Mason 已提交
495

496
			bio = btrfs_bio_alloc(first_byte);
497
			bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
498 499
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
500
			if (blkcg_css)
501
				bio->bi_opf |= REQ_CGROUP_PUNT;
502 503 504 505
			/*
			 * Use bio_add_page() to ensure the bio has at least one
			 * page.
			 */
506
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
507
		}
508
		if (bytes_left < PAGE_SIZE) {
509
			btrfs_info(fs_info,
510
					"bytes left %lu compress len %u nr %u",
511 512
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
513 514
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
515
		cond_resched();
C
Chris Mason 已提交
516 517
	}

518
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
519
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
520

521
	if (!skip_sum) {
522
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
523
		BUG_ON(ret); /* -ENOMEM */
524
	}
525

526
	ret = btrfs_map_bio(fs_info, bio, 0);
527
	if (ret) {
528
		bio->bi_status = ret;
529 530
		bio_endio(bio);
	}
C
Chris Mason 已提交
531

532 533 534
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
535 536 537
	return 0;
}

538 539
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
540
	struct bio_vec *last = bio_last_bvec_all(bio);
541 542 543 544

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

545 546 547 548 549
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
550
	unsigned long pg_index;
551 552 553 554 555 556 557 558 559 560 561 562
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

563
	last_offset = bio_end_offset(cb->orig_bio);
564 565 566 567 568 569
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

570
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
571

C
Chris Mason 已提交
572
	while (last_offset < compressed_end) {
573
		pg_index = last_offset >> PAGE_SHIFT;
574

575
		if (pg_index > end_index)
576 577
			break;

578
		page = xa_load(&mapping->i_pages, pg_index);
579
		if (page && !xa_is_value(page)) {
580 581 582 583 584 585
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

586 587
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
588 589 590
		if (!page)
			break;

591
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
592
			put_page(page);
593 594 595 596 597 598 599 600
			goto next;
		}

		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
601 602 603 604 605 606 607 608
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

		end = last_offset + PAGE_SIZE - 1;
609
		lock_extent(tree, last_offset, end);
610
		read_lock(&em_tree->lock);
611
		em = lookup_extent_mapping(em_tree, last_offset,
612
					   PAGE_SIZE);
613
		read_unlock(&em_tree->lock);
614 615

		if (!em || last_offset < em->start ||
616
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
617
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
618
			free_extent_map(em);
619
			unlock_extent(tree, last_offset, end);
620
			unlock_page(page);
621
			put_page(page);
622 623 624 625 626
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
627
			size_t zero_offset = offset_in_page(isize);
628 629 630

			if (zero_offset) {
				int zeros;
631
				zeros = PAGE_SIZE - zero_offset;
632
				memzero_page(page, zero_offset, zeros);
633 634 635 636 637
				flush_dcache_page(page);
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
638
				   PAGE_SIZE, 0);
639

640
		if (ret == PAGE_SIZE) {
641
			nr_pages++;
642
			put_page(page);
643
		} else {
644
			unlock_extent(tree, last_offset, end);
645
			unlock_page(page);
646
			put_page(page);
647 648 649
			break;
		}
next:
650
		last_offset += PAGE_SIZE;
651 652 653 654
	}
	return 0;
}

C
Chris Mason 已提交
655 656 657 658 659
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
660
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
661 662 663 664 665
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
666
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
667 668
				 int mirror_num, unsigned long bio_flags)
{
669
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
670 671
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
672 673 674
	unsigned int compressed_len;
	unsigned int nr_pages;
	unsigned int pg_index;
C
Chris Mason 已提交
675 676
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
677
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
678 679
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
680
	struct extent_map *em;
681
	blk_status_t ret = BLK_STS_RESOURCE;
682
	int faili = 0;
683
	u8 *sums;
C
Chris Mason 已提交
684 685 686 687

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
688
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
689
	em = lookup_extent_mapping(em_tree,
690
				   page_offset(bio_first_page_all(bio)),
691
				   fs_info->sectorsize);
692
	read_unlock(&em_tree->lock);
693
	if (!em)
694
		return BLK_STS_IOERR;
C
Chris Mason 已提交
695

