i915_gem.c 143.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919 920 921 922
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = dev->dev_private;
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330
{
1331 1332
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1333

1334
	if (__i915_reset_in_progress(reset_counter)) {
1335 1336 1337 1338 1339
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1340
		return -EAGAIN;
1341 1342 1343 1344 1345
	}

	return 0;
}

1346 1347 1348 1349 1350 1351
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1352
		       struct intel_engine_cs *engine)
1353
{
1354
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1389
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1390
{
1391
	unsigned long timeout;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1403

1404
	if (req->engine->irq_refcount)
1405 1406
		return -EBUSY;

1407 1408 1409 1410
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1411
	timeout = local_clock_us(&cpu) + 5;
1412
	while (!need_resched()) {
D
Daniel Vetter 已提交
1413
		if (i915_gem_request_completed(req, true))
1414 1415
			return 0;

1416 1417 1418
		if (signal_pending_state(state, current))
			break;

1419
		if (busywait_stop(timeout, cpu))
1420
			break;
1421

1422 1423
		cpu_relax_lowlatency();
	}
1424

D
Daniel Vetter 已提交
1425
	if (i915_gem_request_completed(req, false))
1426 1427 1428
		return 0;

	return -EAGAIN;
1429 1430
}

1431
/**
1432 1433
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1434 1435
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1436
 * @rps: RPS client
1437
 *
1438 1439 1440 1441 1442 1443 1444
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1445
 * Returns 0 if the request was found within the alloted time. Else returns the
1446 1447
 * errno with remaining time filled in timeout argument.
 */
1448
int __i915_wait_request(struct drm_i915_gem_request *req,
1449
			bool interruptible,
1450
			s64 *timeout,
1451
			struct intel_rps_client *rps)
1452
{
1453
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1454
	struct drm_i915_private *dev_priv = req->i915;
1455
	const bool irq_test_in_progress =
1456
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1457
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1458
	DEFINE_WAIT(wait);
1459
	unsigned long timeout_expire;
1460
	s64 before = 0; /* Only to silence a compiler warning. */
1461 1462
	int ret;

1463
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1464

1465 1466 1467
	if (list_empty(&req->list))
		return 0;

1468
	if (i915_gem_request_completed(req, true))
1469 1470
		return 0;

1471 1472 1473 1474 1475 1476 1477 1478 1479
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1480 1481 1482 1483 1484

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1485
	}
1486

1487
	if (INTEL_INFO(dev_priv)->gen >= 6)
1488
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1489

1490
	trace_i915_gem_request_wait_begin(req);
1491 1492

	/* Optimistic spin for the next jiffie before touching IRQs */
1493
	ret = __i915_spin_request(req, state);
1494 1495 1496
	if (ret == 0)
		goto out;

1497
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1498 1499 1500 1501
		ret = -ENODEV;
		goto out;
	}

1502 1503
	for (;;) {
		struct timer_list timer;
1504

1505
		prepare_to_wait(&engine->irq_queue, &wait, state);
1506

1507
		/* We need to check whether any gpu reset happened in between
1508 1509 1510 1511 1512 1513
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1514
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1515
			ret = 0;
1516 1517
			break;
		}
1518

1519
		if (i915_gem_request_completed(req, false)) {
1520 1521 1522
			ret = 0;
			break;
		}
1523

1524
		if (signal_pending_state(state, current)) {
1525 1526 1527 1528
			ret = -ERESTARTSYS;
			break;
		}

1529
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1530 1531 1532 1533 1534
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1535
		if (timeout || missed_irq(dev_priv, engine)) {
1536 1537
			unsigned long expire;

1538
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1539
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1540 1541 1542
			mod_timer(&timer, expire);
		}

1543
		io_schedule();
1544 1545 1546 1547 1548 1549

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1550
	if (!irq_test_in_progress)
1551
		engine->irq_put(engine);
1552

1553
	finish_wait(&engine->irq_queue, &wait);
1554

1555 1556 1557
out:
	trace_i915_gem_request_wait_end(req);

1558
	if (timeout) {
1559
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1560 1561

		*timeout = tres < 0 ? 0 : tres;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1572 1573
	}

1574
	return ret;
1575 1576
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1614 1615 1616

	put_pid(request->pid);
	request->pid = NULL;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1636
	if (request->previous_context) {
1637
		if (i915.enable_execlists)
1638 1639
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1640 1641
	}

1642
	i915_gem_context_unreference(request->ctx);
1643 1644 1645 1646 1647 1648
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1649
	struct intel_engine_cs *engine = req->engine;
1650 1651
	struct drm_i915_gem_request *tmp;

1652
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1667
/**
1668
 * Waits for a request to be signaled, and cleans up the
1669
 * request and object lists appropriately for that event.
1670
 * @req: request to wait on
1671 1672
 */
int
1673
i915_wait_request(struct drm_i915_gem_request *req)
1674
{
1675
	struct drm_i915_private *dev_priv = req->i915;
1676
	bool interruptible;
1677 1678
	int ret;

1679 1680
	interruptible = dev_priv->mm.interruptible;

1681
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1682

1683
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1684 1685
	if (ret)
		return ret;
1686

1687 1688 1689 1690
	/* If the GPU hung, we want to keep the requests to find the guilty. */
	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
		__i915_gem_request_retire__upto(req);

1691 1692 1693
	return 0;
}

1694 1695 1696
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1697 1698
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1699
 */
1700
int
1701 1702 1703
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1704
	int ret, i;
1705

1706
	if (!obj->active)
1707 1708
		return 0;

1709 1710 1711 1712 1713
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1714

1715
			i = obj->last_write_req->engine->id;
1716 1717 1718 1719 1720 1721
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1722
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1723 1724 1725 1726 1727 1728 1729 1730 1731
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1732
		GEM_BUG_ON(obj->active);
1733 1734 1735 1736 1737 1738 1739 1740 1741
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1742
	int ring = req->engine->id;
1743 1744 1745 1746 1747 1748

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1749 1750
	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
		__i915_gem_request_retire__upto(req);
1751 1752
}

1753 1754 1755 1756 1757
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1758
					    struct intel_rps_client *rps,
1759 1760 1761 1762
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1763
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1764
	int ret, i, n = 0;
1765 1766 1767 1768

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1769
	if (!obj->active)
1770 1771
		return 0;

1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1781
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1792
	mutex_unlock(&dev->struct_mutex);
1793
	ret = 0;
1794
	for (i = 0; ret == 0 && i < n; i++)
1795
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1796 1797
	mutex_lock(&dev->struct_mutex);

1798 1799 1800 1801 1802 1803 1804
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1805 1806
}

1807 1808 1809 1810 1811 1812
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1813 1814 1815 1816 1817 1818 1819
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1820
/**
1821 1822
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1823 1824 1825
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1826 1827 1828
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1829
			  struct drm_file *file)
1830 1831
{
	struct drm_i915_gem_set_domain *args = data;
1832
	struct drm_i915_gem_object *obj;
1833 1834
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1835 1836
	int ret;

1837
	/* Only handle setting domains to types used by the CPU. */
1838
	if (write_domain & I915_GEM_GPU_DOMAINS)
1839 1840
		return -EINVAL;

1841
	if (read_domains & I915_GEM_GPU_DOMAINS)
1842 1843 1844 1845 1846 1847 1848 1849
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1850
	ret = i915_mutex_lock_interruptible(dev);
1851
	if (ret)
1852
		return ret;
1853

1854
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1855
	if (&obj->base == NULL) {
1856 1857
		ret = -ENOENT;
		goto unlock;
1858
	}
1859

1860 1861 1862 1863
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1864
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1865
							  to_rps_client(file),
1866
							  !write_domain);
1867 1868 1869
	if (ret)
		goto unref;

1870
	if (read_domains & I915_GEM_DOMAIN_GTT)
1871
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1872
	else
1873
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1874

1875
	if (write_domain != 0)
1876
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1877

1878
unref:
1879
	drm_gem_object_unreference(&obj->base);
1880
unlock:
1881 1882 1883 1884 1885 1886
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1887 1888 1889
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1890 1891 1892
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1893
			 struct drm_file *file)
1894 1895
{
	struct drm_i915_gem_sw_finish *args = data;
1896
	struct drm_i915_gem_object *obj;
1897 1898
	int ret = 0;

