i915_gem.c 139.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157
{
1158
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1159

1160
	return 0;
1161 1162
}

1163 1164 1165 1166 1167 1168
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1169
		       struct intel_engine_cs *ring)
1170 1171 1172 1173
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1174
static int __i915_spin_request(struct drm_i915_gem_request *req)
1175
{
1176 1177
	unsigned long timeout;

D
Daniel Vetter 已提交
1178
	if (i915_gem_request_get_ring(req)->irq_refcount)
1179 1180 1181 1182
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1183
		if (i915_gem_request_completed(req, true))
1184 1185 1186 1187
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1188

1189 1190
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1191
	if (i915_gem_request_completed(req, false))
1192 1193 1194
		return 0;

	return -EAGAIN;
1195 1196
}

1197
/**
1198 1199 1200
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1201 1202 1203
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1204 1205 1206 1207 1208 1209 1210
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1211
 * Returns 0 if the request was found within the alloted time. Else returns the
1212 1213
 * errno with remaining time filled in timeout argument.
 */
1214
int __i915_wait_request(struct drm_i915_gem_request *req,
1215
			unsigned reset_counter,
1216
			bool interruptible,
1217
			s64 *timeout,
1218
			struct intel_rps_client *rps)
1219
{
1220
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1221
	struct drm_device *dev = ring->dev;
1222
	struct drm_i915_private *dev_priv = dev->dev_private;
1223 1224
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1225
	DEFINE_WAIT(wait);
1226
	unsigned long timeout_expire;
1227
	s64 before, now;
1228 1229
	int ret;

1230
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1231

1232 1233 1234
	if (list_empty(&req->list))
		return 0;

1235
	if (i915_gem_request_completed(req, true))
1236 1237
		return 0;

1238 1239
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1240

1241
	if (INTEL_INFO(dev_priv)->gen >= 6)
1242
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1243

1244
	/* Record current time in case interrupted by signal, or wedged */
1245
	trace_i915_gem_request_wait_begin(req);
1246
	before = ktime_get_raw_ns();
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1258 1259
	for (;;) {
		struct timer_list timer;
1260

1261 1262
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1263

1264 1265
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1266 1267 1268 1269 1270 1271 1272 1273
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1274

1275
		if (i915_gem_request_completed(req, false)) {
1276 1277 1278
			ret = 0;
			break;
		}
1279

1280 1281 1282 1283 1284
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1285
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1286 1287 1288 1289 1290 1291
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1292 1293
			unsigned long expire;

1294
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1295
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1296 1297 1298
			mod_timer(&timer, expire);
		}

1299
		io_schedule();
1300 1301 1302 1303 1304 1305

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1306 1307
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1308 1309

	finish_wait(&ring->irq_queue, &wait);
1310

1311 1312 1313 1314
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1315
	if (timeout) {
1316 1317 1318
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1329 1330
	}

1331
	return ret;
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1373 1374 1375

	put_pid(request->pid);
	request->pid = NULL;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1419
/**
1420
 * Waits for a request to be signaled, and cleans up the
1421 1422 1423
 * request and object lists appropriately for that event.
 */
int
1424
i915_wait_request(struct drm_i915_gem_request *req)
1425
{
1426 1427 1428
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1429 1430
	int ret;

1431 1432 1433 1434 1435 1436
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1437 1438
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1439
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1440 1441 1442
	if (ret)
		return ret;

1443
	ret = i915_gem_check_olr(req);
1444 1445 1446
	if (ret)
		return ret;

1447 1448
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1449
				  interruptible, NULL, NULL);
1450 1451
	if (ret)
		return ret;
1452

1453
	__i915_gem_request_retire__upto(req);
1454 1455 1456
	return 0;
}

1457 1458 1459 1460
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1461
int
1462 1463 1464
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1465
	int ret, i;
1466

1467
	if (!obj->active)
1468 1469
		return 0;

1470 1471 1472 1473 1474
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1511 1512
}

1513 1514 1515 1516 1517
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1518
					    struct intel_rps_client *rps,
1519 1520 1521 1522
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1523
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1524
	unsigned reset_counter;
1525
	int ret, i, n = 0;
1526 1527 1528 1529

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1530
	if (!obj->active)
1531 1532
		return 0;

1533
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1534 1535 1536
	if (ret)
		return ret;

1537
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		ret = i915_gem_check_olr(req);
		if (ret)
			goto err;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			ret = i915_gem_check_olr(req);
			if (ret)
				goto err;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1567
	mutex_unlock(&dev->struct_mutex);
1568 1569
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1570
					  NULL, rps);
1571 1572
	mutex_lock(&dev->struct_mutex);

1573 1574 1575 1576 1577 1578 1579 1580
err:
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1581 1582
}

1583 1584 1585 1586 1587 1588
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1589
/**
1590 1591
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1592 1593 1594
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595
			  struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_set_domain *args = data;
1598
	struct drm_i915_gem_object *obj;
1599 1600
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1601 1602
	int ret;

1603
	/* Only handle setting domains to types used by the CPU. */
1604
	if (write_domain & I915_GEM_GPU_DOMAINS)
1605 1606
		return -EINVAL;

1607
	if (read_domains & I915_GEM_GPU_DOMAINS)
1608 1609 1610 1611 1612 1613 1614 1615
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1616
	ret = i915_mutex_lock_interruptible(dev);
1617
	if (ret)
1618
		return ret;
1619

1620
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1621
	if (&obj->base == NULL) {
1622 1623
		ret = -ENOENT;
		goto unlock;
1624
	}
1625

1626 1627 1628 1629
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1630
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1631
							  to_rps_client(file),
1632
							  !write_domain);
1633 1634 1635
	if (ret)
		goto unref;

1636
	if (read_domains & I915_GEM_DOMAIN_GTT)
1637
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1638
	else
1639
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1640

1641
unref:
1642
	drm_gem_object_unreference(&obj->base);
1643
unlock:
1644 1645 1646 1647 1648 1649 1650 1651 1652
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1653
			 struct drm_file *file)
1654 1655
{
	struct drm_i915_gem_sw_finish *args = data;
1656
	struct drm_i915_gem_object *obj;
1657 1658
	int ret = 0;

1659
	ret = i915_mutex_lock_interruptible(dev);
1660
	if (ret)
1661
		return ret;
1662

1663
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1664
	if (&obj->base == NULL) {
1665 1666
		ret = -ENOENT;
		goto unlock;
1667 1668 1669
	}

	/* Pinned buffers may be scanout, so flush the cache */
1670
	if (obj->pin_display)
1671
		i915_gem_object_flush_cpu_write_domain(obj);
1672

