compression.c 47.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
12
#include <linux/kthread.h>
C
Chris Mason 已提交
13 14 15 16 17
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
18
#include <linux/slab.h>
19
#include <linux/sched/mm.h>
20
#include <linux/log2.h>
21
#include <crypto/hash.h>
22
#include "misc.h"
C
Chris Mason 已提交
23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
32
#include "subpage.h"
33
#include "zoned.h"
C
Chris Mason 已提交
34

35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
45 46
	default:
		break;
47 48 49 50 51
	}

	return NULL;
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
86 87 88 89 90 91 92
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
93
		 */
94
		*out_pages = 0;
95 96 97 98
		return -E2BIG;
	}
}

99 100
static int compression_decompress_bio(struct list_head *ws,
				      struct compressed_bio *cb)
101
{
102
	switch (cb->compress_type) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

137
static int btrfs_decompress_bio(struct compressed_bio *cb);
138

139
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 141 142
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
143
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 145
}

146
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 148
				 u64 disk_start)
{
149
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150
	const u32 csum_size = fs_info->csum_size;
151
	const u32 sectorsize = fs_info->sectorsize;
152
	struct page *page;
153
	unsigned int i;
154
	u8 csum[BTRFS_CSUM_SIZE];
155
	struct compressed_bio *cb = bio->bi_private;
156
	u8 *cb_sum = cb->sums;
157

158 159
	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
160 161 162
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
163 164
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
165 166
		page = cb->compressed_pages[i];

167 168 169 170 171 172 173
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
174
			int ret;
175

176 177 178
			ret = btrfs_check_sector_csum(fs_info, page, pg_offset,
						      csum, cb_sum);
			if (ret) {
179 180
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
181
				if (btrfs_bio(bio)->device)
182
					btrfs_dev_stat_inc_and_print(
183
						btrfs_bio(bio)->device,
184 185 186 187 188
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
189 190
		}
	}
191
	return 0;
192 193
}

194
static void finish_compressed_bio_read(struct compressed_bio *cb)
195 196 197 198 199 200 201 202 203 204 205 206
{
	unsigned int index;
	struct page *page;

	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
207 208 209
	if (cb->status != BLK_STS_OK) {
		cb->orig_bio->bi_status = cb->status;
		bio_endio(cb->orig_bio);
210 211 212 213 214 215 216 217
	} else {
		struct bio_vec *bvec;
		struct bvec_iter_all iter_all;

		/*
		 * We have verified the checksum already, set page checked so
		 * the end_io handlers know about it
		 */
218
		ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}

		bio_endio(cb->orig_bio);
	}

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

C
Chris Mason 已提交
236 237 238 239 240 241 242 243 244 245
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
246
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
247 248 249
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
250
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
251
	int ret = 0;
C
Chris Mason 已提交
252

253 254 255 256
	if (bio->bi_status)
		cb->status = bio->bi_status;

	if (!refcount_dec_and_test(&cb->pending_ios))
C
Chris Mason 已提交
257 258
		goto out;

259 260 261 262
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
263
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
264 265
	cb->mirror_num = mirror;

266 267 268 269
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
270
	if (cb->status != BLK_STS_OK)
271 272
		goto csum_failed;

273
	inode = cb->inode;
274
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
275
				    bio->bi_iter.bi_sector << 9);
276 277 278
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
279 280 281
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
282 283
	ret = btrfs_decompress_bio(cb);

284
csum_failed:
C
Chris Mason 已提交
285
	if (ret)
286
		cb->status = errno_to_blk_status(ret);
287
	finish_compressed_bio_read(cb);
C
Chris Mason 已提交
288 289 290 291 292 293 294 295
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
296 297
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
298
{
299
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
300 301
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
302 303
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
304
	const int errno = blk_status_to_errno(cb->status);
C
Chris Mason 已提交
305 306 307
	int i;
	int ret;