696
	compressed_len = em->block_len;
697
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
698 699 700
	if (!cb)
		goto out;

701
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
702 703
	cb->errors = 0;
	cb->inode = inode;
704
	cb->mirror_num = mirror_num;
705
	sums = cb->sums;
C
Chris Mason 已提交
706

707
	cb->start = em->orig_start;
708 709
	em_len = em->len;
	em_start = em->start;
710

C
Chris Mason 已提交
711
	free_extent_map(em);
712
	em = NULL;
C
Chris Mason 已提交
713

C
Christoph Hellwig 已提交
714
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
715
	cb->compressed_len = compressed_len;
716
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
717 718
	cb->orig_bio = bio;

719
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
720
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
721
				       GFP_NOFS);
722 723 724
	if (!cb->compressed_pages)
		goto fail1;

725 726
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
727
							      __GFP_HIGHMEM);
728 729
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
730
			ret = BLK_STS_RESOURCE;
731
			goto fail2;
732
		}
C
Chris Mason 已提交
733
	}
734
	faili = nr_pages - 1;
C
Chris Mason 已提交
735 736
	cb->nr_pages = nr_pages;

737
	add_ra_bio_pages(inode, em_start + em_len, cb);
738 739

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
740
	cb->len = bio->bi_iter.bi_size;
741

742
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
743
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
744 745
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
746
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
747

748
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
749
		u32 pg_len = PAGE_SIZE;
750 751
		int submit = 0;

752 753 754 755 756 757 758 759 760 761 762
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

763
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
764
		page->mapping = inode->i_mapping;
765
		page->index = em_start >> PAGE_SHIFT;
766

767
		if (comp_bio->bi_iter.bi_size)
768
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
769
							  comp_bio, 0);
C
Chris Mason 已提交
770

C
Chris Mason 已提交
771
		page->mapping = NULL;
772
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
773 774
			unsigned int nr_sectors;

775 776
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
777
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
778

779 780 781 782 783 784
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
785
			refcount_inc(&cb->pending_bios);
786

787
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
788
			BUG_ON(ret); /* -ENOMEM */
789 790 791

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
792
			sums += fs_info->csum_size * nr_sectors;
793

794
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
795
			if (ret) {
796
				comp_bio->bi_status = ret;
797 798
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
799

800
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
801
			comp_bio->bi_opf = REQ_OP_READ;
802 803 804
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

805
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
806
		}
807
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
808 809
	}

810
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
811
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
812

813
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
814
	BUG_ON(ret); /* -ENOMEM */
815

816
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
817
	if (ret) {
818
		comp_bio->bi_status = ret;
819 820
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
821 822

	return 0;
823 824

fail2:
825 826 827 828
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
829 830 831 832 833 834 835

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
836
}
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
873 874

struct heuristic_ws {
875 876
	/* Partial copy of input data */
	u8 *sample;
877
	u32 sample_size;
878 879
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
880 881
	/* Sorting buffer */
	struct bucket_item *bucket_b;
882 883 884
	struct list_head list;
};

885 886
static struct workspace_manager heuristic_wsm;

887 888 889 890 891 892
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

893 894
	kvfree(workspace->sample);
	kfree(workspace->bucket);
895
	kfree(workspace->bucket_b);
896 897 898
	kfree(workspace);
}

899
static struct list_head *alloc_heuristic_ws(unsigned int level)
900 901 902 903 904 905 906
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

907 908 909 910 911 912 913
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
914

915 916 917 918
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

919
	INIT_LIST_HEAD(&ws->list);
920
	return &ws->list;
921 922 923
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
924 925
}

926
const struct btrfs_compress_op btrfs_heuristic_compress = {
927
	.workspace_manager = &heuristic_wsm,
928 929
};

930
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
931 932
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
933
	&btrfs_zlib_compress,
L
Li Zefan 已提交
934
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
935
	&btrfs_zstd_compress,
936 937
};

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

970
static void btrfs_init_workspace_manager(int type)
971
{
972
	struct workspace_manager *wsm;
973
	struct list_head *workspace;
974

975
	wsm = btrfs_compress_op[type]->workspace_manager;
976 977 978 979
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
980