1899
	ret = i915_mutex_lock_interruptible(dev);
1900
	if (ret)
1901
		return ret;
1902

1903
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1904
	if (&obj->base == NULL) {
1905 1906
		ret = -ENOENT;
		goto unlock;
1907 1908 1909
	}

	/* Pinned buffers may be scanout, so flush the cache */
1910
	if (obj->pin_display)
1911
		i915_gem_object_flush_cpu_write_domain(obj);
1912

1913
	drm_gem_object_unreference(&obj->base);
1914
unlock:
1915 1916 1917 1918 1919
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1920 1921 1922 1923 1924
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1925 1926 1927
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1938 1939 1940
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1941
		    struct drm_file *file)
1942 1943 1944 1945 1946
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1947 1948 1949
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1950
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1951 1952
		return -ENODEV;

1953
	obj = drm_gem_object_lookup(file, args->handle);
1954
	if (obj == NULL)
1955
		return -ENOENT;
1956

1957 1958 1959 1960 1961 1962 1963 1964
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1965
	addr = vm_mmap(obj->filp, 0, args->size,
1966 1967
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1968 1969 1970 1971
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1972 1973 1974 1975
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1976 1977 1978 1979 1980 1981 1982
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1983 1984 1985

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1986
	}
1987
	drm_gem_object_unreference_unlocked(obj);
1988 1989 1990 1991 1992 1993 1994 1995
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1996 1997
/**
 * i915_gem_fault - fault a page into the GTT
1998 1999
 * @vma: VMA in question
 * @vmf: fault info
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
2014 2015
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
2016 2017
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2018
	struct i915_ggtt_view view = i915_ggtt_view_normal;
2019 2020 2021
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
2022
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2023

2024 2025
	intel_runtime_pm_get(dev_priv);

2026 2027 2028 2029
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2030 2031 2032
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2033

C
Chris Wilson 已提交
2034 2035
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2036 2037 2038 2039 2040 2041 2042 2043 2044
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2045 2046
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2047
		ret = -EFAULT;
2048 2049 2050
		goto unlock;
	}

2051
	/* Use a partial view if the object is bigger than the aperture. */
2052
	if (obj->base.size >= ggtt->mappable_end &&
2053
	    obj->tiling_mode == I915_TILING_NONE) {
2054
		static const unsigned int chunk_size = 256; // 1 MiB
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2068 2069
	if (ret)
		goto unlock;
2070

2071 2072 2073
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2074

2075
	ret = i915_gem_object_get_fence(obj);
2076
	if (ret)
2077
		goto unpin;
2078

2079
	/* Finally, remap it using the new GTT offset */
2080
	pfn = ggtt->mappable_base +
2081
		i915_gem_obj_ggtt_offset_view(obj, &view);
2082
	pfn >>= PAGE_SHIFT;
2083

2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2093

2094 2095
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2096 2097 2098 2099 2100
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2122
unpin:
2123
	i915_gem_object_ggtt_unpin_view(obj, &view);
2124
unlock:
2125
	mutex_unlock(&dev->struct_mutex);
2126
out:
2127
	switch (ret) {
2128
	case -EIO:
2129 2130 2131 2132 2133 2134 2135
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2136 2137 2138
			ret = VM_FAULT_SIGBUS;
			break;
		}
2139
	case -EAGAIN:
D
Daniel Vetter 已提交
2140 2141 2142 2143
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2144
		 */
2145 2146
	case 0:
	case -ERESTARTSYS:
2147
	case -EINTR:
2148 2149 2150 2151 2152
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2153 2154
		ret = VM_FAULT_NOPAGE;
		break;
2155
	case -ENOMEM:
2156 2157
		ret = VM_FAULT_OOM;
		break;
2158
	case -ENOSPC:
2159
	case -EFAULT:
2160 2161
		ret = VM_FAULT_SIGBUS;
		break;
2162
	default:
2163
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2164 2165
		ret = VM_FAULT_SIGBUS;
		break;
2166
	}
2167 2168 2169

	intel_runtime_pm_put(dev_priv);
	return ret;
2170 2171
}

2172 2173 2174 2175
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2176
 * Preserve the reservation of the mmapping with the DRM core code, but
2177 2178 2179 2180 2181 2182 2183 2184 2185
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2186
void
2187
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2188
{
2189 2190 2191 2192 2193 2194
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2195 2196
	if (!obj->fault_mappable)
		return;
2197

2198 2199
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2210
	obj->fault_mappable = false;
2211 2212
}

2213 2214 2215 2216 2217 2218 2219 2220 2221
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2222
uint32_t
2223
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2224
{
2225
	uint32_t gtt_size;
2226 2227

	if (INTEL_INFO(dev)->gen >= 4 ||
2228 2229
	    tiling_mode == I915_TILING_NONE)
		return size;
2230 2231

	/* Previous chips need a power-of-two fence region when tiling */
2232
	if (IS_GEN3(dev))
2233
		gtt_size = 1024*1024;
2234
	else
2235
		gtt_size = 512*1024;
2236

2237 2238
	while (gtt_size < size)
		gtt_size <<= 1;
2239

2240
	return gtt_size;
2241 2242
}

2243 2244
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2245 2246 2247 2248
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2249 2250
 *
 * Return the required GTT alignment for an object, taking into account
2251
 * potential fence register mapping.
2252
 */
2253 2254 2255
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2256 2257 2258 2259 2260
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2261
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2262
	    tiling_mode == I915_TILING_NONE)
2263 2264
		return 4096;

2265 2266 2267 2268
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2269
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2270 2271
}

2272 2273 2274 2275 2276
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2277 2278
	dev_priv->mm.shrinker_no_lock_stealing = true;

2279 2280
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2281
		goto out;
2282 2283 2284 2285 2286 2287 2288 2289

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2290 2291 2292 2293 2294
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2295 2296
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2297
		goto out;
2298 2299

	i915_gem_shrink_all(dev_priv);
2300 2301 2302 2303 2304
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2305 2306 2307 2308 2309 2310 2311
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2312
int
2313 2314
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2315
		  uint32_t handle,
2316
		  uint64_t *offset)
2317
{
2318
	struct drm_i915_gem_object *obj;
2319 2320
	int ret;

2321
	ret = i915_mutex_lock_interruptible(dev);
2322
	if (ret)
2323
		return ret;
2324

2325
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2326
	if (&obj->base == NULL) {
2327 2328 2329
		ret = -ENOENT;
		goto unlock;
	}
2330

2331
	if (obj->madv != I915_MADV_WILLNEED) {
2332
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2333
		ret = -EFAULT;
2334
		goto out;
2335 2336
	}

2337 2338 2339
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2340

2341
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2342

2343
out:
2344
	drm_gem_object_unreference(&obj->base);
2345
unlock:
2346
	mutex_unlock(&dev->struct_mutex);
2347
	return ret;
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2371
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2372 2373
}

D
Daniel Vetter 已提交
2374 2375 2376
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2377
{
2378
	i915_gem_object_free_mmap_offset(obj);
2379

2380 2381
	if (obj->base.filp == NULL)
		return;
2382

D
Daniel Vetter 已提交
2383 2384 2385 2386 2387
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2388
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2389 2390
	obj->madv = __I915_MADV_PURGED;
}
2391

2392 2393 2394
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2395
{
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2410 2411
}

2412
static void
2413
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2414
{
2415 2416
	struct sgt_iter sgt_iter;
	struct page *page;
2417
	int ret;
2418

2419
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2420

C
Chris Wilson 已提交
2421
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2422
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2423 2424 2425
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2426
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2427 2428 2429
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2430 2431
	i915_gem_gtt_finish_object(obj);

2432
	if (i915_gem_object_needs_bit17_swizzle(obj))
2433 2434
		i915_gem_object_save_bit_17_swizzle(obj);

2435 2436
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2437

2438
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2439
		if (obj->dirty)
2440
			set_page_dirty(page);
2441

2442
		if (obj->madv == I915_MADV_WILLNEED)
2443
			mark_page_accessed(page);
2444