1673
	drm_gem_object_unreference(&obj->base);
1674
unlock:
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1695 1696 1697
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1698
		    struct drm_file *file)
1699 1700 1701 1702 1703
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1704 1705 1706 1707 1708 1709
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1710
	obj = drm_gem_object_lookup(dev, file, args->handle);
1711
	if (obj == NULL)
1712
		return -ENOENT;
1713

1714 1715 1716 1717 1718 1719 1720 1721
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1722
	addr = vm_mmap(obj->filp, 0, args->size,
1723 1724
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1738
	drm_gem_object_unreference_unlocked(obj);
1739 1740 1741 1742 1743 1744 1745 1746
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1765 1766
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1767
	struct drm_i915_private *dev_priv = dev->dev_private;
1768
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1769 1770 1771
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1772
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1773

1774 1775
	intel_runtime_pm_get(dev_priv);

1776 1777 1778 1779
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1780 1781 1782
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1783

C
Chris Wilson 已提交
1784 1785
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1786 1787 1788 1789 1790 1791 1792 1793 1794
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1795 1796
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1797
		ret = -EFAULT;
1798 1799 1800
		goto unlock;
	}

1801
	/* Use a partial view if the object is bigger than the aperture. */
1802 1803
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1804
		static const unsigned int chunk_size = 256; // 1 MiB
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1818 1819
	if (ret)
		goto unlock;
1820

1821 1822 1823
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1824

1825
	ret = i915_gem_object_get_fence(obj);
1826
	if (ret)
1827
		goto unpin;
1828

1829
	/* Finally, remap it using the new GTT offset */
1830 1831
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1832
	pfn >>= PAGE_SHIFT;
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1843

1844 1845
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1846 1847 1848 1849 1850
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1872
unpin:
1873
	i915_gem_object_ggtt_unpin_view(obj, &view);
1874
unlock:
1875
	mutex_unlock(&dev->struct_mutex);
1876
out:
1877
	switch (ret) {
1878
	case -EIO:
1879 1880 1881 1882 1883 1884 1885
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1886 1887 1888
			ret = VM_FAULT_SIGBUS;
			break;
		}
1889
	case -EAGAIN:
D
Daniel Vetter 已提交
1890 1891 1892 1893
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1894
		 */
1895 1896
	case 0:
	case -ERESTARTSYS:
1897
	case -EINTR:
1898 1899 1900 1901 1902
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1903 1904
		ret = VM_FAULT_NOPAGE;
		break;
1905
	case -ENOMEM:
1906 1907
		ret = VM_FAULT_OOM;
		break;
1908
	case -ENOSPC:
1909
	case -EFAULT:
1910 1911
		ret = VM_FAULT_SIGBUS;
		break;
1912
	default:
1913
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1914 1915
		ret = VM_FAULT_SIGBUS;
		break;
1916
	}
1917 1918 1919

	intel_runtime_pm_put(dev_priv);
	return ret;
1920 1921
}

1922 1923 1924 1925
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1926
 * Preserve the reservation of the mmapping with the DRM core code, but
1927 1928 1929 1930 1931 1932 1933 1934 1935
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1936
void
1937
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1938
{
1939 1940
	if (!obj->fault_mappable)
		return;
1941

1942 1943
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1944
	obj->fault_mappable = false;
1945 1946
}

1947 1948 1949 1950 1951 1952 1953 1954 1955
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1956
uint32_t
1957
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1958
{
1959
	uint32_t gtt_size;
1960 1961

	if (INTEL_INFO(dev)->gen >= 4 ||
1962 1963
	    tiling_mode == I915_TILING_NONE)
		return size;
1964 1965 1966

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1967
		gtt_size = 1024*1024;
1968
	else
1969
		gtt_size = 512*1024;
1970

1971 1972
	while (gtt_size < size)
		gtt_size <<= 1;
1973

1974
	return gtt_size;
1975 1976
}

1977 1978 1979 1980 1981
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1982
 * potential fence register mapping.
1983
 */
1984 1985 1986
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1987 1988 1989 1990 1991
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1992
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1993
	    tiling_mode == I915_TILING_NONE)
1994 1995
		return 4096;

1996 1997 1998 1999
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2000
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2001 2002
}

2003 2004 2005 2006 2007
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2008
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2009 2010
		return 0;

2011 2012
	dev_priv->mm.shrinker_no_lock_stealing = true;

2013 2014
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2015
		goto out;
2016 2017 2018 2019 2020 2021 2022 2023

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2024 2025 2026 2027 2028
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2029 2030
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2031
		goto out;
2032 2033

	i915_gem_shrink_all(dev_priv);
2034 2035 2036 2037 2038
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2039 2040 2041 2042 2043 2044 2045
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2046
int
2047 2048
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2049
		  uint32_t handle,
2050
		  uint64_t *offset)
2051
{
2052
	struct drm_i915_gem_object *obj;
2053 2054
	int ret;

2055
	ret = i915_mutex_lock_interruptible(dev);
2056
	if (ret)
2057
		return ret;
2058

2059
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2060
	if (&obj->base == NULL) {
2061 2062 2063
		ret = -ENOENT;
		goto unlock;
	}
2064

2065
	if (obj->madv != I915_MADV_WILLNEED) {
2066
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2067
		ret = -EFAULT;
2068
		goto out;
2069 2070
	}

2071 2072 2073
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2074

2075
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2076

2077
out:
2078
	drm_gem_object_unreference(&obj->base);
2079
unlock:
2080
	mutex_unlock(&dev->struct_mutex);
2081
	return ret;
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2105
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2106 2107
}

D
Daniel Vetter 已提交
2108 2109 2110
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2111
{
2112
	i915_gem_object_free_mmap_offset(obj);
2113

2114 2115
	if (obj->base.filp == NULL)
		return;
2116

D
Daniel Vetter 已提交
2117 2118 2119 2120 2121
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2122
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2123 2124
	obj->madv = __I915_MADV_PURGED;
}
2125

2126 2127 2128
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2129
{
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 2145
}

2146
static void
2147
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2148
{
2149 2150
	struct sg_page_iter sg_iter;
	int ret;
2151

2152
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2153

C
Chris Wilson 已提交
2154 2155 2156 2157 2158 2159
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2160
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2161 2162 2163
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2164
	if (i915_gem_object_needs_bit17_swizzle(obj))
2165 2166
		i915_gem_object_save_bit_17_swizzle(obj);

