compression.c 45.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
31
#include "zoned.h"
C
Chris Mason 已提交
32

33 34 35 36 37 38 39 40 41 42
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
43 44
	default:
		break;
45 46 47 48 49
	}

	return NULL;
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
84 85 86 87 88 89 90
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
91
		 */
92
		*out_pages = 0;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

135
static int btrfs_decompress_bio(struct compressed_bio *cb);
136

137
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 139 140
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
141
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 143
}

144
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 146
				 u64 disk_start)
{
147
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
	const u32 csum_size = fs_info->csum_size;
150
	const u32 sectorsize = fs_info->sectorsize;
151 152 153
	struct page *page;
	unsigned long i;
	char *kaddr;
154
	u8 csum[BTRFS_CSUM_SIZE];
155
	struct compressed_bio *cb = bio->bi_private;
156
	u8 *cb_sum = cb->sums;
157

158
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 160
		return 0;

161 162
	shash->tfm = fs_info->csum_shash;

163
	for (i = 0; i < cb->nr_pages; i++) {
164 165
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
166 167
		page = cb->compressed_pages[i];

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
			kaddr = kmap_atomic(page);
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);
			kunmap_atomic(kaddr);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
				if (btrfs_io_bio(bio)->device)
					btrfs_dev_stat_inc_and_print(
						btrfs_io_bio(bio)->device,
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
191 192
		}
	}
193
	return 0;
194 195
}

C
Chris Mason 已提交
196 197 198 199 200 201 202 203 204 205
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
206
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
207 208 209 210 211
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
212
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213
	int ret = 0;
C
Chris Mason 已提交
214

215
	if (bio->bi_status)
C
Chris Mason 已提交
216 217 218 219 220
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
221
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
222 223
		goto out;

224 225 226 227 228 229 230
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

231 232 233 234 235 236 237
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

238
	inode = cb->inode;
239
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
240
				    bio->bi_iter.bi_sector << 9);
241 242 243
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
244 245 246
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
247 248
	ret = btrfs_decompress_bio(cb);

249
csum_failed:
C
Chris Mason 已提交
250 251 252 253 254 255 256 257
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
258
		put_page(page);
C
Chris Mason 已提交
259 260 261
	}

	/* do io completion on the original bio */
262
	if (cb->errors) {
C
Chris Mason 已提交
263
		bio_io_error(cb->orig_bio);
264
	} else {
265
		struct bio_vec *bvec;
266
		struct bvec_iter_all iter_all;
267 268 269 270 271

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
272
		ASSERT(!bio_flagged(bio, BIO_CLONED));
273
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274
			SetPageChecked(bvec->bv_page);
275

276
		bio_endio(cb->orig_bio);
277
	}
C
Chris Mason 已提交
278 279 280 281 282 283 284 285 286 287 288 289

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
290 291
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
292
{
293 294
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
295 296 297 298 299
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

300 301 302
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
303
	while (nr_pages > 0) {
C
Chris Mason 已提交
304
		ret = find_get_pages_contig(inode->i_mapping, index,
305 306
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
307 308 309 310 311 312
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
313 314
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
315
			end_page_writeback(pages[i]);
316
			put_page(pages[i]);
C
Chris Mason 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
332
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
333 334 335 336 337 338
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

339
	if (bio->bi_status)
C
Chris Mason 已提交
340 341 342 343 344
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
345
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
346 347 348 349 350 351
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
352
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
353
	btrfs_record_physical_zoned(inode, cb->start, bio);
354
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
355
			cb->start, cb->start + cb->len - 1,
356
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
357
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
358

359
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
360 361 362 363 364 365 366 367 368 369
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
370
		put_page(page);
C
Chris Mason 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
389
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
C
Chris Mason 已提交
390 391 392
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
393
				 unsigned long nr_pages,
394 395
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
396
{
397
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
398 399 400
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
401
	int pg_index = 0;
C
Chris Mason 已提交
402 403
	struct page *page;
	u64 first_byte = disk_start;
404
	blk_status_t ret;
405
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
406 407
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
408

409
	WARN_ON(!PAGE_ALIGNED(start));
410
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
411
	if (!cb)
412
		return BLK_STS_RESOURCE;
413
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
414
	cb->errors = 0;
415
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
416 417
	cb->start = start;
	cb->len = len;
418
	cb->mirror_num = 0;
C
Chris Mason 已提交
419 420 421 422 423
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

