i915_gem.c 134.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156
static inline bool
157
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158
{
159
	return i915_gem_obj_bound_any(obj) && !obj->active;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
174
		if (i915_gem_obj_is_pinned(obj))
175
			pinned += i915_gem_obj_ggtt_size(obj);
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->gtt.base.total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186
{
187 188 189 190 191
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
242

243 244 245 246 247 248 249 250 251 252 253 254 255
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
256
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257
		char *vaddr = obj->phys_handle->vaddr;
258 259 260
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
275
				mark_page_accessed(page);
276
			page_cache_release(page);
277 278
			vaddr += PAGE_SIZE;
		}
279
		obj->dirty = 0;
280 281
	}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
315 316 317 318 319 320 321
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
322
	int ret;
323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

337 338 339 340
	ret = drop_pages(obj);
	if (ret)
		return ret;

341 342 343 344 345 346
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
347 348 349
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
350 351 352 353 354 355 356 357 358 359
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
360 361 362 363 364 365 366 367
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

383
	drm_clflush_virt_range(vaddr, args->size);
384 385 386 387
	i915_gem_chipset_flush(dev);
	return 0;
}

388 389 390
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
391
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 393 394 395 396 397 398 399
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

400 401 402 403
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
404
		bool dumb,
405
		uint32_t *handle_p)
406
{
407
	struct drm_i915_gem_object *obj;
408 409
	int ret;
	u32 handle;
410

411
	size = roundup(size, PAGE_SIZE);
412 413
	if (size == 0)
		return -EINVAL;
414 415

	/* Allocate the new object */
416
	obj = i915_gem_alloc_object(dev, size);
417 418 419
	if (obj == NULL)
		return -ENOMEM;

420
	obj->base.dumb = dumb;
421
	ret = drm_gem_handle_create(file, &obj->base, &handle);
422
	/* drop reference from allocate - handle holds it now */
423 424 425
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
426

427
	*handle_p = handle;
428 429 430
	return 0;
}

431 432 433 434 435 436
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
437
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 439
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
440
			       args->size, true, &args->handle);
441 442 443 444 445 446 447 448 449 450
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
451

452
	return i915_gem_create(file, dev,
453
			       args->size, false, &args->handle);
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

482
static inline int
483 484
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
533 534

		i915_gem_object_retire(obj);
535 536 537 538 539 540 541 542 543 544 545
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

546 547 548
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
549
static int
550 551 552 553 554 555 556
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

557
	if (unlikely(page_do_bit17_swizzling))
558 559 560 561 562 563 564 565 566 567 568
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

569
	return ret ? -EFAULT : 0;
570 571
}

572 573 574 575
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
576
	if (unlikely(swizzled)) {
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

594 595 596 597 598 599 600 601 602 603 604 605
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
606 607 608
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
609 610 611 612 613 614 615 616 617 618 619

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

620
	return ret ? - EFAULT : 0;
621 622
}

623
static int
624 625 626 627
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
628
{
629
	char __user *user_data;
630
	ssize_t remain;
631
	loff_t offset;
632
	int shmem_page_offset, page_length, ret = 0;
633
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634
	int prefaulted = 0;
635
	int needs_clflush = 0;
636
	struct sg_page_iter sg_iter;
637

V
Ville Syrjälä 已提交
638
	user_data = to_user_ptr(args->data_ptr);
639 640
	remain = args->size;

641
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642

643
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644 645 646
	if (ret)
		return ret;

647
	offset = args->offset;
648

649 650
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
651
		struct page *page = sg_page_iter_page(&sg_iter);
652 653 654 655

		if (remain <= 0)
			break;

656 657 658 659 660
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
661
		shmem_page_offset = offset_in_page(offset);
662 663 664 665
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

666 667 668
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

669 670 671 672 673
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
674 675 676

		mutex_unlock(&dev->struct_mutex);

677
		if (likely(!i915.prefault_disable) && !prefaulted) {
678
			ret = fault_in_multipages_writeable(user_data, remain);
679 680 681 682 683 684 685
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
686

687 688 689
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
690

691
		mutex_lock(&dev->struct_mutex);
692 693

		if (ret)
694 695
			goto out;

696
next_page:
697
		remain -= page_length;
698
		user_data += page_length;
699 700 701
		offset += page_length;
	}

702
out:
703 704
	i915_gem_object_unpin_pages(obj);

705 706 707
	return ret;
}

708 709 710 711 712 713 714
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715
		     struct drm_file *file)
716 717
{
	struct drm_i915_gem_pread *args = data;
718
	struct drm_i915_gem_object *obj;
719
	int ret = 0;
720

721 722 723 724
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
725
		       to_user_ptr(args->data_ptr),
726 727 728
		       args->size))
		return -EFAULT;

729
	ret = i915_mutex_lock_interruptible(dev);
730
	if (ret)
731
		return ret;
732

733
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734
	if (&obj->base == NULL) {
735 736
		ret = -ENOENT;
		goto unlock;
737
	}
738

739
	/* Bounds check source.  */
740 741
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
742
		ret = -EINVAL;
743
		goto out;
C
Chris Wilson 已提交
744 745
	}

746 747 748 749 750 751 752 753
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
754 755
	trace_i915_gem_object_pread(obj, args->offset, args->size);

756
	ret = i915_gem_shmem_pread(dev, obj, args, file);
757

758
out:
759
	drm_gem_object_unreference(&obj->base);
760
unlock:
761
	mutex_unlock(&dev->struct_mutex);
762
	return ret;
763 764
}

765 766
/* This is the fast write path which cannot handle
 * page faults in the source data
767
 */
768 769 770 771 772 773

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
774
{
775 776
	void __iomem *vaddr_atomic;
	void *vaddr;
777
	unsigned long unwritten;
778

P
Peter Zijlstra 已提交
779
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780 781 782
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
783
						      user_data, length);
P
Peter Zijlstra 已提交
784
	io_mapping_unmap_atomic(vaddr_atomic);
785
	return unwritten;
786 787
}

788 789 790 791
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
792
static int
793 794
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
795
			 struct drm_i915_gem_pwrite *args,
796
			 struct drm_file *file)
797
{
798
	struct drm_i915_private *dev_priv = dev->dev_private;
799
	ssize_t remain;
800
	loff_t offset, page_base;
801
	char __user *user_data;
D
Daniel Vetter 已提交
802 803
	int page_offset, page_length, ret;

804
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
805 806 807 808 809 810 811 812 813 814
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
815

V
Ville Syrjälä 已提交
816
	user_data = to_user_ptr(args->data_ptr);
817 818
	remain = args->size;

819
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820 821 822 823

	while (remain > 0) {
		/* Operation in this page
		 *
824 825 826
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
827
		 */
828 829
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
830 831 832 833 834
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
835 836
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
837
		 */
B
Ben Widawsky 已提交
838
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
839 840 841 842
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
843

844 845 846
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
847 848
	}

D
Daniel Vetter 已提交
849
out_unpin:
B
Ben Widawsky 已提交
850
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
851
out:
852
	return ret;
853 854
}

855 856 857 858
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
859
static int
860 861 862 863 864
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
865
{
866
	char *vaddr;
867
	int ret;
868

869
	if (unlikely(page_do_bit17_swizzling))
870
		return -EINVAL;
871

872 873 874 875
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
876 877
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
878 879 880 881
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
882

883
	return ret ? -EFAULT : 0;
884 885
}

886 887
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
888
static int
889 890 891 892 893
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
894
{
895 896
	char *vaddr;
	int ret;
897

898
	vaddr = kmap(page);
899
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900 901 902
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
903 904
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905 906
						user_data,
						page_length);
907 908 909 910 911
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
912 913 914
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
915
	kunmap(page);
916

917
	return ret ? -EFAULT : 0;
918 919 920
}

static int
921 922 923 924
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
925 926
{
	ssize_t remain;
927 928
	loff_t offset;
	char __user *user_data;
929
	int shmem_page_offset, page_length, ret = 0;
930
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931
	int hit_slowpath = 0;
932 933
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
934
	struct sg_page_iter sg_iter;
935

V
Ville Syrjälä 已提交
936
	user_data = to_user_ptr(args->data_ptr);
937 938
	remain = args->size;

939
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940

941 942 943 944 945
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
946
		needs_clflush_after = cpu_write_needs_clflush(obj);
947 948 949
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
950 951

		i915_gem_object_retire(obj);
952
	}
953 954 955 956 957
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
958

959 960 961 962 963 964
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

965
	offset = args->offset;
966
	obj->dirty = 1;
967

968 969
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
970
		struct page *page = sg_page_iter_page(&sg_iter);
971
		int partial_cacheline_write;
972

973 974 975
		if (remain <= 0)
			break;

976 977 978 979 980
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
981
		shmem_page_offset = offset_in_page(offset);
982 983 984 985 986

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

987 988 989 990 991 992 993
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

994 995 996
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

997 998 999 1000 1001 1002
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1003 1004 1005

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1006 1007 1008 1009
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1010

1011
		mutex_lock(&dev->struct_mutex);
1012 1013

		if (ret)
1014 1015
			goto out;

1016
next_page:
1017
		remain -= page_length;
1018
		user_data += page_length;
1019
		offset += page_length;
1020 1021
	}

1022
out:
1023 1024
	i915_gem_object_unpin_pages(obj);