2445
		put_page(page);
2446
	}
2447
	obj->dirty = 0;
2448

2449 2450
	sg_free_table(obj->pages);
	kfree(obj->pages);
2451
}
C
Chris Wilson 已提交
2452

2453
int
2454 2455 2456 2457
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2458
	if (obj->pages == NULL)
2459 2460
		return 0;

2461 2462 2463
	if (obj->pages_pin_count)
		return -EBUSY;

2464
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2465

2466 2467 2468
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2469
	list_del(&obj->global_list);
2470

2471
	if (obj->mapping) {
2472 2473 2474 2475
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2476 2477 2478
		obj->mapping = NULL;
	}

2479
	ops->put_pages(obj);
2480
	obj->pages = NULL;
2481

2482
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2483 2484 2485 2486

	return 0;
}

2487
static int
C
Chris Wilson 已提交
2488
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2489
{
C
Chris Wilson 已提交
2490
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2491 2492
	int page_count, i;
	struct address_space *mapping;
2493 2494
	struct sg_table *st;
	struct scatterlist *sg;
2495
	struct sgt_iter sgt_iter;
2496
	struct page *page;
2497
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2498
	int ret;
C
Chris Wilson 已提交
2499
	gfp_t gfp;
2500

C
Chris Wilson 已提交
2501 2502 2503 2504 2505 2506 2507
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2508 2509 2510 2511
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2512
	page_count = obj->base.size / PAGE_SIZE;
2513 2514
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2515
		return -ENOMEM;
2516
	}
2517

2518 2519 2520 2521 2522
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2523
	mapping = file_inode(obj->base.filp)->i_mapping;
2524
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2525
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2526 2527 2528
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2529 2530
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2531 2532 2533 2534 2535
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2536 2537 2538 2539 2540 2541 2542 2543
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2544
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2545 2546
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2547
				goto err_pages;
I
Imre Deak 已提交
2548
			}
C
Chris Wilson 已提交
2549
		}
2550 2551 2552 2553 2554 2555 2556 2557
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2558 2559 2560 2561 2562 2563 2564 2565 2566
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2567 2568 2569

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2570
	}
2571 2572 2573 2574
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2575 2576
	obj->pages = st;

I
Imre Deak 已提交
2577 2578 2579 2580
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2581
	if (i915_gem_object_needs_bit17_swizzle(obj))
2582 2583
		i915_gem_object_do_bit_17_swizzle(obj);

2584 2585 2586 2587
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2588 2589 2590
	return 0;

err_pages:
2591
	sg_mark_end(sg);
2592 2593
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2594 2595
	sg_free_table(st);
	kfree(st);
2596 2597 2598 2599 2600 2601 2602 2603 2604

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2605 2606 2607 2608
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2609 2610
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2625
	if (obj->pages)
2626 2627
		return 0;

2628
	if (obj->madv != I915_MADV_WILLNEED) {
2629
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2630
		return -EFAULT;
2631 2632
	}

2633 2634
	BUG_ON(obj->pages_pin_count);

2635 2636 2637 2638
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2639
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2640 2641 2642 2643

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2644
	return 0;
2645 2646
}

2647 2648 2649 2650 2651
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2652 2653
	struct sgt_iter sgt_iter;
	struct page *page;
2654 2655
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2656 2657 2658 2659 2660 2661 2662
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2663 2664 2665 2666 2667 2668
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2669

2670 2671
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2672 2673 2674 2675 2676 2677

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2678 2679
	if (pages != stack_pages)
		drm_free_large(pages);
2680 2681 2682 2683 2684

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2697 2698 2699
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2700 2701 2702 2703 2704 2705 2706 2707
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2708
void i915_vma_move_to_active(struct i915_vma *vma,
2709
			     struct drm_i915_gem_request *req)
2710
{
2711
	struct drm_i915_gem_object *obj = vma->obj;
2712
	struct intel_engine_cs *engine;
2713

2714
	engine = i915_gem_request_get_engine(req);
2715 2716

	/* Add a reference if we're newly entering the active list. */
2717
	if (obj->active == 0)
2718
		drm_gem_object_reference(&obj->base);
2719
	obj->active |= intel_engine_flag(engine);
2720

2721
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2722
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2723

2724
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2725 2726
}

2727 2728
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2729
{
2730 2731
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2732 2733

	i915_gem_request_assign(&obj->last_write_req, NULL);
2734
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2735 2736
}

2737
static void
2738
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2739
{
2740
	struct i915_vma *vma;
2741

2742 2743
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2744

2745
	list_del_init(&obj->engine_list[ring]);
2746 2747
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2748
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2749 2750 2751 2752 2753
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2754

2755 2756 2757 2758 2759 2760 2761
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2762 2763 2764
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2765
	}
2766

2767
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2768
	drm_gem_object_unreference(&obj->base);
2769 2770
}

2771
static int
2772
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2773
{
2774
	struct intel_engine_cs *engine;
2775
	int ret;
2776

2777
	/* Carefully retire all requests without writing to the rings */
2778
	for_each_engine(engine, dev_priv) {
2779
		ret = intel_engine_idle(engine);
2780 2781
		if (ret)
			return ret;
2782
	}
2783
	i915_gem_retire_requests(dev_priv);
2784 2785

	/* Finally reset hw state */
2786
	for_each_engine(engine, dev_priv)
2787
		intel_ring_init_seqno(engine, seqno);
2788

2789
	return 0;
2790 2791
}

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2803
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2818
int
2819
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2820
{
2821 2822
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2823
		int ret = i915_gem_init_seqno(dev_priv, 0);
2824 2825
		if (ret)
			return ret;
2826

2827 2828
		dev_priv->next_seqno = 1;
	}
2829

2830
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2831
	return 0;
2832 2833
}

2834 2835 2836 2837 2838
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2839
void __i915_add_request(struct drm_i915_gem_request *request,
2840 2841
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2842
{
2843
	struct intel_engine_cs *engine;
2844
	struct drm_i915_private *dev_priv;
2845
	struct intel_ringbuffer *ringbuf;
2846
	u32 request_start;
2847
	u32 reserved_tail;
2848 2849
	int ret;

2850
	if (WARN_ON(request == NULL))
2851
		return;
2852

2853
	engine = request->engine;
2854
	dev_priv = request->i915;
2855 2856
	ringbuf = request->ringbuf;

2857 2858 2859 2860 2861
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2862
	request_start = intel_ring_get_tail(ringbuf);
2863 2864 2865
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2866 2867 2868 2869 2870 2871 2872
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2873 2874
	if (flush_caches) {
		if (i915.enable_execlists)
2875
			ret = logical_ring_flush_all_caches(request);
2876
		else
2877
			ret = intel_ring_flush_all_caches(request);
2878 2879 2880
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2881

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2904 2905 2906 2907 2908
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2909
	request->postfix = intel_ring_get_tail(ringbuf);
2910

2911
	if (i915.enable_execlists)
2912
		ret = engine->emit_request(request);
2913
	else {
2914
		ret = engine->add_request(request);
2915 2916

		request->tail = intel_ring_get_tail(ringbuf);
2917
	}
2918 2919
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2920

2921
	i915_queue_hangcheck(engine->i915);
2922

2923 2924 2925
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2926
	intel_mark_busy(dev_priv);
2927

2928
	/* Sanity check that the reserved size was large enough. */
2929 2930 2931 2932 2933 2934 2935
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2936 2937
}

2938
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2939
				   const struct i915_gem_context *ctx)
2940
{
2941
	unsigned long elapsed;
2942

2943 2944 2945
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2946 2947
		return true;

2948 2949
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2950
		if (!i915_gem_context_is_default(ctx)) {
2951
			DRM_DEBUG("context hanging too fast, banning!\n");
2952
			return true;
2953 2954 2955
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2956
			return true;
2957
		}
2958 2959 2960 2961 2962
	}

	return false;
}

2963
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2964
				  struct i915_gem_context *ctx,
2965
				  const bool guilty)
2966
{
2967 2968 2969 2970
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2971

2972 2973 2974
	hs = &ctx->hang_stats;

	if (guilty) {
2975
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2976 2977 2978 2979
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2980 2981 2982
	}
}

2983 2984 2985 2986
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2987
	kmem_cache_free(req->i915->requests, req);
2988 2989
}