2167 2168
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2169

2170
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2171
		struct page *page = sg_page_iter_page(&sg_iter);
2172

2173
		if (obj->dirty)
2174
			set_page_dirty(page);
2175

2176
		if (obj->madv == I915_MADV_WILLNEED)
2177
			mark_page_accessed(page);
2178

2179
		page_cache_release(page);
2180
	}
2181
	obj->dirty = 0;
2182

2183 2184
	sg_free_table(obj->pages);
	kfree(obj->pages);
2185
}
C
Chris Wilson 已提交
2186

2187
int
2188 2189 2190 2191
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2192
	if (obj->pages == NULL)
2193 2194
		return 0;

2195 2196 2197
	if (obj->pages_pin_count)
		return -EBUSY;

2198
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2199

2200 2201 2202
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2203
	list_del(&obj->global_list);
2204

2205
	ops->put_pages(obj);
2206
	obj->pages = NULL;
2207

2208
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2209 2210 2211 2212

	return 0;
}

2213
static int
C
Chris Wilson 已提交
2214
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2215
{
C
Chris Wilson 已提交
2216
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2217 2218
	int page_count, i;
	struct address_space *mapping;
2219 2220
	struct sg_table *st;
	struct scatterlist *sg;
2221
	struct sg_page_iter sg_iter;
2222
	struct page *page;
2223
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2224
	gfp_t gfp;
2225

C
Chris Wilson 已提交
2226 2227 2228 2229 2230 2231 2232
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2233 2234 2235 2236
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2237
	page_count = obj->base.size / PAGE_SIZE;
2238 2239
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2240
		return -ENOMEM;
2241
	}
2242

2243 2244 2245 2246 2247
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2248
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2249
	gfp = mapping_gfp_mask(mapping);
2250
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2251
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2252 2253 2254
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2255 2256
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2257 2258 2259 2260 2261
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2262 2263 2264 2265 2266 2267 2268 2269
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2270
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2271 2272 2273
			if (IS_ERR(page))
				goto err_pages;
		}
2274 2275 2276 2277 2278 2279 2280 2281
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2282 2283 2284 2285 2286 2287 2288 2289 2290
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2291 2292 2293

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2294
	}
2295 2296 2297 2298
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2299 2300
	obj->pages = st;

2301
	if (i915_gem_object_needs_bit17_swizzle(obj))
2302 2303
		i915_gem_object_do_bit_17_swizzle(obj);

2304 2305 2306 2307
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2308 2309 2310
	return 0;

err_pages:
2311 2312
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2313
		page_cache_release(sg_page_iter_page(&sg_iter));
2314 2315
	sg_free_table(st);
	kfree(st);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2329 2330
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2345
	if (obj->pages)
2346 2347
		return 0;

2348
	if (obj->madv != I915_MADV_WILLNEED) {
2349
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2350
		return -EFAULT;
2351 2352
	}

2353 2354
	BUG_ON(obj->pages_pin_count);

2355 2356 2357 2358
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2359
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2360 2361 2362 2363

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2364
	return 0;
2365 2366
}

2367
void i915_vma_move_to_active(struct i915_vma *vma,
2368
			     struct drm_i915_gem_request *req)
2369
{
2370
	struct drm_i915_gem_object *obj = vma->obj;
2371 2372 2373
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2374 2375

	/* Add a reference if we're newly entering the active list. */
2376
	if (obj->active == 0)
2377
		drm_gem_object_reference(&obj->base);
2378
	obj->active |= intel_ring_flag(ring);
2379

2380
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2381
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2382

2383
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2384 2385
}

2386 2387
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2388
{
2389 2390 2391 2392 2393
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2394 2395
}

2396
static void
2397
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2398
{
2399
	struct i915_vma *vma;
2400

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2413

2414 2415 2416
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2417
	}
2418

2419
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2420
	drm_gem_object_unreference(&obj->base);
2421 2422
}

2423
static int
2424
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2425
{
2426
	struct drm_i915_private *dev_priv = dev->dev_private;
2427
	struct intel_engine_cs *ring;
2428
	int ret, i, j;
2429

2430
	/* Carefully retire all requests without writing to the rings */
2431
	for_each_ring(ring, dev_priv, i) {
2432 2433 2434
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2435 2436
	}
	i915_gem_retire_requests(dev);
2437 2438

	/* Finally reset hw state */
2439
	for_each_ring(ring, dev_priv, i) {
2440
		intel_ring_init_seqno(ring, seqno);
2441

2442 2443
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2444
	}
2445

2446
	return 0;
2447 2448
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2475 2476
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2477
{
2478 2479 2480 2481
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2482
		int ret = i915_gem_init_seqno(dev, 0);
2483 2484
		if (ret)
			return ret;
2485

2486 2487
		dev_priv->next_seqno = 1;
	}
2488

2489
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2490
	return 0;
2491 2492
}

2493 2494 2495 2496 2497
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2498
void __i915_add_request(struct drm_i915_gem_request *request,
2499 2500
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2501
{
2502 2503
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2504
	struct intel_ringbuffer *ringbuf;
2505
	u32 request_start;
2506 2507
	int ret;

2508
	if (WARN_ON(request == NULL))
2509
		return;
2510

2511 2512 2513 2514
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2515 2516 2517 2518 2519 2520 2521
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2522
	request_start = intel_ring_get_tail(ringbuf);
2523 2524 2525 2526 2527 2528 2529
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2530 2531
	if (flush_caches) {
		if (i915.enable_execlists)
2532
			ret = logical_ring_flush_all_caches(request);
2533
		else
2534
			ret = intel_ring_flush_all_caches(request);
2535 2536 2537
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2538

2539 2540 2541 2542 2543
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2544
	request->postfix = intel_ring_get_tail(ringbuf);
2545

2546
	if (i915.enable_execlists)
2547
		ret = ring->emit_request(request);
2548
	else {
2549
		ret = ring->add_request(request);
2550 2551

		request->tail = intel_ring_get_tail(ringbuf);
2552
	}
2553 2554
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2555

2556 2557 2558 2559 2560 2561 2562 2563
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2564
	request->batch_obj = obj;
2565

2566
	request->emitted_jiffies = jiffies;
2567
	list_add_tail(&request->list, &ring->request_list);
2568

2569
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2570

2571
	i915_queue_hangcheck(ring->dev);
2572

2573 2574 2575 2576
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2577

2578 2579
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2580 2581
}

2582
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2583
				   const struct intel_context *ctx)
2584
{
2585
	unsigned long elapsed;
2586

2587 2588 2589
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2590 2591
		return true;