424
	bio = btrfs_bio_alloc(first_byte);
425
	bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
426 427
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	if (use_append) {
		struct extent_map *em;
		struct map_lookup *map;
		struct block_device *bdev;

		em = btrfs_get_chunk_map(fs_info, disk_start, PAGE_SIZE);
		if (IS_ERR(em)) {
			kfree(cb);
			bio_put(bio);
			return BLK_STS_NOTSUPP;
		}

		map = em->map_lookup;
		/* We only support single profile for now */
		ASSERT(map->num_stripes == 1);
		bdev = map->stripes[0].dev->bdev;

		bio_set_dev(bio, bdev);
		free_extent_map(em);
	}

450 451
	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
452
		kthread_associate_blkcg(blkcg_css);
453
	}
454
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
455 456 457

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
458
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
459
		int submit = 0;
460
		int len;
461

462
		page = compressed_pages[pg_index];
463
		page->mapping = inode->vfs_inode.i_mapping;
464
		if (bio->bi_iter.bi_size)
465 466
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
467

468 469 470 471 472
		if (pg_index == 0 && use_append)
			len = bio_add_zone_append_page(bio, page, PAGE_SIZE, 0);
		else
			len = bio_add_page(bio, page, PAGE_SIZE, 0);

C
Chris Mason 已提交
473
		page->mapping = NULL;
474
		if (submit || len < PAGE_SIZE) {
475 476 477 478 479 480
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
481
			refcount_inc(&cb->pending_bios);
482 483
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
484
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
485

486
			if (!skip_sum) {
487
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
488
				BUG_ON(ret); /* -ENOMEM */
489
			}
490

491
			ret = btrfs_map_bio(fs_info, bio, 0);
492
			if (ret) {
493
				bio->bi_status = ret;
494 495
				bio_endio(bio);
			}
C
Chris Mason 已提交
496

497
			bio = btrfs_bio_alloc(first_byte);
498
			bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
499 500
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
501
			if (blkcg_css)
502
				bio->bi_opf |= REQ_CGROUP_PUNT;
503 504 505 506
			/*
			 * Use bio_add_page() to ensure the bio has at least one
			 * page.
			 */
507
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
508
		}
509
		if (bytes_left < PAGE_SIZE) {
510
			btrfs_info(fs_info,
511
					"bytes left %lu compress len %lu nr %lu",
512 513
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
514 515
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
516
		cond_resched();
C
Chris Mason 已提交
517 518
	}

519
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
520
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
521

522
	if (!skip_sum) {
523
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
524
		BUG_ON(ret); /* -ENOMEM */
525
	}
526

527
	ret = btrfs_map_bio(fs_info, bio, 0);
528
	if (ret) {
529
		bio->bi_status = ret;
530 531
		bio_endio(bio);
	}
C
Chris Mason 已提交
532

533 534 535
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
536 537 538
	return 0;
}

539 540
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
541
	struct bio_vec *last = bio_last_bvec_all(bio);
542 543 544 545

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

546 547 548 549 550
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
551
	unsigned long pg_index;
552 553 554 555 556 557 558 559 560 561 562 563
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

564
	last_offset = bio_end_offset(cb->orig_bio);
565 566 567 568 569 570
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

571
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
572

C
Chris Mason 已提交
573
	while (last_offset < compressed_end) {
574
		pg_index = last_offset >> PAGE_SHIFT;
575

576
		if (pg_index > end_index)
577 578
			break;

579
		page = xa_load(&mapping->i_pages, pg_index);
580
		if (page && !xa_is_value(page)) {
581 582 583 584 585 586
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

587 588
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
589 590 591
		if (!page)
			break;

592
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
593
			put_page(page);
594 595 596 597 598 599 600 601
			goto next;
		}

		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
602 603 604 605 606 607 608 609
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

		end = last_offset + PAGE_SIZE - 1;
610
		lock_extent(tree, last_offset, end);
611
		read_lock(&em_tree->lock);
612
		em = lookup_extent_mapping(em_tree, last_offset,
613
					   PAGE_SIZE);
614
		read_unlock(&em_tree->lock);
615 616

		if (!em || last_offset < em->start ||
617
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
618
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
619
			free_extent_map(em);
620
			unlock_extent(tree, last_offset, end);
621
			unlock_page(page);
622
			put_page(page);
623 624 625 626 627 628
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
629
			size_t zero_offset = offset_in_page(isize);
630 631 632

			if (zero_offset) {
				int zeros;
633
				zeros = PAGE_SIZE - zero_offset;
634
				userpage = kmap_atomic(page);
635 636
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
637
				kunmap_atomic(userpage);
638 639 640 641
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
642
				   PAGE_SIZE, 0);
643