308 309
	if (errno)
		mapping_set_error(inode->i_mapping, errno);
310

C
Chris Mason 已提交
311
	while (nr_pages > 0) {
C
Chris Mason 已提交
312
		ret = find_get_pages_contig(inode->i_mapping, index,
313 314
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
315 316 317 318 319 320
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
321
			if (errno)
322
				SetPageError(pages[i]);
323 324
			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
							 cb->start, cb->len);
325
			put_page(pages[i]);
C
Chris Mason 已提交
326 327 328 329 330 331 332
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

333
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
334
{
335
	struct inode *inode = cb->inode;
336
	unsigned int index;
C
Chris Mason 已提交
337

338 339 340
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
341
	 */
342
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
343
			cb->start, cb->start + cb->len - 1,
344
			cb->status == BLK_STS_OK);
C
Chris Mason 已提交
345

346 347
	if (cb->writeback)
		end_compressed_writeback(inode, cb);
348
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
349 350

	/*
351
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
352 353 354
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
355 356
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
357
		page->mapping = NULL;
358
		put_page(page);
C
Chris Mason 已提交
359 360
	}

361
	/* Finally free the cb struct */
C
Chris Mason 已提交
362 363
	kfree(cb->compressed_pages);
	kfree(cb);
364 365
}

366 367 368 369 370 371 372 373
static void btrfs_finish_compressed_write_work(struct work_struct *work)
{
	struct compressed_bio *cb =
		container_of(work, struct compressed_bio, write_end_work);

	finish_compressed_bio_write(cb);
}

374 375 376 377 378 379 380 381 382 383 384
/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
static void end_compressed_bio_write(struct bio *bio)
{
	struct compressed_bio *cb = bio->bi_private;

385 386 387 388
	if (bio->bi_status)
		cb->status = bio->bi_status;

	if (refcount_dec_and_test(&cb->pending_ios)) {
389
		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
390

391 392 393
		btrfs_record_physical_zoned(cb->inode, cb->start, bio);
		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
	}
C
Chris Mason 已提交
394 395 396
	bio_put(bio);
}

397
/*
398 399 400 401 402 403 404 405 406 407 408 409 410
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
411
 */
412 413


414
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
415 416
					unsigned int opf, bio_end_io_t endio_func,
					u64 *next_stripe_start)
417
{
418 419 420
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
421
	struct bio *bio;
422
	int ret;
423 424 425 426 427 428 429 430

	bio = btrfs_bio_alloc(BIO_MAX_VECS);

	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
	bio->bi_opf = opf;
	bio->bi_private = cb;
	bio->bi_end_io = endio_func;

431 432 433 434 435
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
436

437 438 439 440 441 442 443 444
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
445
	}
446
	*next_stripe_start = disk_bytenr + geom.len;
447
	refcount_inc(&cb->pending_ios);
448 449 450
	return bio;
}

C
Chris Mason 已提交
451 452 453 454 455 456 457 458 459
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
460
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
461 462
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
463
				 struct page **compressed_pages,
464
				 unsigned int nr_pages,
465
				 unsigned int write_flags,
466 467
				 struct cgroup_subsys_state *blkcg_css,
				 bool writeback)
C
Chris Mason 已提交
468
{
469
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
470 471
	struct bio *bio = NULL;
	struct compressed_bio *cb;
472
	u64 cur_disk_bytenr = disk_start;
473
	u64 next_stripe_start;
474
	blk_status_t ret = BLK_STS_OK;
475
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
476 477
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
478

479 480
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
481
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
482
	if (!cb)
483
		return BLK_STS_RESOURCE;
484
	refcount_set(&cb->pending_ios, 1);
485
	cb->status = BLK_STS_OK;
486
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
487 488
	cb->start = start;
	cb->len = len;
489
	cb->mirror_num = 0;
C
Chris Mason 已提交
490 491
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
492
	cb->writeback = writeback;
493
	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
C
Chris Mason 已提交
494 495
	cb->nr_pages = nr_pages;