2990
static inline int
2991
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2992
			 struct i915_gem_context *ctx,
2993
			 struct drm_i915_gem_request **req_out)
2994
{
2995
	struct drm_i915_private *dev_priv = engine->i915;
2996
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2997
	struct drm_i915_gem_request *req;
2998 2999
	int ret;

3000 3001 3002
	if (!req_out)
		return -EINVAL;

3003
	*req_out = NULL;
3004

3005 3006 3007 3008 3009
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3010 3011 3012
	if (ret)
		return ret;

D
Daniel Vetter 已提交
3013 3014
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
3015 3016
		return -ENOMEM;

3017
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3018 3019
	if (ret)
		goto err;
3020

3021 3022
	kref_init(&req->ref);
	req->i915 = dev_priv;
3023
	req->engine = engine;
3024
	req->reset_counter = reset_counter;
3025 3026
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3027

3028 3029 3030 3031 3032 3033 3034
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3035
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3036 3037 3038 3039 3040 3041 3042

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3043

3044
	*req_out = req;
3045
	return 0;
3046

3047 3048
err_ctx:
	i915_gem_context_unreference(ctx);
3049 3050 3051
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3052 3053
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3068
		       struct i915_gem_context *ctx)
3069 3070 3071 3072 3073
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3074
		ctx = engine->i915->kernel_context;
3075 3076 3077 3078
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3079
struct drm_i915_gem_request *
3080
i915_gem_find_active_request(struct intel_engine_cs *engine)
3081
{
3082 3083
	struct drm_i915_gem_request *request;

3084
	list_for_each_entry(request, &engine->request_list, list) {
3085
		if (i915_gem_request_completed(request, false))
3086
			continue;
3087

3088
		return request;
3089
	}
3090 3091 3092 3093

	return NULL;
}

3094
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3095
				       struct intel_engine_cs *engine)
3096 3097 3098 3099
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3100
	request = i915_gem_find_active_request(engine);
3101 3102 3103 3104

	if (request == NULL)
		return;

3105
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3106

3107
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3108

3109
	list_for_each_entry_continue(request, &engine->request_list, list)
3110
		i915_set_reset_status(dev_priv, request->ctx, false);
3111
}
3112

3113
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3114
					struct intel_engine_cs *engine)
3115
{
3116 3117
	struct intel_ringbuffer *buffer;

3118
	while (!list_empty(&engine->active_list)) {
3119
		struct drm_i915_gem_object *obj;
3120

3121
		obj = list_first_entry(&engine->active_list,
3122
				       struct drm_i915_gem_object,
3123
				       engine_list[engine->id]);
3124

3125
		i915_gem_object_retire__read(obj, engine->id);
3126
	}
3127

3128 3129 3130 3131 3132 3133
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3134
	if (i915.enable_execlists) {
3135 3136
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3137

3138
		intel_execlists_cancel_requests(engine);
3139 3140
	}

3141 3142 3143 3144 3145 3146 3147
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3148
	while (!list_empty(&engine->request_list)) {
3149 3150
		struct drm_i915_gem_request *request;

3151
		request = list_first_entry(&engine->request_list,
3152 3153 3154
					   struct drm_i915_gem_request,
					   list);

3155
		i915_gem_request_retire(request);
3156
	}
3157 3158 3159 3160 3161 3162 3163 3164

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3165
	list_for_each_entry(buffer, &engine->buffers, link) {
3166 3167 3168
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3169 3170

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3171 3172
}

3173
void i915_gem_reset(struct drm_device *dev)
3174
{
3175
	struct drm_i915_private *dev_priv = dev->dev_private;
3176
	struct intel_engine_cs *engine;
3177

3178 3179 3180 3181 3182
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3183
	for_each_engine(engine, dev_priv)
3184
		i915_gem_reset_engine_status(dev_priv, engine);
3185

3186
	for_each_engine(engine, dev_priv)
3187
		i915_gem_reset_engine_cleanup(dev_priv, engine);
3188

3189 3190
	i915_gem_context_reset(dev);

3191
	i915_gem_restore_fences(dev);
3192 3193

	WARN_ON(i915_verify_lists(dev));
3194 3195 3196 3197
}

/**
 * This function clears the request list as sequence numbers are passed.
3198
 * @engine: engine to retire requests on
3199
 */
3200
void
3201
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3202
{
3203
	WARN_ON(i915_verify_lists(engine->dev));
3204

3205 3206 3207 3208
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3209
	 */
3210
	while (!list_empty(&engine->request_list)) {
3211 3212
		struct drm_i915_gem_request *request;

3213
		request = list_first_entry(&engine->request_list,
3214 3215 3216
					   struct drm_i915_gem_request,
					   list);

3217
		if (!i915_gem_request_completed(request, true))
3218 3219
			break;

3220
		i915_gem_request_retire(request);
3221
	}
3222

3223 3224 3225 3226
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3227
	while (!list_empty(&engine->active_list)) {
3228 3229
		struct drm_i915_gem_object *obj;

3230 3231
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3232
				       engine_list[engine->id]);
3233

3234
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3235 3236
			break;

3237
		i915_gem_object_retire__read(obj, engine->id);
3238 3239
	}

3240 3241 3242 3243
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3244
	}
3245

3246
	WARN_ON(i915_verify_lists(engine->dev));
3247 3248
}

3249
bool
3250
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3251
{
3252
	struct intel_engine_cs *engine;
3253
	bool idle = true;
3254

3255
	for_each_engine(engine, dev_priv) {
3256 3257
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3258
		if (i915.enable_execlists) {
3259
			spin_lock_bh(&engine->execlist_lock);
3260
			idle &= list_empty(&engine->execlist_queue);
3261
			spin_unlock_bh(&engine->execlist_lock);
3262
		}
3263 3264 3265 3266 3267 3268 3269 3270
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3271 3272
}

3273
static void
3274 3275
i915_gem_retire_work_handler(struct work_struct *work)
{
3276 3277 3278
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3279
	bool idle;
3280

3281
	/* Come back later if the device is busy... */
3282 3283
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3284
		idle = i915_gem_retire_requests(dev_priv);
3285
		mutex_unlock(&dev->struct_mutex);
3286
	}
3287
	if (!idle)
3288 3289
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3290
}
3291

3292 3293 3294 3295 3296
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3297
	struct drm_device *dev = dev_priv->dev;
3298
	struct intel_engine_cs *engine;
3299

3300 3301
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3302
			return;
3303

3304
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3305
	 * Also locking seems to be fubar here, engine->request_list is protected
3306 3307
	 * by dev->struct_mutex. */

3308
	intel_mark_idle(dev_priv);
3309 3310

	if (mutex_trylock(&dev->struct_mutex)) {
3311
		for_each_engine(engine, dev_priv)
3312
			i915_gem_batch_pool_fini(&engine->batch_pool);
3313

3314 3315
		mutex_unlock(&dev->struct_mutex);
	}
3316 3317
}

3318 3319 3320 3321
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3322
 * @obj: object to flush
3323 3324 3325 3326
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3327
	int i;
3328 3329 3330

	if (!obj->active)
		return 0;
3331

3332
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3333
		struct drm_i915_gem_request *req;
3334

3335 3336 3337 3338
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3339
		if (i915_gem_request_completed(req, true))
3340
			i915_gem_object_retire__read(obj, i);
3341 3342 3343 3344 3345
	}

	return 0;
}

3346 3347
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3348 3349 3350
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3375
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3376 3377
	int i, n = 0;
	int ret;
3378

3379 3380 3381
	if (args->flags != 0)
		return -EINVAL;

3382 3383 3384 3385
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3386
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3387 3388 3389 3390 3391
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3392 3393
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3394 3395 3396
	if (ret)
		goto out;

3397
	if (!obj->active)
3398
		goto out;
3399 3400

	/* Do this after OLR check to make sure we make forward progress polling
3401
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3402
	 */
3403
	if (args->timeout_ns == 0) {
3404 3405 3406 3407 3408
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3409

3410
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3411 3412 3413 3414 3415 3416
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3417 3418
	mutex_unlock(&dev->struct_mutex);