1025
	if (hit_slowpath) {
1026 1027 1028 1029 1030 1031 1032
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 1034
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1035
		}
1036
	}
1037

1038
	if (needs_clflush_after)
1039
		i915_gem_chipset_flush(dev);
1040

1041
	return ret;
1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051
		      struct drm_file *file)
1052 1053
{
	struct drm_i915_gem_pwrite *args = data;
1054
	struct drm_i915_gem_object *obj;
1055 1056 1057 1058 1059 1060
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1061
		       to_user_ptr(args->data_ptr),
1062 1063 1064
		       args->size))
		return -EFAULT;

1065
	if (likely(!i915.prefault_disable)) {
1066 1067 1068 1069 1070
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1071

1072
	ret = i915_mutex_lock_interruptible(dev);
1073
	if (ret)
1074
		return ret;
1075

1076
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077
	if (&obj->base == NULL) {
1078 1079
		ret = -ENOENT;
		goto unlock;
1080
	}
1081

1082
	/* Bounds check destination. */
1083 1084
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1085
		ret = -EINVAL;
1086
		goto out;
C
Chris Wilson 已提交
1087 1088
	}

1089 1090 1091 1092 1093 1094 1095 1096
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1097 1098
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1099
	ret = -EFAULT;
1100 1101 1102 1103 1104 1105
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1106 1107 1108
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1109
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1110 1111 1112
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1113
	}
1114

1115 1116 1117 1118 1119 1120
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1121

1122
out:
1123
	drm_gem_object_unreference(&obj->base);
1124
unlock:
1125
	mutex_unlock(&dev->struct_mutex);
1126 1127 1128
	return ret;
}

1129
int
1130
i915_gem_check_wedge(struct i915_gpu_error *error,
1131 1132
		     bool interruptible)
{
1133
	if (i915_reset_in_progress(error)) {
1134 1135 1136 1137 1138
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1139 1140
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1141 1142
			return -EIO;

1143 1144 1145 1146 1147 1148 1149
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1150 1151 1152 1153 1154 1155
	}

	return 0;
}

/*
1156
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1157
 */
1158
int
1159
i915_gem_check_olr(struct drm_i915_gem_request *req)
1160 1161 1162
{
	int ret;

1163
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1164 1165

	ret = 0;
1166
	if (req == req->ring->outstanding_lazy_request)
1167
		ret = i915_add_request(req->ring);
1168 1169 1170 1171

	return ret;
}

1172 1173 1174 1175 1176 1177
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1178
		       struct intel_engine_cs *ring)
1179 1180 1181 1182
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1183 1184 1185 1186 1187 1188 1189 1190
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1191
/**
1192 1193 1194
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1195 1196 1197
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1198 1199 1200 1201 1202 1203 1204
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1205
 * Returns 0 if the request was found within the alloted time. Else returns the
1206 1207
 * errno with remaining time filled in timeout argument.
 */
1208
int __i915_wait_request(struct drm_i915_gem_request *req,
1209
			unsigned reset_counter,
1210
			bool interruptible,
1211
			s64 *timeout,
1212
			struct drm_i915_file_private *file_priv)
1213
{
1214
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1215
	struct drm_device *dev = ring->dev;
1216
	struct drm_i915_private *dev_priv = dev->dev_private;
1217 1218
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1219
	DEFINE_WAIT(wait);
1220
	unsigned long timeout_expire;
1221
	s64 before, now;
1222 1223
	int ret;

1224
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1225

1226 1227
	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      i915_gem_request_get_seqno(req)))
1228 1229
		return 0;

1230
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1231

1232
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1233 1234 1235 1236 1237 1238 1239
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1240
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1241 1242
		return -ENODEV;

1243
	/* Record current time in case interrupted by signal, or wedged */
1244
	trace_i915_gem_request_wait_begin(req);
1245
	before = ktime_get_raw_ns();
1246 1247
	for (;;) {
		struct timer_list timer;
1248

1249 1250
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1251

1252 1253
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1254 1255 1256 1257 1258 1259 1260 1261
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1262

1263 1264
		if (i915_seqno_passed(ring->get_seqno(ring, false),
				      i915_gem_request_get_seqno(req))) {
1265 1266 1267
			ret = 0;
			break;
		}
1268

1269 1270 1271 1272 1273
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1274
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 1276 1277 1278 1279 1280
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1281 1282
			unsigned long expire;

1283
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 1286 1287
			mod_timer(&timer, expire);
		}

1288
		io_schedule();
1289 1290 1291 1292 1293 1294

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1295
	now = ktime_get_raw_ns();
1296
	trace_i915_gem_request_wait_end(req);
1297

1298 1299
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1300 1301

	finish_wait(&ring->irq_queue, &wait);
1302 1303

	if (timeout) {
1304 1305 1306
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1307 1308
	}

1309
	return ret;
1310 1311 1312
}

/**
1313
 * Waits for a request to be signaled, and cleans up the
1314 1315 1316
 * request and object lists appropriately for that event.
 */
int
1317
i915_wait_request(struct drm_i915_gem_request *req)
1318
{
1319 1320 1321
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1322
	unsigned reset_counter;
1323 1324
	int ret;

1325 1326 1327 1328 1329 1330
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1331 1332
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1333
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1334 1335 1336
	if (ret)
		return ret;

1337
	ret = i915_gem_check_olr(req);
1338 1339 1340
	if (ret)
		return ret;

1341
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1342
	i915_gem_request_reference(req);
1343 1344
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1345 1346
	i915_gem_request_unreference(req);
	return ret;
1347 1348
}

1349
static int
1350
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1351
{
1352 1353
	if (!obj->active)
		return 0;
1354 1355 1356 1357

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1358 1359
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1360 1361
	 * we know we have passed the last write.
	 */
1362
	i915_gem_request_assign(&obj->last_write_req, NULL);
1363 1364 1365 1366

	return 0;
}

1367 1368 1369 1370 1371 1372 1373 1374
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1375
	struct drm_i915_gem_request *req;
1376 1377
	int ret;

1378 1379
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1380 1381
		return 0;

1382
	ret = i915_wait_request(req);
1383 1384 1385
	if (ret)
		return ret;

1386
	return i915_gem_object_wait_rendering__tail(obj);
1387 1388
}

1389 1390 1391 1392 1393
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1394
					    struct drm_i915_file_private *file_priv,
1395 1396
					    bool readonly)
{
1397
	struct drm_i915_gem_request *req;
1398 1399
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1400
	unsigned reset_counter;
1401 1402 1403 1404 1405
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1406 1407
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1408 1409
		return 0;

1410
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1411 1412 1413
	if (ret)
		return ret;

1414
	ret = i915_gem_check_olr(req);
1415 1416 1417
	if (ret)
		return ret;

1418
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1419
	i915_gem_request_reference(req);
1420
	mutex_unlock(&dev->struct_mutex);
1421
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1422
	mutex_lock(&dev->struct_mutex);
1423
	i915_gem_request_unreference(req);
1424 1425
	if (ret)
		return ret;
1426

1427
	return i915_gem_object_wait_rendering__tail(obj);
1428 1429
}

1430
/**
1431 1432
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1433 1434 1435
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1436
			  struct drm_file *file)
1437 1438
{
	struct drm_i915_gem_set_domain *args = data;
1439
	struct drm_i915_gem_object *obj;
1440 1441
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1442 1443
	int ret;

1444
	/* Only handle setting domains to types used by the CPU. */
1445
	if (write_domain & I915_GEM_GPU_DOMAINS)
1446 1447
		return -EINVAL;

1448
	if (read_domains & I915_GEM_GPU_DOMAINS)
1449 1450 1451 1452 1453 1454 1455 1456
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1457
	ret = i915_mutex_lock_interruptible(dev);
1458
	if (ret)
1459
		return ret;
1460

1461
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1462
	if (&obj->base == NULL) {
1463 1464
		ret = -ENOENT;
		goto unlock;
1465
	}
1466

1467 1468 1469 1470
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1471 1472 1473
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1474 1475 1476
	if (ret)
		goto unref;

1477 1478
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1479 1480 1481 1482 1483 1484 1485

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1486
	} else {
1487
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1488 1489
	}

1490
unref:
1491
	drm_gem_object_unreference(&obj->base);
1492
unlock:
1493 1494 1495 1496 1497 1498 1499 1500 1501
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1502
			 struct drm_file *file)
1503 1504
{
	struct drm_i915_gem_sw_finish *args = data;
1505
	struct drm_i915_gem_object *obj;
1506 1507
	int ret = 0;

1508
	ret = i915_mutex_lock_interruptible(dev);
1509
	if (ret)
1510
		return ret;
1511

1512
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1513
	if (&obj->base == NULL) {
1514 1515
		ret = -ENOENT;
		goto unlock;
1516 1517 1518
	}

	/* Pinned buffers may be scanout, so flush the cache */
1519 1520
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1521

1522
	drm_gem_object_unreference(&obj->base);
1523
unlock:
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1544 1545 1546
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1547
		    struct drm_file *file)
1548 1549 1550 1551 1552
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1553
	obj = drm_gem_object_lookup(dev, file, args->handle);
1554
	if (obj == NULL)
1555
		return -ENOENT;
1556