2592 2593
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2594
		if (!i915_gem_context_is_default(ctx)) {
2595
			DRM_DEBUG("context hanging too fast, banning!\n");
2596
			return true;
2597 2598 2599
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2600
			return true;
2601
		}
2602 2603 2604 2605 2606
	}

	return false;
}

2607
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2608
				  struct intel_context *ctx,
2609
				  const bool guilty)
2610
{
2611 2612 2613 2614
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2615

2616 2617 2618
	hs = &ctx->hang_stats;

	if (guilty) {
2619
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2620 2621 2622 2623
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2624 2625 2626
	}
}

2627 2628 2629 2630 2631 2632
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2633 2634 2635
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2636 2637
	if (ctx) {
		if (i915.enable_execlists) {
2638
			struct intel_engine_cs *ring = req->ring;
2639

2640 2641 2642
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2643

2644 2645
		i915_gem_context_unreference(ctx);
	}
2646

2647
	kmem_cache_free(req->i915->requests, req);
2648 2649
}

2650
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2651 2652
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2653
{
2654
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2655
	struct drm_i915_gem_request *req;
2656 2657
	int ret;

2658 2659 2660
	if (!req_out)
		return -EINVAL;

2661
	*req_out = NULL;
2662

D
Daniel Vetter 已提交
2663 2664
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2665 2666
		return -ENOMEM;

D
Daniel Vetter 已提交
2667
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2668 2669
	if (ret)
		goto err;
2670

2671 2672
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2673
	req->ring = ring;
2674 2675
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2676 2677

	if (i915.enable_execlists)
2678
		ret = intel_logical_ring_alloc_request_extras(req);
2679
	else
D
Daniel Vetter 已提交
2680
		ret = intel_ring_alloc_request_extras(req);
2681 2682
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2683
		goto err;
2684
	}
2685

2686 2687 2688 2689 2690 2691 2692
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2706

2707
	*req_out = req;
2708
	return 0;
2709 2710 2711 2712

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2713 2714
}

2715 2716 2717 2718 2719 2720 2721
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2722
struct drm_i915_gem_request *
2723
i915_gem_find_active_request(struct intel_engine_cs *ring)
2724
{
2725 2726 2727
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2728
		if (i915_gem_request_completed(request, false))
2729
			continue;
2730

2731
		return request;
2732
	}
2733 2734 2735 2736 2737

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2738
				       struct intel_engine_cs *ring)
2739 2740 2741 2742
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2743
	request = i915_gem_find_active_request(ring);
2744 2745 2746 2747 2748 2749

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2750
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2751 2752

	list_for_each_entry_continue(request, &ring->request_list, list)
2753
		i915_set_reset_status(dev_priv, request->ctx, false);
2754
}
2755

2756
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2757
					struct intel_engine_cs *ring)
2758
{
2759
	while (!list_empty(&ring->active_list)) {
2760
		struct drm_i915_gem_object *obj;
2761

2762 2763
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2764
				       ring_list[ring->id]);
2765

2766
		i915_gem_object_retire__read(obj, ring->id);
2767
	}
2768

2769 2770 2771 2772 2773 2774
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2775
		struct drm_i915_gem_request *submit_req;
2776 2777

		submit_req = list_first_entry(&ring->execlist_queue,
2778
				struct drm_i915_gem_request,
2779 2780
				execlist_link);
		list_del(&submit_req->execlist_link);
2781 2782 2783 2784

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2785
		i915_gem_request_unreference(submit_req);
2786 2787
	}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2802
		i915_gem_request_retire(request);
2803
	}
2804 2805
}

2806
void i915_gem_restore_fences(struct drm_device *dev)
2807 2808 2809 2810
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2811
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2812
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2813

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2824 2825 2826
	}
}

2827
void i915_gem_reset(struct drm_device *dev)
2828
{
2829
	struct drm_i915_private *dev_priv = dev->dev_private;
2830
	struct intel_engine_cs *ring;
2831
	int i;
2832

2833 2834 2835 2836 2837 2838 2839 2840
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2841
	for_each_ring(ring, dev_priv, i)
2842
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2843

2844 2845
	i915_gem_context_reset(dev);

2846
	i915_gem_restore_fences(dev);
2847 2848

	WARN_ON(i915_verify_lists(dev));
2849 2850 2851 2852 2853
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2854
void
2855
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2856
{
C
Chris Wilson 已提交
2857
	WARN_ON(i915_verify_lists(ring->dev));
2858

2859 2860 2861 2862
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2863
	 */
2864
	while (!list_empty(&ring->request_list)) {
2865 2866
		struct drm_i915_gem_request *request;

2867
		request = list_first_entry(&ring->request_list,
2868 2869 2870
					   struct drm_i915_gem_request,
					   list);

2871
		if (!i915_gem_request_completed(request, true))
2872 2873
			break;

2874
		i915_gem_request_retire(request);
2875
	}
2876

2877 2878 2879 2880 2881 2882 2883 2884 2885
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2886
				      ring_list[ring->id]);
2887

2888
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2889 2890
			break;

2891
		i915_gem_object_retire__read(obj, ring->id);
2892 2893
	}

2894 2895
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2896
		ring->irq_put(ring);
2897
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2898
	}
2899

C
Chris Wilson 已提交
2900
	WARN_ON(i915_verify_lists(ring->dev));
2901 2902
}

2903
bool
2904 2905
i915_gem_retire_requests(struct drm_device *dev)
{
2906
	struct drm_i915_private *dev_priv = dev->dev_private;
2907
	struct intel_engine_cs *ring;
2908
	bool idle = true;
2909
	int i;
2910

2911
	for_each_ring(ring, dev_priv, i) {
2912
		i915_gem_retire_requests_ring(ring);
2913
		idle &= list_empty(&ring->request_list);
2914 2915 2916 2917 2918 2919 2920 2921 2922
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2923 2924 2925 2926 2927 2928 2929 2930
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2931 2932
}

2933
static void
2934 2935
i915_gem_retire_work_handler(struct work_struct *work)
{
2936 2937 2938
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2939
	bool idle;
2940

2941
	/* Come back later if the device is busy... */
2942 2943 2944 2945
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2946
	}
2947
	if (!idle)
2948 2949
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2950
}
2951

2952 2953 2954 2955 2956
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2957
	struct drm_device *dev = dev_priv->dev;
2958 2959
	struct intel_engine_cs *ring;
	int i;
2960

2961 2962 2963
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2964 2965 2966 2967 2968 2969 2970 2971 2972