3419 3420
	for (i = 0; i < n; i++) {
		if (ret == 0)
3421
			ret = __i915_wait_request(req[i], true,
3422
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3423
						  to_rps_client(file));
3424
		i915_gem_request_unreference(req[i]);
3425
	}
3426
	return ret;
3427 3428 3429 3430 3431 3432 3433

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3434 3435 3436
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3437 3438
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3439 3440 3441 3442
{
	struct intel_engine_cs *from;
	int ret;

3443
	from = i915_gem_request_get_engine(from_req);
3444 3445 3446
	if (to == from)
		return 0;

3447
	if (i915_gem_request_completed(from_req, true))
3448 3449
		return 0;

3450
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3451
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3452
		ret = __i915_wait_request(from_req,
3453 3454 3455
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3456 3457 3458
		if (ret)
			return ret;

3459
		i915_gem_object_retire_request(obj, from_req);
3460 3461
	} else {
		int idx = intel_ring_sync_index(from, to);
3462 3463 3464
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3465 3466 3467 3468

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3469
		if (*to_req == NULL) {
3470 3471 3472 3473 3474 3475 3476
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3477 3478
		}

3479 3480
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3495 3496 3497 3498 3499
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3500 3501 3502
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3503 3504 3505
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3506
 * rather than a particular GPU ring. Conceptually we serialise writes
3507
 * between engines inside the GPU. We only allow one engine to write
3508 3509 3510 3511 3512 3513 3514 3515 3516
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3517
 *
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3528 3529
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3530 3531
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3532 3533
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3534
{
3535
	const bool readonly = obj->base.pending_write_domain == 0;
3536
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3537
	int ret, i, n;
3538

3539
	if (!obj->active)
3540 3541
		return 0;

3542 3543
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3544

3545 3546 3547 3548 3549
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3550
		for (i = 0; i < I915_NUM_ENGINES; i++)
3551 3552 3553 3554
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3555
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3556 3557 3558
		if (ret)
			return ret;
	}
3559

3560
	return 0;
3561 3562
}

3563 3564 3565 3566 3567 3568 3569
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3570 3571 3572
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3595
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3596
{
3597
	struct drm_i915_gem_object *obj = vma->obj;
3598
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3599
	int ret;
3600

3601
	if (list_empty(&vma->obj_link))
3602 3603
		return 0;

3604 3605 3606 3607
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3608

B
Ben Widawsky 已提交
3609
	if (vma->pin_count)
3610
		return -EBUSY;
3611

3612 3613
	BUG_ON(obj->pages == NULL);

3614 3615 3616 3617 3618
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3619

3620
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3621
		i915_gem_object_finish_gtt(obj);
3622

3623 3624 3625 3626
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3627 3628

		__i915_vma_iounmap(vma);
3629
	}
3630

3631
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3632

3633
	vma->vm->unbind_vma(vma);
3634
	vma->bound = 0;
3635

3636
	list_del_init(&vma->vm_link);
3637
	if (vma->is_ggtt) {
3638 3639 3640 3641 3642 3643
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3644
		vma->ggtt_view.pages = NULL;
3645
	}
3646

B
Ben Widawsky 已提交
3647 3648 3649 3650
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3651
	 * no more VMAs exist. */
I
Imre Deak 已提交
3652
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3653
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3654

3655 3656 3657 3658 3659 3660
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3661
	return 0;
3662 3663
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3674
int i915_gpu_idle(struct drm_device *dev)
3675
{
3676
	struct drm_i915_private *dev_priv = dev->dev_private;
3677
	struct intel_engine_cs *engine;
3678
	int ret;
3679

3680
	for_each_engine(engine, dev_priv) {
3681 3682 3683
		if (engine->last_context == NULL)
			continue;

3684
		if (!i915.enable_execlists) {
3685 3686
			struct drm_i915_gem_request *req;

3687
			req = i915_gem_request_alloc(engine, NULL);
3688 3689
			if (IS_ERR(req))
				return PTR_ERR(req);
3690

3691
			ret = i915_switch_context(req);
3692
			i915_add_request_no_flush(req);
3693 3694
			if (ret)
				return ret;
3695
		}
3696

3697
		ret = intel_engine_idle(engine);
3698 3699 3700
		if (ret)
			return ret;
	}
3701

3702
	WARN_ON(i915_verify_lists(dev));
3703
	return 0;
3704 3705
}

3706
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3707 3708
				     unsigned long cache_level)
{
3709
	struct drm_mm_node *gtt_space = &vma->node;
3710 3711
	struct drm_mm_node *other;

3712 3713 3714 3715 3716 3717
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3718
	 */
3719
	if (vma->vm->mm.color_adjust == NULL)
3720 3721
		return true;

3722
	if (!drm_mm_node_allocated(gtt_space))
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3739
/**
3740 3741
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3742 3743 3744 3745 3746
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3747
 */
3748
static struct i915_vma *
3749 3750
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3751
			   const struct i915_ggtt_view *ggtt_view,
3752
			   unsigned alignment,
3753
			   uint64_t flags)
3754
{
3755
	struct drm_device *dev = obj->base.dev;
3756 3757
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3758
	u32 fence_alignment, unfenced_alignment;
3759 3760
	u32 search_flag, alloc_flag;
	u64 start, end;
3761
	u64 size, fence_size;
B
Ben Widawsky 已提交
3762
	struct i915_vma *vma;
3763
	int ret;
3764

3765 3766 3767 3768 3769
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3770

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3800

3801 3802 3803
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3804
		end = min_t(u64, end, ggtt->mappable_end);
3805
	if (flags & PIN_ZONE_4G)
3806
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3807

3808
	if (alignment == 0)
3809
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3810
						unfenced_alignment;
3811
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3812 3813 3814
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3815
		return ERR_PTR(-EINVAL);
3816 3817
	}

3818 3819 3820
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3821
	 */
3822
	if (size > end) {
3823
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3824 3825
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3826
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3827
			  end);
3828
		return ERR_PTR(-E2BIG);
3829 3830
	}

3831
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3832
	if (ret)
3833
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3834

3835 3836
	i915_gem_object_pin_pages(obj);

3837 3838 3839
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3840
	if (IS_ERR(vma))
3841
		goto err_unpin;
B
Ben Widawsky 已提交
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3861
	} else {
3862 3863 3864 3865 3866 3867 3868
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3869

3870
search_free:
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3884

3885 3886
			goto err_free_vma;
		}
3887
	}
3888
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3889
		ret = -EINVAL;
3890
		goto err_remove_node;
3891 3892
	}

3893
	trace_i915_vma_bind(vma, flags);
3894
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3895
	if (ret)
I
Imre Deak 已提交
3896
		goto err_remove_node;
3897

3898
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3899
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3900

3901
	return vma;
B
Ben Widawsky 已提交
3902

3903
err_remove_node:
3904
	drm_mm_remove_node(&vma->node);
3905
err_free_vma:
B
Ben Widawsky 已提交
3906
	i915_gem_vma_destroy(vma);
3907
	vma = ERR_PTR(ret);
3908
err_unpin:
B
Ben Widawsky 已提交
3909
	i915_gem_object_unpin_pages(obj);
3910
	return vma;
3911 3912
}

3913
bool
3914 3915
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3916 3917 3918 3919 3920
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3921
	if (obj->pages == NULL)
3922
		return false;
3923

3924 3925 3926 3927
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3928
	if (obj->stolen || obj->phys_handle)
3929
		return false;
3930

3931 3932 3933 3934 3935 3936 3937 3938
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3939 3940
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3941
		return false;
3942
	}
3943

C
Chris Wilson 已提交
3944
	trace_i915_gem_object_clflush(obj);
3945
	drm_clflush_sg(obj->pages);
3946
	obj->cache_dirty = false;
3947 3948

	return true;
3949 3950 3951 3952
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3953
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3954
{
C
Chris Wilson 已提交
3955 3956
	uint32_t old_write_domain;

3957
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3958 3959
		return;

3960
	/* No actual flushing is required for the GTT write domain.  Writes
3961 3962
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3963 3964 3965 3966
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3967
	 */
3968 3969
	wmb();