1557 1558 1559 1560 1561 1562 1563 1564
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1565
	addr = vm_mmap(obj->filp, 0, args->size,
1566 1567
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1568
	drm_gem_object_unreference_unlocked(obj);
1569 1570 1571 1572 1573 1574 1575 1576
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1595 1596
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1597
	struct drm_i915_private *dev_priv = dev->dev_private;
1598 1599 1600
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1601
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1602

1603 1604
	intel_runtime_pm_get(dev_priv);

1605 1606 1607 1608
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1609 1610 1611
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1612

C
Chris Wilson 已提交
1613 1614
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1615 1616 1617 1618 1619 1620 1621 1622 1623
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1624 1625
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1626
		ret = -EFAULT;
1627 1628 1629
		goto unlock;
	}

1630
	/* Now bind it into the GTT if needed */
1631
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1632 1633
	if (ret)
		goto unlock;
1634

1635 1636 1637
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1638

1639
	ret = i915_gem_object_get_fence(obj);
1640
	if (ret)
1641
		goto unpin;
1642

1643
	/* Finally, remap it using the new GTT offset */
1644 1645
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1646

1647
	if (!obj->fault_mappable) {
1648 1649 1650
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1651 1652
		int i;

1653
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1666
unpin:
B
Ben Widawsky 已提交
1667
	i915_gem_object_ggtt_unpin(obj);
1668
unlock:
1669
	mutex_unlock(&dev->struct_mutex);
1670
out:
1671
	switch (ret) {
1672
	case -EIO:
1673 1674 1675 1676 1677 1678 1679
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1680 1681 1682
			ret = VM_FAULT_SIGBUS;
			break;
		}
1683
	case -EAGAIN:
D
Daniel Vetter 已提交
1684 1685 1686 1687
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1688
		 */
1689 1690
	case 0:
	case -ERESTARTSYS:
1691
	case -EINTR:
1692 1693 1694 1695 1696
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1697 1698
		ret = VM_FAULT_NOPAGE;
		break;
1699
	case -ENOMEM:
1700 1701
		ret = VM_FAULT_OOM;
		break;
1702
	case -ENOSPC:
1703
	case -EFAULT:
1704 1705
		ret = VM_FAULT_SIGBUS;
		break;
1706
	default:
1707
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1708 1709
		ret = VM_FAULT_SIGBUS;
		break;
1710
	}
1711 1712 1713

	intel_runtime_pm_put(dev_priv);
	return ret;
1714 1715
}

1716 1717 1718 1719
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1720
 * Preserve the reservation of the mmapping with the DRM core code, but
1721 1722 1723 1724 1725 1726 1727 1728 1729
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1730
void
1731
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1732
{
1733 1734
	if (!obj->fault_mappable)
		return;
1735

1736 1737
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1738
	obj->fault_mappable = false;
1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1750
uint32_t
1751
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1752
{
1753
	uint32_t gtt_size;
1754 1755

	if (INTEL_INFO(dev)->gen >= 4 ||
1756 1757
	    tiling_mode == I915_TILING_NONE)
		return size;
1758 1759 1760

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1761
		gtt_size = 1024*1024;
1762
	else
1763
		gtt_size = 512*1024;
1764

1765 1766
	while (gtt_size < size)
		gtt_size <<= 1;
1767

1768
	return gtt_size;
1769 1770
}

1771 1772 1773 1774 1775
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1776
 * potential fence register mapping.
1777
 */
1778 1779 1780
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1781 1782 1783 1784 1785
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1786
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1787
	    tiling_mode == I915_TILING_NONE)
1788 1789
		return 4096;

1790 1791 1792 1793
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1794
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1795 1796
}

1797 1798 1799 1800 1801
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1802
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1803 1804
		return 0;

1805 1806
	dev_priv->mm.shrinker_no_lock_stealing = true;

1807 1808
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1809
		goto out;
1810 1811 1812 1813 1814 1815 1816 1817

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1818 1819 1820 1821 1822
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1823 1824
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1825
		goto out;
1826 1827

	i915_gem_shrink_all(dev_priv);
1828 1829 1830 1831 1832
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1833 1834 1835 1836 1837 1838 1839
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1840
static int
1841 1842
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1843
		  uint32_t handle, bool dumb,
1844
		  uint64_t *offset)
1845
{
1846
	struct drm_i915_private *dev_priv = dev->dev_private;
1847
	struct drm_i915_gem_object *obj;
1848 1849
	int ret;

1850
	ret = i915_mutex_lock_interruptible(dev);
1851
	if (ret)
1852
		return ret;
1853

1854
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1855
	if (&obj->base == NULL) {
1856 1857 1858
		ret = -ENOENT;
		goto unlock;
	}
1859

1860 1861 1862 1863 1864 1865 1866
	/*
	 * We don't allow dumb mmaps on objects created using another
	 * interface.
	 */
	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
		  "Illegal dumb map of accelerated buffer.\n");

B
Ben Widawsky 已提交
1867
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1868
		ret = -E2BIG;
1869
		goto out;
1870 1871
	}

1872
	if (obj->madv != I915_MADV_WILLNEED) {
1873
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1874
		ret = -EFAULT;
1875
		goto out;
1876 1877
	}

1878 1879 1880
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1881

1882
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1883

1884
out:
1885
	drm_gem_object_unreference(&obj->base);
1886
unlock:
1887
	mutex_unlock(&dev->struct_mutex);
1888
	return ret;
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898 1899
int
i915_gem_dumb_map_offset(struct drm_file *file,
			 struct drm_device *dev,
			 uint32_t handle,
			 uint64_t *offset)
{
	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1921
	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1922 1923
}

1924 1925 1926 1927 1928 1929
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1930 1931 1932
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1933
{
1934
	i915_gem_object_free_mmap_offset(obj);
1935

1936 1937
	if (obj->base.filp == NULL)
		return;
1938

D
Daniel Vetter 已提交
1939 1940 1941 1942 1943
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1944
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1945 1946
	obj->madv = __I915_MADV_PURGED;
}
1947

1948 1949 1950
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1951
{
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1966 1967
}

1968
static void
1969
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1970
{
1971 1972
	struct sg_page_iter sg_iter;
	int ret;
1973

1974
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1975

C
Chris Wilson 已提交
1976 1977 1978 1979 1980 1981
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1982
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1983 1984 1985
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1986
	if (i915_gem_object_needs_bit17_swizzle(obj))
1987 1988
		i915_gem_object_save_bit_17_swizzle(obj);

1989 1990
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1991

1992
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1993
		struct page *page = sg_page_iter_page(&sg_iter);
1994

1995
		if (obj->dirty)
1996
			set_page_dirty(page);
1997

1998
		if (obj->madv == I915_MADV_WILLNEED)
1999
			mark_page_accessed(page);
2000

2001
		page_cache_release(page);
2002
	}
2003
	obj->dirty = 0;
2004

2005 2006
	sg_free_table(obj->pages);
	kfree(obj->pages);
2007
}
C
Chris Wilson 已提交
2008

2009
int
2010 2011 2012 2013
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2014
	if (obj->pages == NULL)
2015 2016
		return 0;

2017 2018 2019
	if (obj->pages_pin_count)
		return -EBUSY;

2020
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2021

2022 2023 2024
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2025
	list_del(&obj->global_list);
2026

2027
	ops->put_pages(obj);
2028
	obj->pages = NULL;
2029

2030
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2031 2032 2033 2034

	return 0;
}

2035 2036 2037
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2038
{
2039 2040 2041 2042 2043 2044 2045 2046
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2047
	unsigned long count = 0;
C
Chris Wilson 已提交
2048

2049
	/*
2050
	 * As we may completely rewrite the (un)bound list whilst unbinding
2051 2052 2053
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2067
	 */
2068
	for (phase = phases; phase->list; phase++) {
2069
		struct list_head still_in_list;
2070

2071 2072
		if ((flags & phase->bit) == 0)
			continue;
2073

2074
		INIT_LIST_HEAD(&still_in_list);
2075
		while (count < target && !list_empty(phase->list)) {
2076 2077
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2078

2079
			obj = list_first_entry(phase->list,
2080 2081
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2082

2083 2084
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2085
				continue;
2086

2087
			drm_gem_object_reference(&obj->base);
2088

2089 2090 2091
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2092 2093
				if (i915_vma_unbind(vma))
					break;
2094

2095 2096 2097 2098 2099
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2100
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2101 2102 2103 2104 2105
	}

	return count;
}

2106
static unsigned long
C
Chris Wilson 已提交
2107 2108 2109
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2110 2111
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2112 2113
}

2114
static int
C
Chris Wilson 已提交
2115
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2116
{
C
Chris Wilson 已提交
2117
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2118 2119
	int page_count, i;
	struct address_space *mapping;
2120 2121
	struct sg_table *st;
	struct scatterlist *sg;
2122
	struct sg_page_iter sg_iter;
2123
	struct page *page;
2124
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2125
	gfp_t gfp;
2126

C
Chris Wilson 已提交
2127 2128 2129 2130 2131 2132 2133
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2134 2135 2136 2137
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2138
	page_count = obj->base.size / PAGE_SIZE;
2139 2140
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2141
		return -ENOMEM;
2142
	}
2143