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2973

2974 2975
		mutex_unlock(&dev->struct_mutex);
	}
2976 2977
}

2978 2979 2980 2981 2982 2983 2984 2985
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2986 2987 2988 2989
	int ret, i;

	if (!obj->active)
		return 0;
2990

2991 2992
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2993

2994 2995 2996 2997 2998 2999 3000 3001
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		ret = i915_gem_check_olr(req);
3002 3003 3004
		if (ret)
			return ret;

3005 3006 3007 3008 3009
		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3010 3011 3012 3013 3014
	}

	return 0;
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3040
	struct drm_i915_private *dev_priv = dev->dev_private;
3041 3042
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3043
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3044
	unsigned reset_counter;
3045 3046
	int i, n = 0;
	int ret;
3047

3048 3049 3050
	if (args->flags != 0)
		return -EINVAL;

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3061 3062
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3063 3064 3065
	if (ret)
		goto out;

3066
	if (!obj->active)
3067
		goto out;
3068 3069

	/* Do this after OLR check to make sure we make forward progress polling
3070
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3071
	 */
3072
	if (args->timeout_ns == 0) {
3073 3074 3075 3076 3077
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3078
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3079 3080 3081 3082 3083 3084 3085 3086

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3087 3088
	mutex_unlock(&dev->struct_mutex);

3089 3090 3091 3092 3093 3094 3095
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3096
	return ret;
3097 3098 3099 3100 3101 3102 3103

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3104 3105 3106
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3107 3108
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3109 3110 3111 3112
{
	struct intel_engine_cs *from;
	int ret;

3113
	from = i915_gem_request_get_ring(from_req);
3114 3115 3116
	if (to == from)
		return 0;

3117
	if (i915_gem_request_completed(from_req, true))
3118 3119
		return 0;

3120
	ret = i915_gem_check_olr(from_req);
3121 3122 3123 3124
	if (ret)
		return ret;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3125
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3126
		ret = __i915_wait_request(from_req,
3127 3128 3129 3130
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3131 3132 3133
		if (ret)
			return ret;

3134
		i915_gem_object_retire_request(obj, from_req);
3135 3136
	} else {
		int idx = intel_ring_sync_index(from, to);
3137 3138 3139
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3140 3141 3142 3143

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3144 3145 3146 3147 3148 3149
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3150 3151
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3166 3167 3168 3169 3170
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3171 3172 3173
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3174 3175 3176
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3177
 * rather than a particular GPU ring. Conceptually we serialise writes
3178
 * between engines inside the GPU. We only allow one engine to write
3179 3180 3181 3182 3183 3184 3185 3186 3187
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3188
 *
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3199 3200
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3201 3202
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3203 3204
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3205
{
3206 3207 3208
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3209

3210
	if (!obj->active)
3211 3212
		return 0;

3213 3214
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3215

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3226
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3227 3228 3229
		if (ret)
			return ret;
	}
3230

3231
	return 0;
3232 3233
}

3234 3235 3236 3237 3238 3239 3240
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3241 3242 3243
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3244 3245 3246
	/* Wait for any direct GTT access to complete */
	mb();

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3258
int i915_vma_unbind(struct i915_vma *vma)
3259
{
3260
	struct drm_i915_gem_object *obj = vma->obj;
3261
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3262
	int ret;
3263

3264
	if (list_empty(&vma->vma_link))
3265 3266
		return 0;

3267 3268 3269 3270
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3271

B
Ben Widawsky 已提交
3272
	if (vma->pin_count)
3273
		return -EBUSY;
3274

3275 3276
	BUG_ON(obj->pages == NULL);

3277
	ret = i915_gem_object_wait_rendering(obj, false);
3278
	if (ret)
3279 3280 3281 3282 3283 3284
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3285 3286
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3287
		i915_gem_object_finish_gtt(obj);
3288

3289 3290 3291 3292 3293
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3294

3295
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3296

3297
	vma->vm->unbind_vma(vma);
3298
	vma->bound = 0;
3299

3300
	list_del_init(&vma->mm_list);
3301 3302 3303 3304 3305 3306 3307 3308 3309
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3310

B
Ben Widawsky 已提交
3311 3312 3313 3314
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3315
	 * no more VMAs exist. */
3316 3317
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3318
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3319
	}
3320

3321 3322 3323 3324 3325 3326
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3327
	return 0;
3328 3329
}

3330
int i915_gpu_idle(struct drm_device *dev)
3331
{
3332
	struct drm_i915_private *dev_priv = dev->dev_private;
3333
	struct intel_engine_cs *ring;
3334
	int ret, i;
3335 3336

	/* Flush everything onto the inactive list. */
3337
	for_each_ring(ring, dev_priv, i) {
3338
		if (!i915.enable_execlists) {
3339 3340 3341
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3342 3343
			if (ret)
				return ret;
3344

3345
			ret = i915_switch_context(req);
3346 3347 3348 3349 3350
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3351
			i915_add_request_no_flush(req);
3352
		}
3353

3354
		ret = intel_ring_idle(ring);
3355 3356 3357
		if (ret)
			return ret;
	}
3358

3359
	WARN_ON(i915_verify_lists(dev));
3360
	return 0;
3361 3362
}

3363 3364
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3365
{
3366
	struct drm_i915_private *dev_priv = dev->dev_private;
3367 3368
	int fence_reg;
	int fence_pitch_shift;
3369

3370 3371 3372 3373 3374 3375 3376 3377
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3392
	if (obj) {
3393
		u32 size = i915_gem_obj_ggtt_size(obj);
3394
		uint64_t val;
3395

3396 3397 3398 3399 3400 3401 3402
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3403
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3404
				 0xfffff000) << 32;
3405
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3406
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3407 3408 3409
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3420 3421
}

3422 3423
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3424
{
3425
	struct drm_i915_private *dev_priv = dev->dev_private;
3426
	u32 val;
3427

3428
	if (obj) {
3429
		u32 size = i915_gem_obj_ggtt_size(obj);
3430 3431
		int pitch_val;
		int tile_width;
3432

3433
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3434
		     (size & -size) != size ||
3435 3436 3437
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3448
		val = i915_gem_obj_ggtt_offset(obj);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3464 3465
}

3466 3467
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3468
{
3469
	struct drm_i915_private *dev_priv = dev->dev_private;
3470 3471
	uint32_t val;

3472
	if (obj) {
3473
		u32 size = i915_gem_obj_ggtt_size(obj);
3474
		uint32_t pitch_val;
3475

3476
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3477
		     (size & -size) != size ||
3478 3479 3480
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3481