3970 3971
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3972

3973
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3974

C
Chris Wilson 已提交
3975
	trace_i915_gem_object_change_domain(obj,
3976
					    obj->base.read_domains,
C
Chris Wilson 已提交
3977
					    old_write_domain);
3978 3979 3980 3981
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3982
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3983
{
C
Chris Wilson 已提交
3984
	uint32_t old_write_domain;
3985

3986
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3987 3988
		return;

3989
	if (i915_gem_clflush_object(obj, obj->pin_display))
3990
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3991

3992 3993
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3994

3995
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3996

C
Chris Wilson 已提交
3997
	trace_i915_gem_object_change_domain(obj,
3998
					    obj->base.read_domains,
C
Chris Wilson 已提交
3999
					    old_write_domain);
4000 4001
}

4002 4003
/**
 * Moves a single object to the GTT read, and possibly write domain.
4004 4005
 * @obj: object to act on
 * @write: ask for write access or read only
4006 4007 4008 4009
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
4010
int
4011
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4012
{
4013 4014 4015
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
4016
	uint32_t old_write_domain, old_read_domains;
4017
	struct i915_vma *vma;
4018
	int ret;
4019

4020 4021 4022
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

4023
	ret = i915_gem_object_wait_rendering(obj, !write);
4024 4025 4026
	if (ret)
		return ret;

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4039
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4040

4041 4042 4043 4044 4045 4046 4047
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4048 4049
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4050

4051 4052 4053
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4054 4055
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4056
	if (write) {
4057 4058 4059
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4060 4061
	}

C
Chris Wilson 已提交
4062 4063 4064 4065
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4066
	/* And bump the LRU for this access */
4067 4068
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4069
		list_move_tail(&vma->vm_link,
4070
			       &ggtt->base.inactive_list);
4071

4072 4073 4074
	return 0;
}

4075 4076
/**
 * Changes the cache-level of an object across all VMA.
4077 4078
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4090 4091 4092
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4093
	struct drm_device *dev = obj->base.dev;
4094
	struct i915_vma *vma, *next;
4095
	bool bound = false;
4096
	int ret = 0;
4097 4098

	if (obj->cache_level == cache_level)
4099
		goto out;
4100

4101 4102 4103 4104 4105
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4106
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4107 4108 4109 4110 4111 4112 4113 4114
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4115
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4116
			ret = i915_vma_unbind(vma);
4117 4118
			if (ret)
				return ret;
4119 4120
		} else
			bound = true;
4121 4122
	}

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4135
		ret = i915_gem_object_wait_rendering(obj, false);
4136 4137 4138
		if (ret)
			return ret;

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4156 4157 4158
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4159 4160 4161 4162 4163 4164 4165 4166
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4167 4168
		}

4169
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4170 4171 4172 4173 4174 4175 4176
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4177 4178
	}

4179
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4180 4181 4182
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4183
out:
4184 4185 4186 4187
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4188
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4189
		if (i915_gem_clflush_object(obj, true))
4190
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4191 4192 4193 4194 4195
	}

	return 0;
}

B
Ben Widawsky 已提交
4196 4197
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4198
{
B
Ben Widawsky 已提交
4199
	struct drm_i915_gem_caching *args = data;
4200 4201
	struct drm_i915_gem_object *obj;

4202
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4203 4204
	if (&obj->base == NULL)
		return -ENOENT;
4205

4206 4207 4208 4209 4210 4211
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4212 4213 4214 4215
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4216 4217 4218 4219
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4220

4221 4222
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4223 4224
}

B
Ben Widawsky 已提交
4225 4226
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4227
{
4228
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
4229
	struct drm_i915_gem_caching *args = data;
4230 4231 4232 4233
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4234 4235
	switch (args->caching) {
	case I915_CACHING_NONE:
4236 4237
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4238
	case I915_CACHING_CACHED:
4239 4240 4241 4242 4243 4244
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4245
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4246 4247
			return -ENODEV;

4248 4249
		level = I915_CACHE_LLC;
		break;
4250 4251 4252
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4253 4254 4255 4256
	default:
		return -EINVAL;
	}

4257 4258
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4259 4260
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4261
		goto rpm_put;
B
Ben Widawsky 已提交
4262

4263
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4274 4275 4276
rpm_put:
	intel_runtime_pm_put(dev_priv);

4277 4278 4279
	return ret;
}

4280
/*
4281 4282 4283
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4284 4285
 */
int
4286 4287
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4288
				     const struct i915_ggtt_view *view)
4289
{
4290
	u32 old_read_domains, old_write_domain;
4291 4292
	int ret;

4293 4294 4295
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4296
	obj->pin_display++;
4297

4298 4299 4300 4301 4302 4303 4304 4305 4306
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4307 4308
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4309
	if (ret)
4310
		goto err_unpin_display;
4311

4312 4313 4314 4315
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4316 4317 4318
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4319
	if (ret)
4320
		goto err_unpin_display;
4321

4322
	i915_gem_object_flush_cpu_write_domain(obj);
4323

4324
	old_write_domain = obj->base.write_domain;
4325
	old_read_domains = obj->base.read_domains;
4326 4327 4328 4329

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4330
	obj->base.write_domain = 0;
4331
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4332 4333 4334

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4335
					    old_write_domain);
4336 4337

	return 0;
4338 4339

err_unpin_display:
4340
	obj->pin_display--;
4341 4342 4343 4344
	return ret;
}

void
4345 4346
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4347
{
4348 4349 4350
	if (WARN_ON(obj->pin_display == 0))
		return;

4351 4352
	i915_gem_object_ggtt_unpin_view(obj, view);

4353
	obj->pin_display--;
4354 4355
}

4356 4357
/**
 * Moves a single object to the CPU read, and possibly write domain.
4358 4359
 * @obj: object to act on
 * @write: requesting write or read-only access
4360 4361 4362 4363
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4364
int
4365
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4366
{
C
Chris Wilson 已提交
4367
	uint32_t old_write_domain, old_read_domains;
4368 4369
	int ret;

4370 4371 4372
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4373
	ret = i915_gem_object_wait_rendering(obj, !write);
4374 4375 4376
	if (ret)
		return ret;

4377
	i915_gem_object_flush_gtt_write_domain(obj);
4378

4379 4380
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4381

4382
	/* Flush the CPU cache if it's still invalid. */
4383
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4384
		i915_gem_clflush_object(obj, false);
4385

4386
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4387 4388 4389 4390 4391
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4392
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4393 4394 4395 4396 4397

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4398 4399
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4400
	}
4401

C
Chris Wilson 已提交
4402 4403 4404 4405
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4406 4407 4408
	return 0;
}

4409 4410 4411
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4412 4413 4414 4415
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4416 4417 4418
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4419
static int
4420
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4421
{
4422 4423
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4424
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4425
	struct drm_i915_gem_request *request, *target = NULL;
4426
	int ret;
4427

4428 4429 4430 4431
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4432 4433 4434
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4435

4436
	spin_lock(&file_priv->mm.lock);
4437
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4438 4439
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4440

4441 4442 4443 4444 4445 4446 4447
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4448
		target = request;
4449
	}
4450 4451
	if (target)
		i915_gem_request_reference(target);
4452
	spin_unlock(&file_priv->mm.lock);
4453

4454
	if (target == NULL)
4455
		return 0;
4456

4457
	ret = __i915_wait_request(target, true, NULL, NULL);
4458 4459
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4460

4461
	i915_gem_request_unreference(target);
4462

4463 4464 4465
	return ret;
}

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4482 4483 4484 4485
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4486 4487 4488
	return false;
}

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4507
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4508 4509 4510 4511

	obj->map_and_fenceable = mappable && fenceable;
}

4512 4513 4514 4515 4516 4517
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4518
{
4519
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4520
	struct i915_vma *vma;
4521
	unsigned bound;
4522 4523
	int ret;

4524 4525 4526
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4527
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4528
		return -EINVAL;
4529