2144 2145 2146 2147 2148
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2149
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2150
	gfp = mapping_gfp_mask(mapping);
2151
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2152
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2153 2154 2155
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2156 2157
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2158 2159 2160 2161 2162
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2163 2164 2165 2166 2167 2168 2169 2170
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2171
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2172 2173 2174
			if (IS_ERR(page))
				goto err_pages;
		}
2175 2176 2177 2178 2179 2180 2181 2182
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2183 2184 2185 2186 2187 2188 2189 2190 2191
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2192 2193 2194

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2195
	}
2196 2197 2198 2199
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2200 2201
	obj->pages = st;

2202
	if (i915_gem_object_needs_bit17_swizzle(obj))
2203 2204
		i915_gem_object_do_bit_17_swizzle(obj);

2205 2206 2207 2208
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2209 2210 2211
	return 0;

err_pages:
2212 2213
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2214
		page_cache_release(sg_page_iter_page(&sg_iter));
2215 2216
	sg_free_table(st);
	kfree(st);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2230 2231
}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2246
	if (obj->pages)
2247 2248
		return 0;

2249
	if (obj->madv != I915_MADV_WILLNEED) {
2250
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2251
		return -EFAULT;
2252 2253
	}

2254 2255
	BUG_ON(obj->pages_pin_count);

2256 2257 2258 2259
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2260
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2261
	return 0;
2262 2263
}

B
Ben Widawsky 已提交
2264
static void
2265
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2266
			       struct intel_engine_cs *ring)
2267
{
2268
	struct drm_i915_gem_request *req = intel_ring_get_request(ring);
2269

2270
	BUG_ON(ring == NULL);
2271 2272 2273
	if (obj->ring != ring && obj->last_write_req) {
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2274
	}
2275
	obj->ring = ring;
2276 2277

	/* Add a reference if we're newly entering the active list. */
2278 2279 2280
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2281
	}
2282

2283
	list_move_tail(&obj->ring_list, &ring->active_list);
2284

2285
	i915_gem_request_assign(&obj->last_read_req, req);
2286 2287
}

B
Ben Widawsky 已提交
2288
void i915_vma_move_to_active(struct i915_vma *vma,
2289
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2290 2291 2292 2293 2294
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2295 2296
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2297
{
B
Ben Widawsky 已提交
2298
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2299 2300
	struct i915_address_space *vm;
	struct i915_vma *vma;
2301

2302
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2303
	BUG_ON(!obj->active);
2304

2305 2306 2307 2308 2309
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2310

2311 2312
	intel_fb_obj_flush(obj, true);

2313
	list_del_init(&obj->ring_list);
2314 2315
	obj->ring = NULL;

2316 2317
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2318 2319
	obj->base.write_domain = 0;

2320
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2321 2322 2323 2324 2325

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2326
}
2327

2328 2329 2330
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2331
	struct intel_engine_cs *ring = obj->ring;
2332 2333 2334 2335 2336

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
2337
			      i915_gem_request_get_seqno(obj->last_read_req)))
2338 2339 2340
		i915_gem_object_move_to_inactive(obj);
}

2341
static int
2342
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2343
{
2344
	struct drm_i915_private *dev_priv = dev->dev_private;
2345
	struct intel_engine_cs *ring;
2346
	int ret, i, j;
2347

2348
	/* Carefully retire all requests without writing to the rings */
2349
	for_each_ring(ring, dev_priv, i) {
2350 2351 2352
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2353 2354
	}
	i915_gem_retire_requests(dev);
2355 2356

	/* Finally reset hw state */
2357
	for_each_ring(ring, dev_priv, i) {
2358
		intel_ring_init_seqno(ring, seqno);
2359

2360 2361
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2362
	}
2363

2364
	return 0;
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2393 2394
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2395
{
2396 2397 2398 2399
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2400
		int ret = i915_gem_init_seqno(dev, 0);
2401 2402
		if (ret)
			return ret;
2403

2404 2405
		dev_priv->next_seqno = 1;
	}
2406

2407
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2408
	return 0;
2409 2410
}

2411
int __i915_add_request(struct intel_engine_cs *ring,
2412
		       struct drm_file *file,
2413
		       struct drm_i915_gem_object *obj)
2414
{
2415
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2416
	struct drm_i915_gem_request *request;
2417
	struct intel_ringbuffer *ringbuf;
2418
	u32 request_ring_position, request_start;
2419 2420
	int ret;

2421
	request = ring->outstanding_lazy_request;
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2432 2433 2434 2435 2436 2437 2438
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2439 2440 2441 2442 2443 2444 2445 2446 2447
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2448

2449 2450 2451 2452 2453
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2454
	request_ring_position = intel_ring_get_tail(ringbuf);
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2465

2466
	request->head = request_start;
2467
	request->tail = request_ring_position;
2468 2469 2470 2471 2472 2473 2474

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2475
	request->batch_obj = obj;
2476

2477 2478 2479 2480 2481 2482 2483 2484
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2485

2486
	request->emitted_jiffies = jiffies;
2487
	list_add_tail(&request->list, &ring->request_list);
2488
	request->file_priv = NULL;
2489

C
Chris Wilson 已提交
2490 2491 2492
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2493
		spin_lock(&file_priv->mm.lock);
2494
		request->file_priv = file_priv;
2495
		list_add_tail(&request->client_list,
2496
			      &file_priv->mm.request_list);
2497
		spin_unlock(&file_priv->mm.lock);
2498
	}
2499

2500
	trace_i915_gem_request_add(request);
2501
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2502

2503
	i915_queue_hangcheck(ring->dev);
2504

2505 2506 2507 2508 2509
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2510

2511
	return 0;
2512 2513
}

2514 2515
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2516
{
2517
	struct drm_i915_file_private *file_priv = request->file_priv;
2518

2519 2520
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2521

2522
	spin_lock(&file_priv->mm.lock);
2523 2524
	list_del(&request->client_list);
	request->file_priv = NULL;
2525
	spin_unlock(&file_priv->mm.lock);
2526 2527
}

2528
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2529
				   const struct intel_context *ctx)
2530
{
2531
	unsigned long elapsed;
2532

2533 2534 2535
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2536 2537 2538
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2539
		if (!i915_gem_context_is_default(ctx)) {
2540
			DRM_DEBUG("context hanging too fast, banning!\n");
2541
			return true;
2542 2543 2544
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2545
			return true;
2546
		}
2547 2548 2549 2550 2551
	}

	return false;
}

2552
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2553
				  struct intel_context *ctx,
2554
				  const bool guilty)
2555
{
2556 2557 2558 2559
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2560

2561 2562 2563
	hs = &ctx->hang_stats;

	if (guilty) {
2564
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2565 2566 2567 2568
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2569 2570 2571
	}
}

2572 2573 2574 2575 2576
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2577 2578 2579 2580 2581 2582 2583 2584 2585
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2586 2587
	if (ctx) {
		if (i915.enable_execlists) {
2588
			struct intel_engine_cs *ring = req->ring;
2589

2590 2591 2592
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2593

2594 2595
		i915_gem_context_unreference(ctx);
	}
2596 2597

	kfree(req);
2598 2599
}

2600
struct drm_i915_gem_request *
2601
i915_gem_find_active_request(struct intel_engine_cs *ring)
2602
{
2603
	struct drm_i915_gem_request *request;
2604 2605 2606
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2607 2608 2609 2610

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2611

2612
		return request;
2613
	}
2614 2615 2616 2617 2618

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2619
				       struct intel_engine_cs *ring)
2620 2621 2622 2623
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2624
	request = i915_gem_find_active_request(ring);
2625 2626 2627 2628 2629 2630

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2631
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2632 2633

	list_for_each_entry_continue(request, &ring->request_list, list)
2634
		i915_set_reset_status(dev_priv, request->ctx, false);
2635
}
2636

2637
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2638
					struct intel_engine_cs *ring)
2639
{
2640
	while (!list_empty(&ring->active_list)) {
2641
		struct drm_i915_gem_object *obj;
2642

2643 2644 2645
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2646

2647
		i915_gem_object_move_to_inactive(obj);
2648
	}
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2683

2684 2685
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2686 2687
}

2688
void i915_gem_restore_fences(struct drm_device *dev)
2689 2690 2691 2692
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2693
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2694
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2695

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2706 2707 2708
	}
}

2709
void i915_gem_reset(struct drm_device *dev)
2710
{
2711
	struct drm_i915_private *dev_priv = dev->dev_private;
2712
	struct intel_engine_cs *ring;
2713
	int i;
2714

2715 2716 2717 2718 2719 2720 2721 2722
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2723
	for_each_ring(ring, dev_priv, i)
2724
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2725

2726 2727
	i915_gem_context_reset(dev);

2728
	i915_gem_restore_fences(dev);
2729 2730 2731 2732 2733
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2734
void
2735
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2736 2737 2738
{
	uint32_t seqno;

C
Chris Wilson 已提交
2739
	if (list_empty(&ring->request_list))
2740 2741
		return;

C
Chris Wilson 已提交
2742
	WARN_ON(i915_verify_lists(ring->dev));
2743

2744
	seqno = ring->get_seqno(ring, true);
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2757 2758
		if (!i915_seqno_passed(seqno,
			     i915_gem_request_get_seqno(obj->last_read_req)))
2759 2760 2761 2762 2763 2764
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2765
	while (!list_empty(&ring->request_list)) {
2766
		struct drm_i915_gem_request *request;
2767
		struct intel_ringbuffer *ringbuf;
2768