644
		if (ret == PAGE_SIZE) {
645
			nr_pages++;
646
			put_page(page);
647
		} else {
648
			unlock_extent(tree, last_offset, end);
649
			unlock_page(page);
650
			put_page(page);
651 652 653
			break;
		}
next:
654
		last_offset += PAGE_SIZE;
655 656 657 658
	}
	return 0;
}

C
Chris Mason 已提交
659 660 661 662 663
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
664
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
665 666 667 668 669
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
670
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
671 672
				 int mirror_num, unsigned long bio_flags)
{
673
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
674 675 676 677
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
678
	unsigned long pg_index;
C
Chris Mason 已提交
679 680
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
681
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
682 683
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
684
	struct extent_map *em;
685
	blk_status_t ret = BLK_STS_RESOURCE;
686
	int faili = 0;
687
	u8 *sums;
C
Chris Mason 已提交
688 689 690 691

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
692
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
693
	em = lookup_extent_mapping(em_tree,
694
				   page_offset(bio_first_page_all(bio)),
695
				   fs_info->sectorsize);
696
	read_unlock(&em_tree->lock);
697
	if (!em)
698
		return BLK_STS_IOERR;
C
Chris Mason 已提交
699

700
	compressed_len = em->block_len;
701
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
702 703 704
	if (!cb)
		goto out;

705
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
706 707
	cb->errors = 0;
	cb->inode = inode;
708
	cb->mirror_num = mirror_num;
709
	sums = cb->sums;
C
Chris Mason 已提交
710

711
	cb->start = em->orig_start;
712 713
	em_len = em->len;
	em_start = em->start;
714

C
Chris Mason 已提交
715
	free_extent_map(em);
716
	em = NULL;
C
Chris Mason 已提交
717

C
Christoph Hellwig 已提交
718
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
719
	cb->compressed_len = compressed_len;
720
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
721 722
	cb->orig_bio = bio;

723
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
724
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
725
				       GFP_NOFS);
726 727 728
	if (!cb->compressed_pages)
		goto fail1;

729 730
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
731
							      __GFP_HIGHMEM);
732 733
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
734
			ret = BLK_STS_RESOURCE;
735
			goto fail2;
736
		}
C
Chris Mason 已提交
737
	}
738
	faili = nr_pages - 1;
C
Chris Mason 已提交
739 740
	cb->nr_pages = nr_pages;

741
	add_ra_bio_pages(inode, em_start + em_len, cb);
742 743

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
744
	cb->len = bio->bi_iter.bi_size;
745

746
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
747
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
748 749
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
750
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
751

752
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
753
		u32 pg_len = PAGE_SIZE;
754 755
		int submit = 0;

756 757 758 759 760 761 762 763 764 765 766
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

767
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
768
		page->mapping = inode->i_mapping;
769
		page->index = em_start >> PAGE_SHIFT;
770

771
		if (comp_bio->bi_iter.bi_size)
772
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
773
							  comp_bio, 0);
C
Chris Mason 已提交
774

C
Chris Mason 已提交
775
		page->mapping = NULL;
776
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
777 778
			unsigned int nr_sectors;

779 780
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
781
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
782

783 784 785 786 787 788
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
789
			refcount_inc(&cb->pending_bios);
790

791
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
792
			BUG_ON(ret); /* -ENOMEM */
793 794 795

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
796
			sums += fs_info->csum_size * nr_sectors;
797

798
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
799
			if (ret) {
800
				comp_bio->bi_status = ret;
801 802
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
803

804
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
805
			comp_bio->bi_opf = REQ_OP_READ;
806 807 808
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

809
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
810
		}
811
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
812 813
	}

814
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
815
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
816

817
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
818
	BUG_ON(ret); /* -ENOMEM */
819

820
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
821
	if (ret) {
822
		comp_bio->bi_status = ret;
823 824
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
825 826

	return 0;
827 828

fail2:
829 830 831 832
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
833 834 835 836 837 838 839

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
840
}
841

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
877 878

struct heuristic_ws {
879 880
	/* Partial copy of input data */
	u8 *sample;
881
	u32 sample_size;
882 883
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
884 885
	/* Sorting buffer */
	struct bucket_item *bucket_b;
886 887 888
	struct list_head list;
};

889 890
static struct workspace_manager heuristic_wsm;

891 892 893 894 895 896
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

897 898
	kvfree(workspace->sample);
	kfree(workspace->bucket);
899
	kfree(workspace->bucket_b);
900 901 902
	kfree(workspace);
}

903
static struct list_head *alloc_heuristic_ws(unsigned int level)
904 905 906 907 908 909 910
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

911 912 913 914 915 916 917
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
918