3482 3483
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3484

3485
		val = i915_gem_obj_ggtt_offset(obj);
3486 3487 3488 3489 3490 3491 3492
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3493

3494 3495 3496 3497
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3498 3499 3500 3501 3502
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3503 3504 3505
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3506 3507 3508 3509 3510 3511 3512 3513
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3514 3515 3516 3517
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3518 3519 3520 3521 3522 3523
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3524 3525 3526 3527 3528 3529

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3530 3531
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3542
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3543 3544 3545
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3546 3547

	if (enable) {
3548
		obj->fence_reg = reg;
3549 3550 3551 3552 3553 3554 3555
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3556
	obj->fence_dirty = false;
3557 3558
}

3559
static int
3560
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3561
{
3562
	if (obj->last_fenced_req) {
3563
		int ret = i915_wait_request(obj->last_fenced_req);
3564 3565
		if (ret)
			return ret;
3566

3567
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3568 3569 3570 3571 3572 3573 3574 3575
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3576
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3577
	struct drm_i915_fence_reg *fence;
3578 3579
	int ret;

3580
	ret = i915_gem_object_wait_fence(obj);
3581 3582 3583
	if (ret)
		return ret;

3584 3585
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3586

3587 3588
	fence = &dev_priv->fence_regs[obj->fence_reg];

3589 3590 3591
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3592
	i915_gem_object_fence_lost(obj);
3593
	i915_gem_object_update_fence(obj, fence, false);
3594 3595 3596 3597 3598

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3599
i915_find_fence_reg(struct drm_device *dev)
3600 3601
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3602
	struct drm_i915_fence_reg *reg, *avail;
3603
	int i;
3604 3605

	/* First try to find a free reg */
3606
	avail = NULL;
3607 3608 3609
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3610
			return reg;
3611

3612
		if (!reg->pin_count)
3613
			avail = reg;
3614 3615
	}

3616
	if (avail == NULL)
3617
		goto deadlock;
3618 3619

	/* None available, try to steal one or wait for a user to finish */
3620
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3621
		if (reg->pin_count)
3622 3623
			continue;

C
Chris Wilson 已提交
3624
		return reg;
3625 3626
	}

3627 3628 3629 3630 3631 3632
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3633 3634
}

3635
/**
3636
 * i915_gem_object_get_fence - set up fencing for an object
3637 3638 3639 3640 3641 3642 3643 3644 3645
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3646 3647
 *
 * For an untiled surface, this removes any existing fence.
3648
 */
3649
int
3650
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3651
{
3652
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3653
	struct drm_i915_private *dev_priv = dev->dev_private;
3654
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3655
	struct drm_i915_fence_reg *reg;
3656
	int ret;
3657

3658 3659 3660
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3661
	if (obj->fence_dirty) {
3662
		ret = i915_gem_object_wait_fence(obj);
3663 3664 3665
		if (ret)
			return ret;
	}
3666

3667
	/* Just update our place in the LRU if our fence is getting reused. */
3668 3669
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3670
		if (!obj->fence_dirty) {
3671 3672 3673 3674 3675
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3676 3677 3678
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3679
		reg = i915_find_fence_reg(dev);
3680 3681
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3682

3683 3684 3685
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3686
			ret = i915_gem_object_wait_fence(old);
3687 3688 3689
			if (ret)
				return ret;

3690
			i915_gem_object_fence_lost(old);
3691
		}
3692
	} else
3693 3694
		return 0;

3695 3696
	i915_gem_object_update_fence(obj, reg, enable);

3697
	return 0;
3698 3699
}

3700
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3701 3702
				     unsigned long cache_level)
{
3703
	struct drm_mm_node *gtt_space = &vma->node;
3704 3705
	struct drm_mm_node *other;

3706 3707 3708 3709 3710 3711
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3712
	 */
3713
	if (vma->vm->mm.color_adjust == NULL)
3714 3715
		return true;

3716
	if (!drm_mm_node_allocated(gtt_space))
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3733
/**
3734 3735
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3736
 */
3737
static struct i915_vma *
3738 3739
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3740
			   const struct i915_ggtt_view *ggtt_view,
3741
			   unsigned alignment,
3742
			   uint64_t flags)
3743
{
3744
	struct drm_device *dev = obj->base.dev;
3745
	struct drm_i915_private *dev_priv = dev->dev_private;
3746
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3747 3748 3749
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3750
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3751
	struct i915_vma *vma;
3752
	int ret;
3753

3754 3755 3756 3757 3758
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3759

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3789

3790
	if (alignment == 0)
3791
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3792
						unfenced_alignment;
3793
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3794 3795 3796
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3797
		return ERR_PTR(-EINVAL);
3798 3799
	}

3800 3801 3802
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3803
	 */
3804 3805 3806 3807
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3808
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3809
			  end);
3810
		return ERR_PTR(-E2BIG);
3811 3812
	}

3813
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3814
	if (ret)
3815
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3816

3817 3818
	i915_gem_object_pin_pages(obj);

3819 3820 3821
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3822
	if (IS_ERR(vma))
3823
		goto err_unpin;
B
Ben Widawsky 已提交
3824

3825
search_free:
3826
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3827
						  size, alignment,
3828 3829
						  obj->cache_level,
						  start, end,
3830 3831
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3832
	if (ret) {
3833
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3834 3835 3836
					       obj->cache_level,
					       start, end,
					       flags);
3837 3838
		if (ret == 0)
			goto search_free;
3839

3840
		goto err_free_vma;
3841
	}
3842
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3843
		ret = -EINVAL;
3844
		goto err_remove_node;
3845 3846
	}

3847
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3848
	if (ret)
3849
		goto err_remove_node;
3850

3851
	trace_i915_vma_bind(vma, flags);
3852
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3853 3854 3855
	if (ret)
		goto err_finish_gtt;

3856
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3857
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3858

3859
	return vma;
B
Ben Widawsky 已提交
3860

3861 3862
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3863
err_remove_node:
3864
	drm_mm_remove_node(&vma->node);
3865
err_free_vma:
B
Ben Widawsky 已提交
3866
	i915_gem_vma_destroy(vma);
3867
	vma = ERR_PTR(ret);
3868
err_unpin:
B
Ben Widawsky 已提交
3869
	i915_gem_object_unpin_pages(obj);
3870
	return vma;
3871 3872
}

3873
bool
3874 3875
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3876 3877 3878 3879 3880
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3881
	if (obj->pages == NULL)
3882
		return false;
3883

3884 3885 3886 3887
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3888
	if (obj->stolen || obj->phys_handle)
3889
		return false;
3890