2769
		request = list_first_entry(&ring->request_list,
2770 2771 2772
					   struct drm_i915_gem_request,
					   list);

2773
		if (!i915_seqno_passed(seqno, request->seqno))
2774 2775
			break;

2776
		trace_i915_gem_request_retire(request);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2789 2790 2791 2792 2793
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2794
		ringbuf->last_retired_head = request->tail;
2795

2796
		i915_gem_free_request(request);
2797
	}
2798

C
Chris Wilson 已提交
2799 2800
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2801
		ring->irq_put(ring);
C
Chris Wilson 已提交
2802
		ring->trace_irq_seqno = 0;
2803
	}
2804

C
Chris Wilson 已提交
2805
	WARN_ON(i915_verify_lists(ring->dev));
2806 2807
}

2808
bool
2809 2810
i915_gem_retire_requests(struct drm_device *dev)
{
2811
	struct drm_i915_private *dev_priv = dev->dev_private;
2812
	struct intel_engine_cs *ring;
2813
	bool idle = true;
2814
	int i;
2815

2816
	for_each_ring(ring, dev_priv, i) {
2817
		i915_gem_retire_requests_ring(ring);
2818
		idle &= list_empty(&ring->request_list);
2819 2820 2821 2822 2823 2824 2825 2826 2827
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2828 2829 2830 2831 2832 2833 2834 2835
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2836 2837
}

2838
static void
2839 2840
i915_gem_retire_work_handler(struct work_struct *work)
{
2841 2842 2843
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2844
	bool idle;
2845

2846
	/* Come back later if the device is busy... */
2847 2848 2849 2850
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2851
	}
2852
	if (!idle)
2853 2854
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2855
}
2856

2857 2858 2859 2860 2861 2862 2863
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2864 2865
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2877
		ret = i915_gem_check_olr(obj->last_read_req);
2878 2879 2880 2881 2882 2883 2884 2885 2886
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2912
	struct drm_i915_private *dev_priv = dev->dev_private;
2913 2914
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2915
	struct drm_i915_gem_request *req;
2916
	unsigned reset_counter;
2917 2918
	int ret = 0;

2919 2920 2921
	if (args->flags != 0)
		return -EINVAL;

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2932 2933
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2934 2935 2936
	if (ret)
		goto out;

2937 2938
	if (!obj->active || !obj->last_read_req)
		goto out;
2939

2940
	req = obj->last_read_req;
2941 2942

	/* Do this after OLR check to make sure we make forward progress polling
2943
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2944
	 */
2945
	if (args->timeout_ns <= 0) {
2946 2947 2948 2949 2950
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2951
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2952
	i915_gem_request_reference(req);
2953 2954
	mutex_unlock(&dev->struct_mutex);

2955 2956
	ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
				  file->driver_priv);
2957 2958 2959 2960
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2961 2962 2963 2964 2965 2966 2967

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2980 2981
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2982
		     struct intel_engine_cs *to)
2983
{
2984
	struct intel_engine_cs *from = obj->ring;
2985 2986 2987 2988 2989 2990
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2991
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2992
		return i915_gem_object_wait_rendering(obj, false);
2993 2994 2995

	idx = intel_ring_sync_index(from, to);

2996
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2997 2998
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2999
	if (seqno <= from->semaphore.sync_seqno[idx])
3000 3001
		return 0;

3002
	ret = i915_gem_check_olr(obj->last_read_req);
3003 3004
	if (ret)
		return ret;
3005

3006
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3007
	ret = to->semaphore.sync_to(to, from, seqno);
3008
	if (!ret)
3009
		/* We use last_read_req because sync_to()
3010 3011 3012
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3013 3014
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3015

3016
	return ret;
3017 3018
}

3019 3020 3021 3022 3023 3024 3025
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3026 3027 3028
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3029 3030 3031
	/* Wait for any direct GTT access to complete */
	mb();

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3043
int i915_vma_unbind(struct i915_vma *vma)
3044
{
3045
	struct drm_i915_gem_object *obj = vma->obj;
3046
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3047
	int ret;
3048

3049
	if (list_empty(&vma->vma_link))
3050 3051
		return 0;

3052 3053 3054 3055
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3056

B
Ben Widawsky 已提交
3057
	if (vma->pin_count)
3058
		return -EBUSY;
3059

3060 3061
	BUG_ON(obj->pages == NULL);

3062
	ret = i915_gem_object_finish_gpu(obj);
3063
	if (ret)
3064 3065 3066 3067 3068 3069
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3070 3071 3072
	/* Throw away the active reference before moving to the unbound list */
	i915_gem_object_retire(obj);

3073 3074
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
3075

3076 3077 3078 3079 3080
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3081

3082
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3083

3084 3085
	vma->unbind_vma(vma);

3086
	list_del_init(&vma->mm_list);
3087
	if (i915_is_ggtt(vma->vm))
3088
		obj->map_and_fenceable = false;
3089

B
Ben Widawsky 已提交
3090 3091 3092 3093
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3094
	 * no more VMAs exist. */
3095 3096
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3097
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3098
	}
3099

3100 3101 3102 3103 3104 3105
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3106
	return 0;
3107 3108
}

3109
int i915_gpu_idle(struct drm_device *dev)
3110
{
3111
	struct drm_i915_private *dev_priv = dev->dev_private;
3112
	struct intel_engine_cs *ring;
3113
	int ret, i;
3114 3115

	/* Flush everything onto the inactive list. */
3116
	for_each_ring(ring, dev_priv, i) {
3117 3118 3119 3120 3121
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3122

3123
		ret = intel_ring_idle(ring);
3124 3125 3126
		if (ret)
			return ret;
	}
3127

3128
	return 0;
3129 3130
}

3131 3132
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3133
{
3134
	struct drm_i915_private *dev_priv = dev->dev_private;
3135 3136
	int fence_reg;
	int fence_pitch_shift;
3137

3138 3139 3140 3141 3142 3143 3144 3145
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3160
	if (obj) {
3161
		u32 size = i915_gem_obj_ggtt_size(obj);
3162
		uint64_t val;
3163

3164
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3165
				 0xfffff000) << 32;
3166
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3167
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3168 3169 3170
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3181 3182
}

3183 3184
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3185
{
3186
	struct drm_i915_private *dev_priv = dev->dev_private;
3187
	u32 val;
3188

3189
	if (obj) {
3190
		u32 size = i915_gem_obj_ggtt_size(obj);
3191 3192
		int pitch_val;
		int tile_width;
3193

3194
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3195
		     (size & -size) != size ||
3196 3197 3198
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3209
		val = i915_gem_obj_ggtt_offset(obj);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3225 3226
}

3227 3228
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3229
{
3230
	struct drm_i915_private *dev_priv = dev->dev_private;
3231 3232
	uint32_t val;

3233
	if (obj) {
3234
		u32 size = i915_gem_obj_ggtt_size(obj);
3235
		uint32_t pitch_val;
3236

3237
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3238
		     (size & -size) != size ||
3239 3240 3241
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3242

3243 3244
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3245

3246
		val = i915_gem_obj_ggtt_offset(obj);
3247 3248 3249 3250 3251 3252 3253
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3254

3255 3256 3257 3258
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3259 3260 3261 3262 3263
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3264 3265 3266
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3267 3268 3269 3270 3271 3272 3273 3274
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3275 3276 3277 3278
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3279
	switch (INTEL_INFO(dev)->gen) {
3280
	case 9:
3281
	case 8:
3282
	case 7:
3283
	case 6:
3284 3285 3286 3287
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3288
	default: BUG();
3289
	}
3290 3291 3292 3293 3294 3295

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3296 3297
}

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3308
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3309 3310 3311
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3312 3313

	if (enable) {
3314
		obj->fence_reg = reg;
3315 3316 3317 3318 3319 3320 3321
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3322
	obj->fence_dirty = false;
3323 3324
}

3325
static int
3326
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3327
{
3328
	if (obj->last_fenced_req) {
3329
		int ret = i915_wait_request(obj->last_fenced_req);
3330 3331
		if (ret)
			return ret;
3332

3333
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3334 3335 3336 3337 3338 3339 3340 3341
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3342
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3343
	struct drm_i915_fence_reg *fence;
3344 3345
	int ret;

3346
	ret = i915_gem_object_wait_fence(obj);
3347 3348 3349
	if (ret)
		return ret;

3350 3351
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3352

3353 3354
	fence = &dev_priv->fence_regs[obj->fence_reg];

3355 3356 3357
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3358
	i915_gem_object_fence_lost(obj);
3359
	i915_gem_object_update_fence(obj, fence, false);
3360 3361 3362 3363 3364

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3365
i915_find_fence_reg(struct drm_device *dev)
3366 3367
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3368
	struct drm_i915_fence_reg *reg, *avail;
3369
	int i;
3370 3371

	/* First try to find a free reg */
3372
	avail = NULL;
3373 3374 3375
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3376
			return reg;
3377

3378
		if (!reg->pin_count)
3379
			avail = reg;
3380 3381
	}

3382
	if (avail == NULL)
3383
		goto deadlock;
3384 3385

	/* None available, try to steal one or wait for a user to finish */
3386
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3387
		if (reg->pin_count)
3388 3389
			continue;