919 920 921 922
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

923
	INIT_LIST_HEAD(&ws->list);
924
	return &ws->list;
925 926 927
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
928 929
}

930
const struct btrfs_compress_op btrfs_heuristic_compress = {
931
	.workspace_manager = &heuristic_wsm,
932 933
};

934
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
935 936
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
937
	&btrfs_zlib_compress,
L
Li Zefan 已提交
938
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
939
	&btrfs_zstd_compress,
940 941
};

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

974
static void btrfs_init_workspace_manager(int type)
975
{
976
	struct workspace_manager *wsm;
977
	struct list_head *workspace;
978

979
	wsm = btrfs_compress_op[type]->workspace_manager;
980 981 982 983
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
984

985 986 987 988
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
989
	workspace = alloc_workspace(type, 0);
990 991 992 993
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
994 995 996
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
997 998 999
	}
}

1000
static void btrfs_cleanup_workspace_manager(int type)
1001
{
1002
	struct workspace_manager *wsman;
1003 1004
	struct list_head *ws;

1005
	wsman = btrfs_compress_op[type]->workspace_manager;
1006 1007 1008
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1009
		free_workspace(type, ws);
1010
		atomic_dec(&wsman->total_ws);
1011 1012 1013 1014
	}
}

/*
1015 1016 1017 1018
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1019
 */
1020
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1021
{
1022
	struct workspace_manager *wsm;
1023 1024
	struct list_head *workspace;
	int cpus = num_online_cpus();
1025
	unsigned nofs_flag;
1026 1027 1028 1029 1030 1031
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1032
	wsm = btrfs_compress_op[type]->workspace_manager;
1033 1034 1035 1036 1037
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1038 1039

again:
1040 1041 1042
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1043
		list_del(workspace);
1044
		(*free_ws)--;
1045
		spin_unlock(ws_lock);
1046 1047 1048
		return workspace;

	}
1049
	if (atomic_read(total_ws) > cpus) {
1050 1051
		DEFINE_WAIT(wait);

1052 1053
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1054
		if (atomic_read(total_ws) > cpus && !*free_ws)
1055
			schedule();
1056
		finish_wait(ws_wait, &wait);
1057 1058
		goto again;
	}
1059
	atomic_inc(total_ws);
1060
	spin_unlock(ws_lock);
1061

1062 1063 1064 1065 1066 1067
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1068
	workspace = alloc_workspace(type, level);
1069 1070
	memalloc_nofs_restore(nofs_flag);

1071
	if (IS_ERR(workspace)) {
1072
		atomic_dec(total_ws);
1073
		wake_up(ws_wait);
1074 1075 1076 1077 1078 1079

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1080 1081 1082 1083
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1084
		 */
1085 1086 1087 1088 1089 1090
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1091
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1092 1093
			}
		}
1094
		goto again;
1095 1096 1097 1098
	}
	return workspace;
}

1099
static struct list_head *get_workspace(int type, int level)
1100
{
1101
	switch (type) {
1102
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1103
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1104
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1105 1106 1107 1108 1109 1110 1111 1112
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1113 1114
}

1115 1116 1117 1118
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1119
void btrfs_put_workspace(int type, struct list_head *ws)
1120
{
1121
	struct workspace_manager *wsm;
1122 1123 1124 1125 1126 1127
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1128
	wsm = btrfs_compress_op[type]->workspace_manager;
1129 1130 1131 1132 1133
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1134 1135

	spin_lock(ws_lock);
1136
	if (*free_ws <= num_online_cpus()) {
1137
		list_add(ws, idle_ws);
1138
		(*free_ws)++;
1139
		spin_unlock(ws_lock);
1140 1141
		goto wake;
	}
1142
	spin_unlock(ws_lock);
1143

1144
	free_workspace(type, ws);
1145
	atomic_dec(total_ws);
1146
wake:
1147
	cond_wake_up(ws_wait);
1148 1149
}

1150 1151
static void put_workspace(int type, struct list_head *ws)
{
1152
	switch (type) {
1153 1154 1155
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1156 1157 1158 1159 1160 1161 1162 1163
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1164 1165
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1182
/*
1183 1184
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1185
 *
1186 1187 1188 1189 1190
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1191 1192
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1193
 *
1194 1195
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1196 1197 1198
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1199 1200
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1201
 *
1202
 * @max_out tells us the max number of bytes that we're allowed to
1203 1204
 * stuff into pages
 */
1205
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1206
			 u64 start, struct page **pages,
1207 1208
			 unsigned long *out_pages,
			 unsigned long *total_in,
1209
			 unsigned long *total_out)
1210
{
1211
	int type = btrfs_compress_type(type_level);
1212
	int level = btrfs_compress_level(type_level);
1213 1214 1215
	struct list_head *workspace;
	int ret;