3891 3892 3893 3894 3895 3896 3897 3898
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3899 3900
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3901
		return false;
3902
	}
3903

C
Chris Wilson 已提交
3904
	trace_i915_gem_object_clflush(obj);
3905
	drm_clflush_sg(obj->pages);
3906
	obj->cache_dirty = false;
3907 3908

	return true;
3909 3910 3911 3912
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3913
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3914
{
C
Chris Wilson 已提交
3915 3916
	uint32_t old_write_domain;

3917
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3918 3919
		return;

3920
	/* No actual flushing is required for the GTT write domain.  Writes
3921 3922
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3923 3924 3925 3926
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3927
	 */
3928 3929
	wmb();

3930 3931
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3932

3933 3934
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3935
	trace_i915_gem_object_change_domain(obj,
3936
					    obj->base.read_domains,
C
Chris Wilson 已提交
3937
					    old_write_domain);
3938 3939 3940 3941
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3942
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3943
{
C
Chris Wilson 已提交
3944
	uint32_t old_write_domain;
3945

3946
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3947 3948
		return;

3949
	if (i915_gem_clflush_object(obj, obj->pin_display))
3950 3951
		i915_gem_chipset_flush(obj->base.dev);

3952 3953
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3954

3955 3956
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3957
	trace_i915_gem_object_change_domain(obj,
3958
					    obj->base.read_domains,
C
Chris Wilson 已提交
3959
					    old_write_domain);
3960 3961
}

3962 3963 3964 3965 3966 3967
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3968
int
3969
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3970
{
C
Chris Wilson 已提交
3971
	uint32_t old_write_domain, old_read_domains;
3972
	struct i915_vma *vma;
3973
	int ret;
3974

3975 3976 3977
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3978
	ret = i915_gem_object_wait_rendering(obj, !write);
3979 3980 3981
	if (ret)
		return ret;

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3994
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3995

3996 3997 3998 3999 4000 4001 4002
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4003 4004
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4005

4006 4007 4008
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4009 4010
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4011
	if (write) {
4012 4013 4014
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4015 4016
	}

4017
	if (write)
4018
		intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4019

C
Chris Wilson 已提交
4020 4021 4022 4023
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4024
	/* And bump the LRU for this access */
4025 4026
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4027
		list_move_tail(&vma->mm_list,
4028
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
4029

4030 4031 4032
	return 0;
}

4033 4034 4035
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4036
	struct drm_device *dev = obj->base.dev;
4037
	struct i915_vma *vma, *next;
4038 4039 4040 4041 4042
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
4043
	if (i915_gem_obj_is_pinned(obj)) {
4044 4045 4046 4047
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

4048
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4049
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4050
			ret = i915_vma_unbind(vma);
4051 4052 4053
			if (ret)
				return ret;
		}
4054 4055
	}

4056
	if (i915_gem_obj_bound_any(obj)) {
4057
		ret = i915_gem_object_wait_rendering(obj, false);
4058 4059 4060 4061 4062 4063 4064 4065 4066
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
4067
		if (INTEL_INFO(dev)->gen < 6) {
4068 4069 4070 4071 4072
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

4073
		list_for_each_entry(vma, &obj->vma_list, vma_link)
4074 4075
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4076
						    PIN_UPDATE);
4077 4078 4079
				if (ret)
					return ret;
			}
4080 4081
	}

4082 4083 4084 4085
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4086 4087 4088 4089 4090
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4091 4092 4093 4094 4095
	}

	return 0;
}

B
Ben Widawsky 已提交
4096 4097
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4098
{
B
Ben Widawsky 已提交
4099
	struct drm_i915_gem_caching *args = data;
4100 4101 4102
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4103 4104
	if (&obj->base == NULL)
		return -ENOENT;
4105

4106 4107 4108 4109 4110 4111
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4112 4113 4114 4115
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4116 4117 4118 4119
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4120

4121 4122
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4123 4124
}

B
Ben Widawsky 已提交
4125 4126
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4127
{
B
Ben Widawsky 已提交
4128
	struct drm_i915_gem_caching *args = data;
4129 4130 4131 4132
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4133 4134
	switch (args->caching) {
	case I915_CACHING_NONE:
4135 4136
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4137
	case I915_CACHING_CACHED:
4138 4139
		level = I915_CACHE_LLC;
		break;
4140 4141 4142
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4143 4144 4145 4146
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4147 4148 4149 4150
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4165
/*
4166 4167 4168
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4169 4170
 */
int
4171 4172
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4173
				     struct intel_engine_cs *pipelined,
4174
				     struct drm_i915_gem_request **pipelined_request,
4175
				     const struct i915_ggtt_view *view)
4176
{
4177
	u32 old_read_domains, old_write_domain;
4178 4179
	int ret;

4180
	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4181 4182
	if (ret)
		return ret;
4183

4184 4185 4186
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4187
	obj->pin_display++;
4188

4189 4190 4191 4192 4193 4194 4195 4196 4197
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4198 4199
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4200
	if (ret)
4201
		goto err_unpin_display;
4202

4203 4204 4205 4206
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4207 4208 4209
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4210
	if (ret)
4211
		goto err_unpin_display;
4212

4213
	i915_gem_object_flush_cpu_write_domain(obj);
4214

4215
	old_write_domain = obj->base.write_domain;
4216
	old_read_domains = obj->base.read_domains;
4217 4218 4219 4220

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4221
	obj->base.write_domain = 0;
4222
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4223 4224 4225

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4226
					    old_write_domain);
4227 4228

	return 0;
4229 4230

err_unpin_display:
4231
	obj->pin_display--;
4232 4233 4234 4235
	return ret;
}

void
4236 4237
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4238
{
4239 4240 4241
	if (WARN_ON(obj->pin_display == 0))
		return;

4242 4243
	i915_gem_object_ggtt_unpin_view(obj, view);

4244
	obj->pin_display--;
4245 4246
}

4247 4248 4249 4250 4251 4252
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4253
int
4254
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4255
{
C
Chris Wilson 已提交
4256
	uint32_t old_write_domain, old_read_domains;
4257 4258
	int ret;

4259 4260 4261
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4262
	ret = i915_gem_object_wait_rendering(obj, !write);
4263 4264 4265
	if (ret)
		return ret;

4266
	i915_gem_object_flush_gtt_write_domain(obj);
4267

4268 4269
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4270

4271
	/* Flush the CPU cache if it's still invalid. */
4272
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4273
		i915_gem_clflush_object(obj, false);
4274

4275
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4276 4277 4278 4279 4280
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4281
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4282 4283 4284 4285 4286