496 497 498
	if (blkcg_css)
		kthread_associate_blkcg(blkcg_css);

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
514
				break;
515
			}
516 517
			if (blkcg_css)
				bio->bi_opf |= REQ_CGROUP_PUNT;
518
		}
519
		/*
520 521
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
522
		 */
523
		ASSERT(cur_disk_bytenr != next_stripe_start);
C
Chris Mason 已提交
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
556
			if (!skip_sum) {
557
				ret = btrfs_csum_one_bio(inode, bio, start, true);
558 559 560 561 562
				if (ret) {
					bio->bi_status = ret;
					bio_endio(bio);
					break;
				}
563
			}
C
Chris Mason 已提交
564

565
			ASSERT(bio->bi_iter.bi_size);
566
			btrfs_submit_bio(fs_info, bio, 0);
567
			bio = NULL;
C
Chris Mason 已提交
568
		}
569
		cond_resched();
C
Chris Mason 已提交
570 571
	}

572 573 574
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

575 576
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_write(cb);
577
	return ret;
C
Chris Mason 已提交
578 579
}

580 581
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
582
	struct bio_vec *last = bio_last_bvec_all(bio);
583 584 585 586

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

587 588 589 590 591 592 593 594 595 596 597
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
598 599 600 601
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
602
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603
	unsigned long end_index;
604
	u64 cur = bio_end_offset(cb->orig_bio);
605 606 607 608 609 610 611
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
612
	int sectors_missed = 0;
613 614 615 616 617 618 619

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

620 621 622 623 624 625 626 627 628 629
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

630
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
631

632 633 634 635
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
636

637
		if (pg_index > end_index)
638 639
			break;

640
		page = xa_load(&mapping->i_pages, pg_index);
641
		if (page && !xa_is_value(page)) {
642 643 644 645 646
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
647
				break;
648 649 650 651 652 653 654

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
655 656
		}

657 658
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
659 660 661
		if (!page)
			break;

662
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
663
			put_page(page);
664 665 666
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
667 668
		}

669 670 671 672 673 674 675
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

676 677
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
678
		read_lock(&em_tree->lock);
679
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
680
		read_unlock(&em_tree->lock);
681

682 683 684 685 686 687 688
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
689
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
690
			free_extent_map(em);
691
			unlock_extent(tree, cur, page_end);
692
			unlock_page(page);
693
			put_page(page);
694 695 696 697 698
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
699
			size_t zero_offset = offset_in_page(isize);
700 701 702

			if (zero_offset) {
				int zeros;
703
				zeros = PAGE_SIZE - zero_offset;
704
				memzero_page(page, zero_offset, zeros);
705 706 707
			}
		}

708 709 710 711
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
712
			unlock_page(page);
713
			put_page(page);
714 715
			break;
		}
716 717 718 719 720 721 722 723 724
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
725 726 727 728
	}
	return 0;
}

C
Chris Mason 已提交
729 730 731 732 733
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
734
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
735 736 737 738 739
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
740
void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
741
				  int mirror_num)
C
Chris Mason 已提交
742
{
743
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
744 745
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
746
	unsigned int compressed_len;
747 748 749 750
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
751
	u64 file_offset;
752 753
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
754
	struct extent_map *em;
755
	blk_status_t ret;
756 757
	int ret2;
	int i;
758
	u8 *sums;
C
Chris Mason 已提交
759 760 761

	em_tree = &BTRFS_I(inode)->extent_tree;

762 763 764
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
765
	/* we need the actual starting offset of this extent in the file */
766
	read_lock(&em_tree->lock);
767
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
768
	read_unlock(&em_tree->lock);
769 770 771 772
	if (!em) {
		ret = BLK_STS_IOERR;
		goto out;
	}
C
Chris Mason 已提交
773

774
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
775
	compressed_len = em->block_len;
776
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
777 778
	if (!cb) {
		ret = BLK_STS_RESOURCE;
779
		goto out;
780
	}
781