C
Chris Wilson 已提交
3390
		return reg;
3391 3392
	}

3393 3394 3395 3396 3397 3398
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3399 3400
}

3401
/**
3402
 * i915_gem_object_get_fence - set up fencing for an object
3403 3404 3405 3406 3407 3408 3409 3410 3411
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3412 3413
 *
 * For an untiled surface, this removes any existing fence.
3414
 */
3415
int
3416
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3417
{
3418
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3419
	struct drm_i915_private *dev_priv = dev->dev_private;
3420
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3421
	struct drm_i915_fence_reg *reg;
3422
	int ret;
3423

3424 3425 3426
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3427
	if (obj->fence_dirty) {
3428
		ret = i915_gem_object_wait_fence(obj);
3429 3430 3431
		if (ret)
			return ret;
	}
3432

3433
	/* Just update our place in the LRU if our fence is getting reused. */
3434 3435
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3436
		if (!obj->fence_dirty) {
3437 3438 3439 3440 3441
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3442 3443 3444
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3445
		reg = i915_find_fence_reg(dev);
3446 3447
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3448

3449 3450 3451
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3452
			ret = i915_gem_object_wait_fence(old);
3453 3454 3455
			if (ret)
				return ret;

3456
			i915_gem_object_fence_lost(old);
3457
		}
3458
	} else
3459 3460
		return 0;

3461 3462
	i915_gem_object_update_fence(obj, reg, enable);

3463
	return 0;
3464 3465
}

3466
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3467 3468
				     unsigned long cache_level)
{
3469
	struct drm_mm_node *gtt_space = &vma->node;
3470 3471
	struct drm_mm_node *other;

3472 3473 3474 3475 3476 3477
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3478
	 */
3479
	if (vma->vm->mm.color_adjust == NULL)
3480 3481
		return true;

3482
	if (!drm_mm_node_allocated(gtt_space))
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3499 3500 3501
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3502
static struct i915_vma *
3503 3504 3505
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3506
			   uint64_t flags)
3507
{
3508
	struct drm_device *dev = obj->base.dev;
3509
	struct drm_i915_private *dev_priv = dev->dev_private;
3510
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3511 3512 3513
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3514
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3515
	struct i915_vma *vma;
3516
	int ret;
3517

3518 3519 3520 3521 3522
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3523
						     obj->tiling_mode, true);
3524
	unfenced_alignment =
3525
		i915_gem_get_gtt_alignment(dev,
3526 3527
					   obj->base.size,
					   obj->tiling_mode, false);
3528

3529
	if (alignment == 0)
3530
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3531
						unfenced_alignment;
3532
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3533
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3534
		return ERR_PTR(-EINVAL);
3535 3536
	}

3537
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3538

3539 3540 3541
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3542 3543
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3544
			  obj->base.size,
3545
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3546
			  end);
3547
		return ERR_PTR(-E2BIG);
3548 3549
	}

3550
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3551
	if (ret)
3552
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3553

3554 3555
	i915_gem_object_pin_pages(obj);

3556
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3557
	if (IS_ERR(vma))
3558
		goto err_unpin;
B
Ben Widawsky 已提交
3559

3560
search_free:
3561
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3562
						  size, alignment,
3563 3564
						  obj->cache_level,
						  start, end,
3565 3566
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3567
	if (ret) {
3568
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3569 3570 3571
					       obj->cache_level,
					       start, end,
					       flags);
3572 3573
		if (ret == 0)
			goto search_free;
3574

3575
		goto err_free_vma;
3576
	}
3577
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3578
		ret = -EINVAL;
3579
		goto err_remove_node;
3580 3581
	}

3582
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3583
	if (ret)
3584
		goto err_remove_node;
3585

3586
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3587
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3588

3589
	trace_i915_vma_bind(vma, flags);
3590
	vma->bind_vma(vma, obj->cache_level,
3591
		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3592

3593
	return vma;
B
Ben Widawsky 已提交
3594

3595
err_remove_node:
3596
	drm_mm_remove_node(&vma->node);
3597
err_free_vma:
B
Ben Widawsky 已提交
3598
	i915_gem_vma_destroy(vma);
3599
	vma = ERR_PTR(ret);
3600
err_unpin:
B
Ben Widawsky 已提交
3601
	i915_gem_object_unpin_pages(obj);
3602
	return vma;
3603 3604
}

3605
bool
3606 3607
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3608 3609 3610 3611 3612
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3613
	if (obj->pages == NULL)
3614
		return false;
3615

3616 3617 3618 3619
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3620
	if (obj->stolen || obj->phys_handle)
3621
		return false;
3622

3623 3624 3625 3626 3627 3628 3629 3630
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3631
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3632
		return false;
3633

C
Chris Wilson 已提交
3634
	trace_i915_gem_object_clflush(obj);
3635
	drm_clflush_sg(obj->pages);
3636 3637

	return true;
3638 3639 3640 3641
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3642
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3643
{
C
Chris Wilson 已提交
3644 3645
	uint32_t old_write_domain;

3646
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3647 3648
		return;

3649
	/* No actual flushing is required for the GTT write domain.  Writes
3650 3651
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3652 3653 3654 3655
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3656
	 */
3657 3658
	wmb();

3659 3660
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3661

3662 3663
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3664
	trace_i915_gem_object_change_domain(obj,
3665
					    obj->base.read_domains,
C
Chris Wilson 已提交
3666
					    old_write_domain);
3667 3668 3669 3670
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3671 3672
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3673
{
C
Chris Wilson 已提交
3674
	uint32_t old_write_domain;
3675

3676
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3677 3678
		return;

3679 3680 3681
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3682 3683
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3684

3685 3686
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3687
	trace_i915_gem_object_change_domain(obj,
3688
					    obj->base.read_domains,
C
Chris Wilson 已提交
3689
					    old_write_domain);
3690 3691
}

3692 3693 3694 3695 3696 3697
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3698
int
3699
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3700
{
3701
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3702
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3703
	uint32_t old_write_domain, old_read_domains;
3704
	int ret;
3705

3706
	/* Not valid to be called on unbound objects. */
3707
	if (vma == NULL)
3708 3709
		return -EINVAL;

3710 3711 3712
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3713
	ret = i915_gem_object_wait_rendering(obj, !write);
3714 3715 3716
	if (ret)
		return ret;

3717
	i915_gem_object_retire(obj);
3718
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3719

3720 3721 3722 3723 3724 3725 3726
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3727 3728
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3729

3730 3731 3732
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3733 3734
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3735
	if (write) {
3736 3737 3738
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3739 3740
	}

3741 3742 3743
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3744 3745 3746 3747
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3748
	/* And bump the LRU for this access */
3749 3750 3751
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3752

3753 3754 3755
	return 0;
}

3756 3757 3758
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3759
	struct drm_device *dev = obj->base.dev;
3760
	struct i915_vma *vma, *next;
3761 3762 3763 3764 3765
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3766
	if (i915_gem_obj_is_pinned(obj)) {
3767 3768 3769 3770
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3771
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3772
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3773
			ret = i915_vma_unbind(vma);
3774 3775 3776
			if (ret)
				return ret;
		}
3777 3778
	}

3779
	if (i915_gem_obj_bound_any(obj)) {
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3790
		if (INTEL_INFO(dev)->gen < 6) {
3791 3792 3793 3794 3795
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3796
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3797 3798
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
3799
						vma->bound & GLOBAL_BIND);
3800 3801
	}

3802 3803 3804 3805 3806
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3807 3808 3809 3810 3811 3812 3813 3814
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3815
		i915_gem_object_retire(obj);
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3832 3833
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3834
{
B
Ben Widawsky 已提交
3835
	struct drm_i915_gem_caching *args = data;
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3849 3850 3851 3852 3853 3854
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3855 3856 3857 3858
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3859 3860 3861 3862
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3863 3864 3865 3866 3867 3868 3869

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3870 3871
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3872
{
B
Ben Widawsky 已提交
3873
	struct drm_i915_gem_caching *args = data;
3874 3875 3876 3877
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3878 3879
	switch (args->caching) {
	case I915_CACHING_NONE:
3880 3881
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3882
	case I915_CACHING_CACHED:
3883 3884
		level = I915_CACHE_LLC;
		break;
3885 3886 3887
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3888 3889 3890 3891
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3892 3893 3894 3895
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3910 3911
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3912 3913 3914 3915 3916 3917
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3918
	/* There are 2 sources that pin objects:
3919 3920 3921 3922
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3923
	 * are only called outside of the reservation path.
3924
	 */
D
Daniel Vetter 已提交
3925
	return vma->pin_count;
3926 3927
}

3928
/*
3929 3930 3931
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3932 3933
 */
int
3934 3935
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3936
				     struct intel_engine_cs *pipelined)
3937
{
3938
	u32 old_read_domains, old_write_domain;
3939
	bool was_pin_display;
3940 3941
	int ret;

3942
	if (pipelined != obj->ring) {
3943 3944
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3945 3946 3947
			return ret;
	}

3948 3949 3950
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3951
	was_pin_display = obj->pin_display;
3952 3953
	obj->pin_display = true;

3954 3955 3956 3957 3958 3959 3960 3961 3962
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3963 3964
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3965
	if (ret)
3966
		goto err_unpin_display;
3967