4530 4531 4532
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4533 4534 4535 4536 4537 4538
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4539
	if (vma) {
B
Ben Widawsky 已提交
4540 4541 4542
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4543
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4544
			WARN(vma->pin_count,
4545
			     "bo is already pinned in %s with incorrect alignment:"
4546
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4547
			     " obj->map_and_fenceable=%d\n",
4548
			     ggtt_view ? "ggtt" : "ppgtt",
4549 4550
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4551
			     alignment,
4552
			     !!(flags & PIN_MAPPABLE),
4553
			     obj->map_and_fenceable);
4554
			ret = i915_vma_unbind(vma);
4555 4556
			if (ret)
				return ret;
4557 4558

			vma = NULL;
4559 4560 4561
		}
	}

4562
	bound = vma ? vma->bound : 0;
4563
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4564 4565
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4566 4567
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4568 4569
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4570 4571 4572
		if (ret)
			return ret;
	}
4573

4574 4575
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4576
		__i915_vma_set_map_and_fenceable(vma);
4577 4578
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4579

4580
	vma->pin_count++;
4581 4582 4583
	return 0;
}

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4601 4602 4603 4604
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4605
	BUG_ON(!view);
4606

4607
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4608
				      alignment, flags | PIN_GLOBAL);
4609 4610
}

4611
void
4612 4613
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4614
{
4615
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4616

4617
	WARN_ON(vma->pin_count == 0);
4618
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4619

4620
	--vma->pin_count;
4621 4622 4623 4624
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4625
		    struct drm_file *file)
4626 4627
{
	struct drm_i915_gem_busy *args = data;
4628
	struct drm_i915_gem_object *obj;
4629 4630
	int ret;

4631
	ret = i915_mutex_lock_interruptible(dev);
4632
	if (ret)
4633
		return ret;
4634

4635
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4636
	if (&obj->base == NULL) {
4637 4638
		ret = -ENOENT;
		goto unlock;
4639
	}
4640

4641 4642 4643 4644
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4645
	 */
4646
	ret = i915_gem_object_flush_active(obj);
4647 4648
	if (ret)
		goto unref;
4649

4650 4651 4652 4653
	args->busy = 0;
	if (obj->active) {
		int i;

4654
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4655 4656 4657 4658
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4659
				args->busy |= 1 << (16 + req->engine->exec_id);
4660 4661
		}
		if (obj->last_write_req)
4662
			args->busy |= obj->last_write_req->engine->exec_id;
4663
	}
4664

4665
unref:
4666
	drm_gem_object_unreference(&obj->base);
4667
unlock:
4668
	mutex_unlock(&dev->struct_mutex);
4669
	return ret;
4670 4671 4672 4673 4674 4675
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4676
	return i915_gem_ring_throttle(dev, file_priv);
4677 4678
}

4679 4680 4681 4682
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4683
	struct drm_i915_private *dev_priv = dev->dev_private;
4684
	struct drm_i915_gem_madvise *args = data;
4685
	struct drm_i915_gem_object *obj;
4686
	int ret;
4687 4688 4689 4690 4691 4692 4693 4694 4695

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4696 4697 4698 4699
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4700
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4701
	if (&obj->base == NULL) {
4702 4703
		ret = -ENOENT;
		goto unlock;
4704 4705
	}

B
Ben Widawsky 已提交
4706
	if (i915_gem_obj_is_pinned(obj)) {
4707 4708
		ret = -EINVAL;
		goto out;
4709 4710
	}

4711 4712 4713 4714 4715 4716 4717 4718 4719
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4720 4721
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4722

C
Chris Wilson 已提交
4723
	/* if the object is no longer attached, discard its backing storage */
4724
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4725 4726
		i915_gem_object_truncate(obj);

4727
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4728

4729
out:
4730
	drm_gem_object_unreference(&obj->base);
4731
unlock:
4732
	mutex_unlock(&dev->struct_mutex);
4733
	return ret;
4734 4735
}

4736 4737
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4738
{
4739 4740
	int i;

4741
	INIT_LIST_HEAD(&obj->global_list);
4742
	for (i = 0; i < I915_NUM_ENGINES; i++)
4743
		INIT_LIST_HEAD(&obj->engine_list[i]);
4744
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4745
	INIT_LIST_HEAD(&obj->vma_list);
4746
	INIT_LIST_HEAD(&obj->batch_pool_link);
4747

4748 4749
	obj->ops = ops;

4750 4751 4752 4753 4754 4755
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4756
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4757
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4758 4759 4760 4761
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4762
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4763
						  size_t size)
4764
{
4765
	struct drm_i915_gem_object *obj;
4766
	struct address_space *mapping;
D
Daniel Vetter 已提交
4767
	gfp_t mask;
4768
	int ret;
4769

4770
	obj = i915_gem_object_alloc(dev);
4771
	if (obj == NULL)
4772
		return ERR_PTR(-ENOMEM);
4773

4774 4775 4776
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4777

4778 4779 4780 4781 4782 4783 4784
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4785
	mapping = file_inode(obj->base.filp)->i_mapping;
4786
	mapping_set_gfp_mask(mapping, mask);
4787

4788
	i915_gem_object_init(obj, &i915_gem_object_ops);
4789

4790 4791
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4792

4793 4794
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4810 4811
	trace_i915_gem_object_create(obj);

4812
	return obj;
4813 4814 4815 4816 4817

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4818 4819
}

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4844
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4845
{
4846
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4847
	struct drm_device *dev = obj->base.dev;
4848
	struct drm_i915_private *dev_priv = dev->dev_private;
4849
	struct i915_vma *vma, *next;
4850

4851 4852
	intel_runtime_pm_get(dev_priv);

4853 4854
	trace_i915_gem_object_destroy(obj);

4855
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4856 4857 4858 4859
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4860 4861
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4862

4863 4864
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4865

4866
			WARN_ON(i915_vma_unbind(vma));
4867

4868 4869
			dev_priv->mm.interruptible = was_interruptible;
		}
4870 4871
	}

B
Ben Widawsky 已提交
4872 4873 4874 4875 4876
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4877 4878
	WARN_ON(obj->frontbuffer_bits);

4879 4880 4881 4882 4883
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4884 4885
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4886
	if (discard_backing_storage(obj))
4887
		obj->madv = I915_MADV_DONTNEED;
4888
	i915_gem_object_put_pages(obj);
4889
	i915_gem_object_free_mmap_offset(obj);
4890

4891 4892
	BUG_ON(obj->pages);

4893 4894
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4895

4896 4897 4898
	if (obj->ops->release)
		obj->ops->release(obj);

4899 4900
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4901

4902
	kfree(obj->bit_17);
4903
	i915_gem_object_free(obj);
4904 4905

	intel_runtime_pm_put(dev_priv);
4906 4907
}

4908 4909
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4910 4911
{
	struct i915_vma *vma;
4912
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4913 4914
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4915
			return vma;
4916 4917 4918 4919 4920 4921 4922 4923
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4924

4925
	GEM_BUG_ON(!view);
4926

4927
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4928
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4929
			return vma;
4930 4931 4932
	return NULL;
}

B
Ben Widawsky 已提交
4933 4934 4935
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4936 4937 4938 4939 4940

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4941 4942
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4943

4944
	list_del(&vma->obj_link);
4945

4946
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4947 4948
}

4949
static void
4950
i915_gem_stop_engines(struct drm_device *dev)
4951 4952
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4953
	struct intel_engine_cs *engine;
4954

4955
	for_each_engine(engine, dev_priv)
4956
		dev_priv->gt.stop_engine(engine);
4957 4958
}

4959
int
4960
i915_gem_suspend(struct drm_device *dev)
4961
{
4962
	struct drm_i915_private *dev_priv = dev->dev_private;
4963
	int ret = 0;
4964

4965
	mutex_lock(&dev->struct_mutex);
4966
	ret = i915_gpu_idle(dev);
4967
	if (ret)
4968
		goto err;
4969

4970
	i915_gem_retire_requests(dev_priv);
4971

4972
	i915_gem_stop_engines(dev);
4973
	i915_gem_context_lost(dev_priv);
4974 4975
	mutex_unlock(&dev->struct_mutex);

4976
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4977
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4978
	flush_delayed_work(&dev_priv->mm.idle_work);
4979

4980 4981 4982 4983 4984
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4985
	return 0;
4986 4987 4988 4989

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4990 4991
}

4992 4993
void i915_gem_init_swizzling(struct drm_device *dev)
{
4994
	struct drm_i915_private *dev_priv = dev->dev_private;
4995