981 982 983 984
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
985
	workspace = alloc_workspace(type, 0);
986 987 988 989
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
990 991 992
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
993 994 995
	}
}

996
static void btrfs_cleanup_workspace_manager(int type)
997
{
998
	struct workspace_manager *wsman;
999 1000
	struct list_head *ws;

1001
	wsman = btrfs_compress_op[type]->workspace_manager;
1002 1003 1004
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1005
		free_workspace(type, ws);
1006
		atomic_dec(&wsman->total_ws);
1007 1008 1009 1010
	}
}

/*
1011 1012 1013 1014
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1015
 */
1016
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1017
{
1018
	struct workspace_manager *wsm;
1019 1020
	struct list_head *workspace;
	int cpus = num_online_cpus();
1021
	unsigned nofs_flag;
1022 1023 1024 1025 1026 1027
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1028
	wsm = btrfs_compress_op[type]->workspace_manager;
1029 1030 1031 1032 1033
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1034 1035

again:
1036 1037 1038
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1039
		list_del(workspace);
1040
		(*free_ws)--;
1041
		spin_unlock(ws_lock);
1042 1043 1044
		return workspace;

	}
1045
	if (atomic_read(total_ws) > cpus) {
1046 1047
		DEFINE_WAIT(wait);

1048 1049
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1050
		if (atomic_read(total_ws) > cpus && !*free_ws)
1051
			schedule();
1052
		finish_wait(ws_wait, &wait);
1053 1054
		goto again;
	}
1055
	atomic_inc(total_ws);
1056
	spin_unlock(ws_lock);
1057

1058 1059 1060 1061 1062 1063
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1064
	workspace = alloc_workspace(type, level);
1065 1066
	memalloc_nofs_restore(nofs_flag);

1067
	if (IS_ERR(workspace)) {
1068
		atomic_dec(total_ws);
1069
		wake_up(ws_wait);
1070 1071 1072 1073 1074 1075

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1076 1077 1078 1079
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1080
		 */
1081 1082 1083 1084 1085 1086
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1087
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1088 1089
			}
		}
1090
		goto again;
1091 1092 1093 1094
	}
	return workspace;
}

1095
static struct list_head *get_workspace(int type, int level)
1096
{
1097
	switch (type) {
1098
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1099
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1100
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1101 1102 1103 1104 1105 1106 1107 1108
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1109 1110
}

1111 1112 1113 1114
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1115
void btrfs_put_workspace(int type, struct list_head *ws)
1116
{
1117
	struct workspace_manager *wsm;
1118 1119 1120 1121 1122 1123
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1124
	wsm = btrfs_compress_op[type]->workspace_manager;
1125 1126 1127 1128 1129
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1130 1131

	spin_lock(ws_lock);
1132
	if (*free_ws <= num_online_cpus()) {
1133
		list_add(ws, idle_ws);
1134
		(*free_ws)++;
1135
		spin_unlock(ws_lock);
1136 1137
		goto wake;
	}
1138
	spin_unlock(ws_lock);
1139

1140
	free_workspace(type, ws);
1141
	atomic_dec(total_ws);
1142
wake:
1143
	cond_wake_up(ws_wait);
1144 1145
}

1146 1147
static void put_workspace(int type, struct list_head *ws)
{
1148
	switch (type) {
1149 1150 1151
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1152 1153 1154 1155 1156 1157 1158 1159
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1178
/*
1179 1180
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1181
 *
1182 1183 1184 1185 1186
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1187 1188
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1189
 *
1190 1191
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1192 1193 1194
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1195 1196
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1197
 */
1198
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1199
			 u64 start, struct page **pages,
1200 1201
			 unsigned long *out_pages,
			 unsigned long *total_in,
1202
			 unsigned long *total_out)
1203
{
1204
	int type = btrfs_compress_type(type_level);
1205
	int level = btrfs_compress_level(type_level);
1206 1207 1208
	struct list_head *workspace;
	int ret;