3968 3969 3970 3971
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3972
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3973
	if (ret)
3974
		goto err_unpin_display;
3975

3976
	i915_gem_object_flush_cpu_write_domain(obj, true);
3977

3978
	old_write_domain = obj->base.write_domain;
3979
	old_read_domains = obj->base.read_domains;
3980 3981 3982 3983

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3984
	obj->base.write_domain = 0;
3985
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3986 3987 3988

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3989
					    old_write_domain);
3990 3991

	return 0;
3992 3993

err_unpin_display:
3994 3995
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3996 3997 3998 3999 4000 4001
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4002
	i915_gem_object_ggtt_unpin(obj);
4003
	obj->pin_display = is_pin_display(obj);
4004 4005
}

4006
int
4007
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4008
{
4009 4010
	int ret;

4011
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4012 4013
		return 0;

4014
	ret = i915_gem_object_wait_rendering(obj, false);
4015 4016 4017
	if (ret)
		return ret;

4018 4019
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4020
	return 0;
4021 4022
}

4023 4024 4025 4026 4027 4028
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4029
int
4030
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4031
{
C
Chris Wilson 已提交
4032
	uint32_t old_write_domain, old_read_domains;
4033 4034
	int ret;

4035 4036 4037
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4038
	ret = i915_gem_object_wait_rendering(obj, !write);
4039 4040 4041
	if (ret)
		return ret;

4042
	i915_gem_object_retire(obj);
4043
	i915_gem_object_flush_gtt_write_domain(obj);
4044

4045 4046
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4047

4048
	/* Flush the CPU cache if it's still invalid. */
4049
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4050
		i915_gem_clflush_object(obj, false);
4051

4052
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4053 4054 4055 4056 4057
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4058
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4059 4060 4061 4062 4063

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4064 4065
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4066
	}
4067

4068 4069 4070
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4071 4072 4073 4074
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4075 4076 4077
	return 0;
}

4078 4079 4080
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4081 4082 4083 4084
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4085 4086 4087
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4088
static int
4089
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4090
{
4091 4092
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4093
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4094
	struct drm_i915_gem_request *request, *target = NULL;
4095
	unsigned reset_counter;
4096
	int ret;
4097

4098 4099 4100 4101 4102 4103 4104
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4105

4106
	spin_lock(&file_priv->mm.lock);
4107
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4108 4109
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4110

4111
		target = request;
4112
	}
4113
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4114 4115
	if (target)
		i915_gem_request_reference(target);
4116
	spin_unlock(&file_priv->mm.lock);
4117

4118
	if (target == NULL)
4119
		return 0;
4120

4121
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4122 4123
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4124

4125 4126 4127 4128
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4129 4130 4131
	return ret;
}

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4151
int
4152
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4153
		    struct i915_address_space *vm,
4154
		    uint32_t alignment,
4155
		    uint64_t flags)
4156
{
4157
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4158
	struct i915_vma *vma;
4159
	unsigned bound;
4160 4161
	int ret;

4162 4163 4164
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4165
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4166
		return -EINVAL;
4167

4168 4169 4170
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4171 4172
	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4173 4174 4175
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4176
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4177
			WARN(vma->pin_count,
4178
			     "bo is already pinned with incorrect alignment:"
4179
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4180
			     " obj->map_and_fenceable=%d\n",
4181
			     i915_gem_obj_offset(obj, vm), alignment,
4182
			     !!(flags & PIN_MAPPABLE),
4183
			     obj->map_and_fenceable);
4184
			ret = i915_vma_unbind(vma);
4185 4186
			if (ret)
				return ret;
4187 4188

			vma = NULL;
4189 4190 4191
		}
	}

4192
	bound = vma ? vma->bound : 0;
4193
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4194 4195 4196
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4197
	}
J
Jesse Barnes 已提交
4198

4199
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4200
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4201

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4225
	vma->pin_count++;
4226 4227
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4228 4229 4230 4231 4232

	return 0;
}

void
B
Ben Widawsky 已提交
4233
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4234
{
B
Ben Widawsky 已提交
4235
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4236

B
Ben Widawsky 已提交
4237 4238 4239 4240 4241
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4242
		obj->pin_mappable = false;
4243 4244
}

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4271 4272
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4273
		    struct drm_file *file)
4274 4275
{
	struct drm_i915_gem_busy *args = data;
4276
	struct drm_i915_gem_object *obj;
4277 4278
	int ret;

4279
	ret = i915_mutex_lock_interruptible(dev);
4280
	if (ret)
4281
		return ret;
4282

4283
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4284
	if (&obj->base == NULL) {
4285 4286
		ret = -ENOENT;
		goto unlock;
4287
	}
4288

4289 4290 4291 4292
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4293
	 */
4294
	ret = i915_gem_object_flush_active(obj);
4295

4296
	args->busy = obj->active;
4297 4298 4299 4300
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4301

4302
	drm_gem_object_unreference(&obj->base);
4303
unlock:
4304
	mutex_unlock(&dev->struct_mutex);
4305
	return ret;
4306 4307 4308 4309 4310 4311
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4312
	return i915_gem_ring_throttle(dev, file_priv);
4313 4314
}

4315 4316 4317 4318
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4319
	struct drm_i915_private *dev_priv = dev->dev_private;
4320
	struct drm_i915_gem_madvise *args = data;
4321
	struct drm_i915_gem_object *obj;
4322
	int ret;
4323 4324 4325 4326 4327 4328 4329 4330 4331

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4332 4333 4334 4335
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4336
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4337
	if (&obj->base == NULL) {
4338 4339
		ret = -ENOENT;
		goto unlock;
4340 4341
	}

B
Ben Widawsky 已提交
4342
	if (i915_gem_obj_is_pinned(obj)) {
4343 4344
		ret = -EINVAL;
		goto out;
4345 4346
	}

4347 4348 4349 4350 4351 4352 4353 4354 4355
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4356 4357
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4358

C
Chris Wilson 已提交
4359 4360
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4361 4362
		i915_gem_object_truncate(obj);

4363
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4364

4365
out:
4366
	drm_gem_object_unreference(&obj->base);
4367
unlock:
4368
	mutex_unlock(&dev->struct_mutex);
4369
	return ret;
4370 4371
}

4372 4373
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4374
{
4375
	INIT_LIST_HEAD(&obj->global_list);
4376
	INIT_LIST_HEAD(&obj->ring_list);
4377
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4378
	INIT_LIST_HEAD(&obj->vma_list);
4379

4380 4381
	obj->ops = ops;

4382 4383 4384 4385 4386 4387
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4388 4389 4390 4391 4392
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4393 4394
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4395
{
4396
	struct drm_i915_gem_object *obj;
4397
	struct address_space *mapping;
D
Daniel Vetter 已提交
4398
	gfp_t mask;
4399

4400
	obj = i915_gem_object_alloc(dev);
4401 4402
	if (obj == NULL)
		return NULL;
4403

4404
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4405
		i915_gem_object_free(obj);
4406 4407
		return NULL;
	}
4408

4409 4410 4411 4412 4413 4414 4415
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4416
	mapping = file_inode(obj->base.filp)->i_mapping;
4417
	mapping_set_gfp_mask(mapping, mask);
4418

4419
	i915_gem_object_init(obj, &i915_gem_object_ops);
4420

4421 4422
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4423

4424 4425
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4441 4442
	trace_i915_gem_object_create(obj);

4443
	return obj;
4444 4445
}

4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4470
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4471
{
4472
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4473
	struct drm_device *dev = obj->base.dev;
4474
	struct drm_i915_private *dev_priv = dev->dev_private;
4475
	struct i915_vma *vma, *next;
4476

4477 4478
	intel_runtime_pm_get(dev_priv);

4479 4480
	trace_i915_gem_object_destroy(obj);

4481
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4482 4483 4484 4485
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4486 4487
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4488

4489 4490
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4491

4492
			WARN_ON(i915_vma_unbind(vma));
4493

4494 4495
			dev_priv->mm.interruptible = was_interruptible;
		}
4496 4497
	}

B
Ben Widawsky 已提交
4498 4499 4500 4501 4502
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4503 4504
	WARN_ON(obj->frontbuffer_bits);

4505 4506 4507 4508 4509
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4510 4511
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4512
	if (discard_backing_storage(obj))
4513
		obj->madv = I915_MADV_DONTNEED;
4514
	i915_gem_object_put_pages(obj);
4515
	i915_gem_object_free_mmap_offset(obj);
4516

4517 4518
	BUG_ON(obj->pages);

4519 4520
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4521

4522 4523 4524
	if (obj->ops->release)
		obj->ops->release(obj);

4525 4526
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4527

4528
	kfree(obj->bit_17);
4529
	i915_gem_object_free(obj);
4530 4531

	intel_runtime_pm_put(dev_priv);
4532 4533
}

4534
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4535
				     struct i915_address_space *vm)
4536 4537 4538 4539 4540 4541 4542 4543 4544
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4545 4546
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4547
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4548
	WARN_ON(vma->node.allocated);
4549 4550 4551 4552 4553

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4554 4555
	vm = vma->vm;