1216
	level = btrfs_compress_set_level(type, level);
1217
	workspace = get_workspace(type, level);
1218 1219
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1220
	put_workspace(type, workspace);
1221 1222 1223 1224 1225 1226 1227 1228
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1229
 * orig_bio contains the pages from the file that we want to decompress into
1230 1231 1232 1233 1234 1235 1236 1237
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1238
static int btrfs_decompress_bio(struct compressed_bio *cb)
1239 1240 1241
{
	struct list_head *workspace;
	int ret;
1242
	int type = cb->compress_type;
1243

1244
	workspace = get_workspace(type, 0);
1245
	ret = compression_decompress_bio(type, workspace, cb);
1246
	put_workspace(type, workspace);
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1262
	workspace = get_workspace(type, 0);
1263 1264
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1265
	put_workspace(type, workspace);
1266

1267 1268 1269
	return ret;
}

1270 1271
void __init btrfs_init_compress(void)
{
1272 1273 1274 1275
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1276 1277
}

1278
void __cold btrfs_exit_compress(void)
1279
{
1280 1281 1282 1283
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1284
}
1285 1286 1287 1288 1289 1290 1291 1292

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1293
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1294
			      unsigned long total_out, u64 disk_start,
1295
			      struct bio *bio)
1296 1297 1298 1299
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1300
	unsigned long prev_start_byte;
1301 1302
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
1303
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1304 1305 1306 1307 1308

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1309
	start_byte = page_offset(bvec.bv_page) - disk_start;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1329
		bytes = min_t(unsigned long, bvec.bv_len,
1330
				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1331
		bytes = min(bytes, working_bytes);
1332

1333 1334
		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
			       bytes);
1335
		flush_dcache_page(bvec.bv_page);
1336 1337 1338 1339 1340 1341

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1342 1343 1344 1345
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1346
		prev_start_byte = start_byte;
1347
		start_byte = page_offset(bvec.bv_page) - disk_start;
1348

1349
		/*
1350 1351 1352 1353
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1354
		 */
1355 1356 1357 1358 1359 1360 1361
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1374 1375 1376 1377 1378
		}
	}

	return 1;
}
1379

1380 1381 1382
/*
 * Shannon Entropy calculation
 *
1383
 * Pure byte distribution analysis fails to determine compressibility of data.
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1447
 * Use 16 u32 counters for calculating new position in buf array
1448 1449 1450 1451 1452 1453
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1454
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1455
		       int num)
1456
{
1457 1458 1459 1460 1461 1462 1463 1464
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1465

1466 1467 1468 1469
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1470
	max_num = array[0].count;
1471
	for (i = 1; i < num; i++) {
1472
		buf_num = array[i].count;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1485
			buf_num = array[i].count;
1486 1487 1488 1489 1490 1491 1492 1493
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1494
			buf_num = array[i].count;
1495 1496 1497
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1498
			array_buf[new_addr] = array[i];
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1512
			buf_num = array_buf[i].count;
1513 1514 1515 1516 1517 1518 1519 1520
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1521
			buf_num = array_buf[i].count;
1522 1523 1524
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1525
			array[new_addr] = array_buf[i];
1526 1527 1528 1529
		}

		shift += RADIX_BASE;
	}
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1559
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1615 1616 1617 1618 1619 1620 1621 1622
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1653
		in_data = kmap_local_page(page);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1666
		kunmap_local(in_data);
1667 1668 1669 1670 1671 1672 1673 1674
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1692
	struct list_head *ws_list = get_workspace(0, 0);
1693
	struct heuristic_ws *ws;
1694 1695
	u32 i;
	u8 byte;
1696
	int ret = 0;
1697

1698 1699
	ws = list_entry(ws_list, struct heuristic_ws, list);

1700 1701
	heuristic_collect_sample(inode, start, end, ws);

1702 1703 1704 1705 1706
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1707 1708 1709 1710 1711
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1712 1713
	}

1714 1715 1716 1717 1718 1719
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1760
out:
1761
	put_workspace(0, ws_list);
1762 1763
	return ret;
}
1764

1765 1766 1767 1768 1769
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1770
{
1771 1772 1773 1774
	unsigned int level = 0;
	int ret;

	if (!type)
1775 1776
		return 0;

1777 1778 1779 1780 1781 1782
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1783 1784 1785 1786
	level = btrfs_compress_set_level(type, level);

	return level;
}