1209
	level = btrfs_compress_set_level(type, level);
1210
	workspace = get_workspace(type, level);
1211 1212
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1213
	put_workspace(type, workspace);
1214 1215 1216 1217 1218 1219 1220 1221
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1222
 * orig_bio contains the pages from the file that we want to decompress into
1223 1224 1225 1226 1227 1228 1229 1230
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1231
static int btrfs_decompress_bio(struct compressed_bio *cb)
1232 1233 1234
{
	struct list_head *workspace;
	int ret;
1235
	int type = cb->compress_type;
1236

1237
	workspace = get_workspace(type, 0);
1238
	ret = compression_decompress_bio(type, workspace, cb);
1239
	put_workspace(type, workspace);
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1255
	workspace = get_workspace(type, 0);
1256 1257
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1258
	put_workspace(type, workspace);
1259

1260 1261 1262
	return ret;
}

1263 1264
void __init btrfs_init_compress(void)
{
1265 1266 1267 1268
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1269 1270
}

1271
void __cold btrfs_exit_compress(void)
1272
{
1273 1274 1275 1276
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1277
}
1278 1279 1280 1281 1282 1283 1284 1285

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1286
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1287
			      unsigned long total_out, u64 disk_start,
1288
			      struct bio *bio)
1289 1290 1291 1292
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1293
	unsigned long prev_start_byte;
1294 1295
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
1296
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1297 1298 1299 1300 1301

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1302
	start_byte = page_offset(bvec.bv_page) - disk_start;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1322
		bytes = min_t(unsigned long, bvec.bv_len,
1323
				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1324
		bytes = min(bytes, working_bytes);
1325

1326 1327
		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
			       bytes);
1328
		flush_dcache_page(bvec.bv_page);
1329 1330 1331 1332 1333 1334

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1335 1336 1337 1338
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1339
		prev_start_byte = start_byte;
1340
		start_byte = page_offset(bvec.bv_page) - disk_start;
1341

1342
		/*
1343 1344 1345 1346
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1347
		 */
1348 1349 1350 1351 1352 1353 1354
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1367 1368 1369 1370 1371
		}
	}

	return 1;
}
1372

1373 1374 1375
/*
 * Shannon Entropy calculation
 *
1376
 * Pure byte distribution analysis fails to determine compressibility of data.
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1440
 * Use 16 u32 counters for calculating new position in buf array
1441 1442 1443 1444 1445 1446
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1447
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1448
		       int num)
1449
{
1450 1451 1452 1453 1454 1455 1456 1457
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1458

1459 1460 1461 1462
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1463
	max_num = array[0].count;
1464
	for (i = 1; i < num; i++) {
1465
		buf_num = array[i].count;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1478
			buf_num = array[i].count;
1479 1480 1481 1482 1483 1484 1485 1486
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1487
			buf_num = array[i].count;
1488 1489 1490
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1491
			array_buf[new_addr] = array[i];
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1505
			buf_num = array_buf[i].count;
1506 1507 1508 1509 1510 1511 1512 1513
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1514
			buf_num = array_buf[i].count;
1515 1516 1517
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1518
			array[new_addr] = array_buf[i];
1519 1520 1521 1522
		}

		shift += RADIX_BASE;
	}
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1552
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1608 1609 1610 1611 1612 1613 1614 1615
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1646
		in_data = kmap_local_page(page);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1659
		kunmap_local(in_data);
1660 1661 1662 1663 1664 1665 1666 1667
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1685
	struct list_head *ws_list = get_workspace(0, 0);
1686
	struct heuristic_ws *ws;
1687 1688
	u32 i;
	u8 byte;
1689
	int ret = 0;
1690

1691 1692
	ws = list_entry(ws_list, struct heuristic_ws, list);

1693 1694
	heuristic_collect_sample(inode, start, end, ws);

1695 1696 1697 1698 1699
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1700 1701 1702 1703 1704
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1705 1706
	}

1707 1708 1709 1710 1711 1712
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1753
out:
1754
	put_workspace(0, ws_list);
1755 1756
	return ret;
}
1757

1758 1759 1760 1761 1762
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1763
{
1764 1765 1766 1767
	unsigned int level = 0;
	int ret;

	if (!type)
1768 1769
		return 0;

1770 1771 1772 1773 1774 1775
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1776 1777 1778 1779
	level = btrfs_compress_set_level(type, level);

	return level;
}