782
	refcount_set(&cb->pending_ios, 1);
783
	cb->status = BLK_STS_OK;
C
Chris Mason 已提交
784
	cb->inode = inode;
785
	cb->mirror_num = mirror_num;
786
	sums = cb->sums;
C
Chris Mason 已提交
787

788
	cb->start = em->orig_start;
789 790
	em_len = em->len;
	em_start = em->start;
791

C
Christoph Hellwig 已提交
792
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
793
	cb->compressed_len = compressed_len;
794
	cb->compress_type = em->compress_type;
C
Chris Mason 已提交
795 796
	cb->orig_bio = bio;

797 798 799
	free_extent_map(em);
	em = NULL;

800 801
	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
802 803
	if (!cb->compressed_pages) {
		ret = BLK_STS_RESOURCE;
804
		goto fail;
805
	}
806

807 808 809 810
	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
	if (ret2) {
		ret = BLK_STS_RESOURCE;
		goto fail;
C
Chris Mason 已提交
811 812
	}

813
	add_ra_bio_pages(inode, em_start + em_len, cb);
814 815

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
816
	cb->len = bio->bi_iter.bi_size;
817

818 819 820 821 822 823 824
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
825

826 827 828 829 830 831
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
832 833
				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
				break;
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
851

852
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
853
		/*
854 855
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
856
		 */
857 858
		ASSERT(added == real_size);
		cur_disk_byte += added;
859

860 861 862
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
863

864 865 866
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
867

868
		if (submit) {
869 870
			unsigned int nr_sectors;

871
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
872 873 874 875 876
			if (ret) {
				comp_bio->bi_status = ret;
				bio_endio(comp_bio);
				break;
			}
877 878 879

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
880
			sums += fs_info->csum_size * nr_sectors;
881

882
			ASSERT(comp_bio->bi_iter.bi_size);
883
			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
884
			comp_bio = NULL;
C
Chris Mason 已提交
885 886
		}
	}
887 888 889

	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_read(cb);
890
	return;
891

892 893 894 895 896 897
fail:
	if (cb->compressed_pages) {
		for (i = 0; i < cb->nr_pages; i++) {
			if (cb->compressed_pages[i])
				__free_page(cb->compressed_pages[i]);
		}
898
	}
899 900 901 902 903

	kfree(cb->compressed_pages);
	kfree(cb);
out:
	free_extent_map(em);
904 905
	bio->bi_status = ret;
	bio_endio(bio);
906
	return;
C
Chris Mason 已提交
907
}
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
944 945

struct heuristic_ws {
946 947
	/* Partial copy of input data */
	u8 *sample;
948
	u32 sample_size;
949 950
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
951 952
	/* Sorting buffer */
	struct bucket_item *bucket_b;
953 954 955
	struct list_head list;
};

956 957
static struct workspace_manager heuristic_wsm;

958 959 960 961 962 963
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

964 965
	kvfree(workspace->sample);
	kfree(workspace->bucket);
966
	kfree(workspace->bucket_b);
967 968 969
	kfree(workspace);
}

970
static struct list_head *alloc_heuristic_ws(unsigned int level)
971 972 973 974 975 976 977
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

978 979 980 981 982 983 984
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
985

986 987 988 989
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

990
	INIT_LIST_HEAD(&ws->list);
991
	return &ws->list;
992 993 994
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
995 996
}

997
const struct btrfs_compress_op btrfs_heuristic_compress = {
998
	.workspace_manager = &heuristic_wsm,
999 1000
};

1001
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1002 1003
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
1004
	&btrfs_zlib_compress,
L
Li Zefan 已提交
1005
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
1006
	&btrfs_zstd_compress,
1007 1008
};

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1041
static void btrfs_init_workspace_manager(int type)
1042
{
1043
	struct workspace_manager *wsm;
1044
	struct list_head *workspace;
1045