4996
	if (INTEL_INFO(dev)->gen < 5 ||
4997 4998 4999 5000 5001 5002
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5003 5004 5005
	if (IS_GEN5(dev))
		return;

5006 5007
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
5008
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5009
	else if (IS_GEN7(dev))
5010
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
5011 5012
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5013 5014
	else
		BUG();
5015
}
D
Daniel Vetter 已提交
5016

5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5044
int i915_gem_init_engines(struct drm_device *dev)
5045
{
5046
	struct drm_i915_private *dev_priv = dev->dev_private;
5047
	int ret;
5048

5049
	ret = intel_init_render_ring_buffer(dev);
5050
	if (ret)
5051
		return ret;
5052 5053

	if (HAS_BSD(dev)) {
5054
		ret = intel_init_bsd_ring_buffer(dev);
5055 5056
		if (ret)
			goto cleanup_render_ring;
5057
	}
5058

5059
	if (HAS_BLT(dev)) {
5060 5061 5062 5063 5064
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5065 5066 5067 5068 5069 5070
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5071 5072 5073 5074 5075
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5076

5077 5078
	return 0;

B
Ben Widawsky 已提交
5079
cleanup_vebox_ring:
5080
	intel_cleanup_engine(&dev_priv->engine[VECS]);
5081
cleanup_blt_ring:
5082
	intel_cleanup_engine(&dev_priv->engine[BCS]);
5083
cleanup_bsd_ring:
5084
	intel_cleanup_engine(&dev_priv->engine[VCS]);
5085
cleanup_render_ring:
5086
	intel_cleanup_engine(&dev_priv->engine[RCS]);
5087 5088 5089 5090 5091 5092 5093

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5094
	struct drm_i915_private *dev_priv = dev->dev_private;
5095
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5096
	int ret;
5097

5098 5099 5100
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5101
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5102
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5103

5104 5105 5106
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5107

5108
	if (HAS_PCH_NOP(dev)) {
5109 5110 5111 5112 5113 5114 5115 5116 5117
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5118 5119
	}

5120 5121
	i915_gem_init_swizzling(dev);

5122 5123 5124 5125 5126 5127 5128 5129
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5130
	BUG_ON(!dev_priv->kernel_context);
5131

5132 5133 5134 5135 5136 5137 5138
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5139
	for_each_engine(engine, dev_priv) {
5140
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5141
		if (ret)
5142
			goto out;
D
Daniel Vetter 已提交
5143
	}
5144

5145 5146
	intel_mocs_init_l3cc_table(dev);

5147
	/* We can't enable contexts until all firmware is loaded */
5148 5149 5150
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
5151

5152 5153 5154 5155 5156
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
5157

5158 5159
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5160
	return ret;
5161 5162
}

5163 5164 5165 5166 5167 5168
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
5169

5170
	if (!i915.enable_execlists) {
5171
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5172 5173 5174
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5175
	} else {
5176
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5177 5178 5179
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5180 5181
	}

5182 5183 5184 5185 5186 5187 5188 5189
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5190
	i915_gem_init_userptr(dev_priv);
5191
	i915_gem_init_ggtt(dev);
5192

5193
	ret = i915_gem_context_init(dev);
5194 5195
	if (ret)
		goto out_unlock;
5196

5197
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5198
	if (ret)
5199
		goto out_unlock;
5200

5201
	ret = i915_gem_init_hw(dev);
5202 5203 5204 5205 5206 5207
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5208
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5209
		ret = 0;
5210
	}
5211 5212

out_unlock:
5213
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5214
	mutex_unlock(&dev->struct_mutex);
5215

5216
	return ret;
5217 5218
}

5219
void
5220
i915_gem_cleanup_engines(struct drm_device *dev)
5221
{
5222
	struct drm_i915_private *dev_priv = dev->dev_private;
5223
	struct intel_engine_cs *engine;
5224

5225
	for_each_engine(engine, dev_priv)
5226
		dev_priv->gt.cleanup_engine(engine);
5227 5228
}

5229
static void
5230
init_engine_lists(struct intel_engine_cs *engine)
5231
{
5232 5233
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5234 5235
}

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5250
	if (intel_vgpu_active(dev_priv))
5251 5252 5253 5254 5255 5256 5257 5258 5259
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5260
void
5261
i915_gem_load_init(struct drm_device *dev)
5262
{
5263
	struct drm_i915_private *dev_priv = dev->dev_private;
5264 5265
	int i;

5266
	dev_priv->objects =
5267 5268 5269 5270
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5271 5272 5273 5274 5275
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5276 5277 5278 5279 5280
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5281

B
Ben Widawsky 已提交
5282
	INIT_LIST_HEAD(&dev_priv->vm_list);
5283
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5284 5285
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5286
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5287 5288
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5289
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5290
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5291 5292
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5293 5294
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5295
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5296

5297 5298
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5299 5300 5301 5302 5303 5304 5305 5306
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5307
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5308

5309
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5310

5311 5312
	dev_priv->mm.interruptible = true;

5313
	mutex_init(&dev_priv->fb_tracking.lock);
5314
}
5315

5316 5317 5318 5319 5320 5321 5322 5323 5324
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5353
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5354
{
5355
	struct drm_i915_file_private *file_priv = file->driver_priv;
5356 5357 5358 5359 5360

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5361
	spin_lock(&file_priv->mm.lock);
5362 5363 5364 5365 5366 5367 5368 5369 5370
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5371
	spin_unlock(&file_priv->mm.lock);
5372

5373
	if (!list_empty(&file_priv->rps.link)) {
5374
		spin_lock(&to_i915(dev)->rps.client_lock);
5375
		list_del(&file_priv->rps.link);
5376
		spin_unlock(&to_i915(dev)->rps.client_lock);
5377
	}
5378 5379 5380 5381 5382
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5383
	int ret;
5384 5385 5386 5387 5388 5389 5390 5391 5392

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5393
	file_priv->file = file;
5394
	INIT_LIST_HEAD(&file_priv->rps.link);
5395 5396 5397 5398

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5399 5400
	file_priv->bsd_ring = -1;

5401 5402 5403
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5404

5405
	return ret;
5406 5407
}

5408 5409
/**
 * i915_gem_track_fb - update frontbuffer tracking
5410 5411 5412
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5413 5414 5415 5416
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5434
/* All the new VM stuff */
5435 5436
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5437 5438 5439 5440
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5441
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5442

5443
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5444
		if (vma->is_ggtt &&
5445 5446 5447
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5448 5449
			return vma->node.start;
	}
5450

5451 5452
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5453 5454 5455
	return -1;
}

5456 5457
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5458 5459 5460
{
	struct i915_vma *vma;

5461
	list_for_each_entry(vma, &o->vma_list, obj_link)
5462
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5463 5464
			return vma->node.start;

5465
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5466 5467 5468 5469 5470 5471 5472 5473
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5474
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5475
		if (vma->is_ggtt &&
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5486
				  const struct i915_ggtt_view *view)
5487 5488 5489
{
	struct i915_vma *vma;

5490
	list_for_each_entry(vma, &o->vma_list, obj_link)
5491
		if (vma->is_ggtt &&
5492
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5493
		    drm_mm_node_allocated(&vma->node))
5494 5495 5496 5497 5498 5499 5500
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5501
	struct i915_vma *vma;
5502

5503
	list_for_each_entry(vma, &o->vma_list, obj_link)
5504
		if (drm_mm_node_allocated(&vma->node))
5505 5506 5507 5508 5509
			return true;

	return false;
}

5510
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5511 5512 5513
{
	struct i915_vma *vma;

5514
	GEM_BUG_ON(list_empty(&o->vma_list));
5515

5516
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5517
		if (vma->is_ggtt &&
5518
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5519
			return vma->node.size;
5520
	}
5521

5522 5523 5524
	return 0;
}

5525
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5526 5527
{
	struct i915_vma *vma;
5528
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5529 5530
		if (vma->pin_count > 0)
			return true;
5531

5532
	return false;
5533
}
5534

5535 5536 5537 5538 5539 5540 5541
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5542
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5543 5544 5545 5546 5547 5548 5549
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5560
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5561
	if (IS_ERR(obj))
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5575
	obj->dirty = 1;		/* Backing store is now out of date */
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}