4556 4557
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4558

4559
	list_del(&vma->vma_link);
4560

B
Ben Widawsky 已提交
4561 4562 4563
	kfree(vma);
}

4564 4565 4566 4567
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4568
	struct intel_engine_cs *ring;
4569 4570 4571
	int i;

	for_each_ring(ring, dev_priv, i)
4572
		dev_priv->gt.stop_ring(ring);
4573 4574
}

4575
int
4576
i915_gem_suspend(struct drm_device *dev)
4577
{
4578
	struct drm_i915_private *dev_priv = dev->dev_private;
4579
	int ret = 0;
4580

4581
	mutex_lock(&dev->struct_mutex);
4582
	ret = i915_gpu_idle(dev);
4583
	if (ret)
4584
		goto err;
4585

4586
	i915_gem_retire_requests(dev);
4587

4588
	/* Under UMS, be paranoid and evict. */
4589
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4590
		i915_gem_evict_everything(dev);
4591

4592
	i915_gem_stop_ringbuffers(dev);
4593 4594 4595
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4596
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4597
	flush_delayed_work(&dev_priv->mm.idle_work);
4598

4599 4600 4601 4602 4603
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4604
	return 0;
4605 4606 4607 4608

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4609 4610
}

4611
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4612
{
4613
	struct drm_device *dev = ring->dev;
4614
	struct drm_i915_private *dev_priv = dev->dev_private;
4615 4616
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4617
	int i, ret;
B
Ben Widawsky 已提交
4618

4619
	if (!HAS_L3_DPF(dev) || !remap_info)
4620
		return 0;
B
Ben Widawsky 已提交
4621

4622 4623 4624
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4625

4626 4627 4628 4629 4630
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4631
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4632 4633 4634
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4635 4636
	}

4637
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4638

4639
	return ret;
B
Ben Widawsky 已提交
4640 4641
}

4642 4643
void i915_gem_init_swizzling(struct drm_device *dev)
{
4644
	struct drm_i915_private *dev_priv = dev->dev_private;
4645

4646
	if (INTEL_INFO(dev)->gen < 5 ||
4647 4648 4649 4650 4651 4652
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4653 4654 4655
	if (IS_GEN5(dev))
		return;

4656 4657
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4658
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4659
	else if (IS_GEN7(dev))
4660
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4661 4662
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4663 4664
	else
		BUG();
4665
}
D
Daniel Vetter 已提交
4666

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4710
int i915_gem_init_rings(struct drm_device *dev)
4711
{
4712
	struct drm_i915_private *dev_priv = dev->dev_private;
4713
	int ret;
4714

4715 4716 4717 4718 4719 4720 4721 4722
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4723
	ret = intel_init_render_ring_buffer(dev);
4724
	if (ret)
4725
		return ret;
4726 4727

	if (HAS_BSD(dev)) {
4728
		ret = intel_init_bsd_ring_buffer(dev);
4729 4730
		if (ret)
			goto cleanup_render_ring;
4731
	}
4732

4733
	if (intel_enable_blt(dev)) {
4734 4735 4736 4737 4738
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4739 4740 4741 4742 4743 4744
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4745 4746 4747 4748 4749
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4750

4751
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4752
	if (ret)
4753
		goto cleanup_bsd2_ring;
4754 4755 4756

	return 0;

4757 4758
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4759 4760
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4774
	struct drm_i915_private *dev_priv = dev->dev_private;
4775
	int ret, i;
4776 4777 4778 4779

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4780
	if (dev_priv->ellc_size)
4781
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4782

4783 4784 4785
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4786

4787
	if (HAS_PCH_NOP(dev)) {
4788 4789 4790 4791 4792 4793 4794 4795 4796
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4797 4798
	}

4799 4800
	i915_gem_init_swizzling(dev);

4801
	ret = dev_priv->gt.init_rings(dev);
4802 4803 4804
	if (ret)
		return ret;

4805 4806 4807
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4808
	/*
4809 4810 4811 4812 4813
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4814
	 */
4815
	ret = i915_gem_context_enable(dev_priv);
4816
	if (ret && ret != -EIO) {
4817
		DRM_ERROR("Context enable failed %d\n", ret);
4818
		i915_gem_cleanup_ringbuffer(dev);
4819 4820 4821 4822 4823 4824 4825 4826

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4827
	}
D
Daniel Vetter 已提交
4828

4829
	return ret;
4830 4831
}

4832 4833 4834 4835 4836
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4837 4838 4839
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4840
	mutex_lock(&dev->struct_mutex);
4841 4842 4843

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4844 4845 4846
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4847 4848 4849
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4850 4851 4852 4853 4854
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4855 4856 4857 4858 4859
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4860 4861
	}

4862 4863 4864 4865 4866 4867
	ret = i915_gem_init_userptr(dev);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

4868
	i915_gem_init_global_gtt(dev);
4869

4870
	ret = i915_gem_context_init(dev);
4871 4872
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4873
		return ret;
4874
	}
4875

4876
	ret = i915_gem_init_hw(dev);
4877 4878 4879 4880 4881 4882 4883 4884
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4885
	}
4886
	mutex_unlock(&dev->struct_mutex);
4887

4888
	return ret;
4889 4890
}

4891 4892 4893
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4894
	struct drm_i915_private *dev_priv = dev->dev_private;
4895
	struct intel_engine_cs *ring;
4896
	int i;
4897

4898
	for_each_ring(ring, dev_priv, i)
4899
		dev_priv->gt.cleanup_ring(ring);
4900 4901
}

4902
static void
4903
init_ring_lists(struct intel_engine_cs *ring)
4904 4905 4906 4907 4908
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4909 4910
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4911
{
4912 4913
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4914 4915 4916 4917
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4918
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4919 4920
}

4921 4922 4923
void
i915_gem_load(struct drm_device *dev)
{
4924
	struct drm_i915_private *dev_priv = dev->dev_private;
4925 4926 4927 4928 4929 4930 4931
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4932

B
Ben Widawsky 已提交
4933 4934 4935
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4936
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4937 4938
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4939
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4940 4941
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4942
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4943
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4944 4945
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4946 4947
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4948
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4949

4950
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4951
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4952 4953
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4954 4955
	}

4956 4957
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4958
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4959 4960
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4961

4962 4963 4964
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4965 4966 4967 4968
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4969
	/* Initialize fence registers to zero */
4970 4971
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4972

4973
	i915_gem_detect_bit_6_swizzle(dev);
4974
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4975

4976 4977
	dev_priv->mm.interruptible = true;

4978 4979 4980 4981
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4982 4983 4984

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4985 4986

	mutex_init(&dev_priv->fb_tracking.lock);
4987
}
4988

4989
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4990
{
4991
	struct drm_i915_file_private *file_priv = file->driver_priv;
4992

4993 4994
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

4995 4996 4997 4998
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4999
	spin_lock(&file_priv->mm.lock);
5000 5001 5002 5003 5004 5005 5006 5007 5008
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5009
	spin_unlock(&file_priv->mm.lock);
5010
}
5011

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5024
	int ret;
5025 5026 5027 5028 5029 5030 5031 5032 5033

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5034
	file_priv->file = file;
5035 5036 5037 5038 5039 5040

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5041 5042 5043
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5044

5045
	return ret;
5046 5047
}

5048 5049 5050 5051 5052 5053 5054 5055 5056
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5115
static unsigned long
5116
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5117
{
5118
	struct drm_i915_private *dev_priv =
5119
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5120
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5121
	struct drm_i915_gem_object *obj;
5122
	unsigned long count;
5123
	bool unlock;
5124

5125 5126
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5127

5128
	count = 0;
5129
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5130
		if (obj->pages_pin_count == 0)
5131
			count += obj->base.size >> PAGE_SHIFT;
5132 5133

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5134 5135
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5136
			count += obj->base.size >> PAGE_SHIFT;
5137
	}
5138

5139 5140
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5141

5142
	return count;
5143
}
5144 5145 5146 5147 5148 5149 5150 5151

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5152
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5153 5154 5155 5156 5157 5158

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5159 5160
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5161 5162 5163 5164 5165 5166 5167 5168 5169
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5170
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5171 5172 5173 5174 5175 5176 5177
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5178
	struct i915_vma *vma;
5179

5180 5181
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5193
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5204
static unsigned long
5205
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5206 5207
{
	struct drm_i915_private *dev_priv =
5208
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5209 5210
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5211
	bool unlock;
5212

5213 5214
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5215

5216 5217 5218 5219 5220
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5221
	if (freed < sc->nr_to_scan)
5222 5223 5224 5225
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5226 5227
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5228

5229 5230
	return freed;
}
5231

5232 5233 5234 5235 5236 5237 5238 5239
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5240
	unsigned long pinned, bound, unbound, freed_pages;
5241 5242 5243
	bool was_interruptible;
	bool unlock;

5244
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5245
		schedule_timeout_killable(1);
5246 5247 5248
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5249 5250 5251 5252 5253 5254 5255 5256
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5257
	freed_pages = i915_gem_shrink_all(dev_priv);
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5288 5289 5290
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5291 5292 5293 5294 5295
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5296
	*(unsigned long *)ptr += freed_pages;
5297 5298 5299
	return NOTIFY_DONE;
}

5300 5301 5302 5303 5304
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5305
	if (vma->vm != i915_obj_to_ggtt(obj))
5306 5307 5308 5309
		return NULL;

	return vma;
}