1046
	wsm = btrfs_compress_op[type]->workspace_manager;
1047 1048 1049 1050
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1051

1052 1053 1054 1055
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1056
	workspace = alloc_workspace(type, 0);
1057 1058 1059 1060
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1061 1062 1063
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1064 1065 1066
	}
}

1067
static void btrfs_cleanup_workspace_manager(int type)
1068
{
1069
	struct workspace_manager *wsman;
1070 1071
	struct list_head *ws;

1072
	wsman = btrfs_compress_op[type]->workspace_manager;
1073 1074 1075
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1076
		free_workspace(type, ws);
1077
		atomic_dec(&wsman->total_ws);
1078 1079 1080 1081
	}
}

/*
1082 1083 1084 1085
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1086
 */
1087
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1088
{
1089
	struct workspace_manager *wsm;
1090 1091
	struct list_head *workspace;
	int cpus = num_online_cpus();
1092
	unsigned nofs_flag;
1093 1094 1095 1096 1097 1098
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1099
	wsm = btrfs_compress_op[type]->workspace_manager;
1100 1101 1102 1103 1104
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1105 1106

again:
1107 1108 1109
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1110
		list_del(workspace);
1111
		(*free_ws)--;
1112
		spin_unlock(ws_lock);
1113 1114 1115
		return workspace;

	}
1116
	if (atomic_read(total_ws) > cpus) {
1117 1118
		DEFINE_WAIT(wait);

1119 1120
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1121
		if (atomic_read(total_ws) > cpus && !*free_ws)
1122
			schedule();
1123
		finish_wait(ws_wait, &wait);
1124 1125
		goto again;
	}
1126
	atomic_inc(total_ws);
1127
	spin_unlock(ws_lock);
1128

1129 1130 1131 1132 1133 1134
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1135
	workspace = alloc_workspace(type, level);
1136 1137
	memalloc_nofs_restore(nofs_flag);

1138
	if (IS_ERR(workspace)) {
1139
		atomic_dec(total_ws);
1140
		wake_up(ws_wait);
1141 1142 1143 1144 1145 1146

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1147 1148 1149 1150
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1151
		 */
1152 1153 1154 1155 1156 1157
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1158
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1159 1160
			}
		}
1161
		goto again;
1162 1163 1164 1165
	}
	return workspace;
}

1166
static struct list_head *get_workspace(int type, int level)
1167
{
1168
	switch (type) {
1169
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1170
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1171
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1172 1173 1174 1175 1176 1177 1178 1179
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1180 1181
}

1182 1183 1184 1185
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1186
void btrfs_put_workspace(int type, struct list_head *ws)
1187
{
1188
	struct workspace_manager *wsm;
1189 1190 1191 1192 1193 1194
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1195
	wsm = btrfs_compress_op[type]->workspace_manager;
1196 1197 1198 1199 1200
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1201 1202

	spin_lock(ws_lock);
1203
	if (*free_ws <= num_online_cpus()) {
1204
		list_add(ws, idle_ws);
1205
		(*free_ws)++;
1206
		spin_unlock(ws_lock);
1207 1208
		goto wake;
	}
1209
	spin_unlock(ws_lock);
1210

1211
	free_workspace(type, ws);
1212
	atomic_dec(total_ws);
1213
wake:
1214
	cond_wake_up(ws_wait);
1215 1216
}

1217 1218
static void put_workspace(int type, struct list_head *ws)
{
1219
	switch (type) {
1220 1221 1222
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1223 1224 1225 1226 1227 1228 1229 1230
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1231 1232
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1249
/*
1250 1251
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1252
 *
1253 1254 1255 1256 1257
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1258 1259
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1260
 *
1261 1262
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1263 1264 1265
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1266 1267
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1268
 */
1269
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1270
			 u64 start, struct page **pages,
1271 1272
			 unsigned long *out_pages,
			 unsigned long *total_in,
1273
			 unsigned long *total_out)
1274
{
1275
	int type = btrfs_compress_type(type_level);
1276
	int level = btrfs_compress_level(type_level);
1277 1278 1279
	struct list_head *workspace;
	int ret;

1280
	level = btrfs_compress_set_level(type, level);
1281
	workspace = get_workspace(type, level);
1282 1283
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1284
	put_workspace(type, workspace);
1285 1286 1287
	return ret;
}

1288
static int btrfs_decompress_bio(struct compressed_bio *cb)
1289 1290 1291
{
	struct list_head *workspace;
	int ret;
1292
	int type = cb->compress_type;
1293

1294
	workspace = get_workspace(type, 0);
1295
	ret = compression_decompress_bio(workspace, cb);
1296
	put_workspace(type, workspace);
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1312
	workspace = get_workspace(type, 0);
1313 1314
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1315
	put_workspace(type, workspace);
1316

1317 1318 1319
	return ret;
}

1320 1321
void __init btrfs_init_compress(void)
{
1322 1323 1324 1325
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1326 1327
}

1328
void __cold btrfs_exit_compress(void)
1329
{
1330 1331 1332 1333
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1334
}
1335 1336

/*
1337
 * Copy decompressed data from working buffer to pages.
1338
 *
1339 1340 1341 1342 1343 1344
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1345
 *
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1365
 */
1366 1367
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1368
{
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1388

1389 1390 1391
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1392

1393 1394 1395 1396
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1397

1398
		/*
1399 1400
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1401
		 */
1402 1403 1404 1405
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		cur_offset += copy_len;
1406

1407 1408 1409 1410
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1411 1412 1413
	}
	return 1;
}
1414

1415 1416 1417
/*
 * Shannon Entropy calculation
 *
1418
 * Pure byte distribution analysis fails to determine compressibility of data.
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1482
 * Use 16 u32 counters for calculating new position in buf array
1483 1484 1485 1486 1487 1488
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1489
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1490
		       int num)
1491
{
1492 1493 1494 1495 1496 1497 1498 1499
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1500

1501 1502 1503 1504
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1505
	max_num = array[0].count;
1506
	for (i = 1; i < num; i++) {
1507
		buf_num = array[i].count;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1520
			buf_num = array[i].count;
1521 1522 1523 1524 1525 1526 1527 1528
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1529
			buf_num = array[i].count;
1530 1531 1532
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1533
			array_buf[new_addr] = array[i];
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1547
			buf_num = array_buf[i].count;
1548 1549 1550 1551 1552 1553 1554 1555
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1556
			buf_num = array_buf[i].count;
1557 1558 1559
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1560
			array[new_addr] = array_buf[i];
1561 1562 1563 1564
		}

		shift += RADIX_BASE;
	}
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1594
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1650 1651 1652 1653 1654 1655 1656 1657
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1688
		in_data = kmap_local_page(page);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1701
		kunmap_local(in_data);
1702 1703 1704 1705 1706 1707 1708 1709
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1727
	struct list_head *ws_list = get_workspace(0, 0);
1728
	struct heuristic_ws *ws;
1729 1730
	u32 i;
	u8 byte;
1731
	int ret = 0;
1732

1733 1734
	ws = list_entry(ws_list, struct heuristic_ws, list);

1735 1736
	heuristic_collect_sample(inode, start, end, ws);

1737 1738 1739 1740 1741
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1742 1743 1744 1745 1746
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1747 1748
	}

1749 1750 1751 1752 1753 1754
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1795
out:
1796
	put_workspace(0, ws_list);
1797 1798
	return ret;
}
1799

1800 1801 1802 1803 1804
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1805
{
1806 1807 1808 1809
	unsigned int level = 0;
	int ret;

	if (!type)
1810 1811
		return 0;

1812 1813 1814 1815 1816 1817
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1818 1819 1820 1821
	level = btrfs_compress_set_level(type, level);

	return level;
}