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4287 4288
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4289
	}
4290

4291
	if (write)
4292
		intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4293

C
Chris Wilson 已提交
4294 4295 4296 4297
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4298 4299 4300
	return 0;
}

4301 4302 4303
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4304 4305 4306 4307
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4308 4309 4310
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4311
static int
4312
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4313
{
4314 4315
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4316
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4317
	struct drm_i915_gem_request *request, *target = NULL;
4318
	unsigned reset_counter;
4319
	int ret;
4320

4321 4322 4323 4324 4325 4326 4327
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4328

4329
	spin_lock(&file_priv->mm.lock);
4330
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4331 4332
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4333

4334 4335 4336 4337 4338 4339 4340
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4341
		target = request;
4342
	}
4343
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4344 4345
	if (target)
		i915_gem_request_reference(target);
4346
	spin_unlock(&file_priv->mm.lock);
4347

4348
	if (target == NULL)
4349
		return 0;
4350

4351
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4352 4353
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4354

4355
	i915_gem_request_unreference__unlocked(target);
4356

4357 4358 4359
	return ret;
}

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4379 4380 4381 4382 4383 4384
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4385
{
4386
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4387
	struct i915_vma *vma;
4388
	unsigned bound;
4389 4390
	int ret;

4391 4392 4393
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4394
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4395
		return -EINVAL;
4396

4397 4398 4399
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4400 4401 4402 4403 4404 4405 4406 4407 4408
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4409
	if (vma) {
B
Ben Widawsky 已提交
4410 4411 4412
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4413
		if (i915_vma_misplaced(vma, alignment, flags)) {
4414
			unsigned long offset;
4415
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4416
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4417
			WARN(vma->pin_count,
4418
			     "bo is already pinned in %s with incorrect alignment:"
4419
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4420
			     " obj->map_and_fenceable=%d\n",
4421 4422
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4423
			     alignment,
4424
			     !!(flags & PIN_MAPPABLE),
4425
			     obj->map_and_fenceable);
4426
			ret = i915_vma_unbind(vma);
4427 4428
			if (ret)
				return ret;
4429 4430

			vma = NULL;
4431 4432 4433
		}
	}

4434
	bound = vma ? vma->bound : 0;
4435
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4436 4437
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4438 4439
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4440 4441
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4442 4443 4444
		if (ret)
			return ret;
	}
4445

4446 4447
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4462
		mappable = (vma->node.start + fence_size <=
4463 4464 4465 4466
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4467 4468
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4469

4470
	vma->pin_count++;
4471 4472 4473
	return 0;
}

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4495
				      alignment, flags | PIN_GLOBAL);
4496 4497
}

4498
void
4499 4500
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4501
{
4502
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4503

B
Ben Widawsky 已提交
4504
	BUG_ON(!vma);
4505
	WARN_ON(vma->pin_count == 0);
4506
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4507

4508
	--vma->pin_count;
4509 4510
}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4537 4538
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4539
		    struct drm_file *file)
4540 4541
{
	struct drm_i915_gem_busy *args = data;
4542
	struct drm_i915_gem_object *obj;
4543 4544
	int ret;

4545
	ret = i915_mutex_lock_interruptible(dev);
4546
	if (ret)
4547
		return ret;
4548

4549
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4550
	if (&obj->base == NULL) {
4551 4552
		ret = -ENOENT;
		goto unlock;
4553
	}
4554

4555 4556 4557 4558
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4559
	 */
4560
	ret = i915_gem_object_flush_active(obj);
4561 4562
	if (ret)
		goto unref;
4563

4564 4565 4566 4567
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4568

4569
unref:
4570
	drm_gem_object_unreference(&obj->base);
4571
unlock:
4572
	mutex_unlock(&dev->struct_mutex);
4573
	return ret;
4574 4575 4576 4577 4578 4579
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4580
	return i915_gem_ring_throttle(dev, file_priv);
4581 4582
}

4583 4584 4585 4586
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4587
	struct drm_i915_private *dev_priv = dev->dev_private;
4588
	struct drm_i915_gem_madvise *args = data;
4589
	struct drm_i915_gem_object *obj;
4590
	int ret;
4591 4592 4593 4594 4595 4596 4597 4598 4599

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4600 4601 4602 4603
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4604
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4605
	if (&obj->base == NULL) {
4606 4607
		ret = -ENOENT;
		goto unlock;
4608 4609
	}

B
Ben Widawsky 已提交
4610
	if (i915_gem_obj_is_pinned(obj)) {
4611 4612
		ret = -EINVAL;
		goto out;
4613 4614
	}

4615 4616 4617 4618 4619 4620 4621 4622 4623
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4624 4625
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4626

C
Chris Wilson 已提交
4627
	/* if the object is no longer attached, discard its backing storage */
4628
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4629 4630
		i915_gem_object_truncate(obj);

4631
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4632

4633
out:
4634
	drm_gem_object_unreference(&obj->base);
4635
unlock:
4636
	mutex_unlock(&dev->struct_mutex);
4637
	return ret;
4638 4639
}

4640 4641
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4642
{
4643 4644
	int i;

4645
	INIT_LIST_HEAD(&obj->global_list);
4646 4647
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4648
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4649
	INIT_LIST_HEAD(&obj->vma_list);
4650
	INIT_LIST_HEAD(&obj->batch_pool_link);
4651

4652 4653
	obj->ops = ops;

4654 4655 4656 4657 4658 4659
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4660 4661 4662 4663 4664
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4665 4666
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4667
{
4668
	struct drm_i915_gem_object *obj;
4669
	struct address_space *mapping;
D
Daniel Vetter 已提交
4670
	gfp_t mask;
4671

4672
	obj = i915_gem_object_alloc(dev);
4673 4674
	if (obj == NULL)
		return NULL;
4675

4676
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4677
		i915_gem_object_free(obj);
4678 4679
		return NULL;
	}
4680

4681 4682 4683 4684 4685 4686 4687
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4688
	mapping = file_inode(obj->base.filp)->i_mapping;
4689
	mapping_set_gfp_mask(mapping, mask);
4690

4691
	i915_gem_object_init(obj, &i915_gem_object_ops);
4692

4693 4694
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4695

4696 4697
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4713 4714
	trace_i915_gem_object_create(obj);

4715
	return obj;
4716 4717
}

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4742
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4743
{
4744
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4745
	struct drm_device *dev = obj->base.dev;
4746
	struct drm_i915_private *dev_priv = dev->dev_private;
4747
	struct i915_vma *vma, *next;
4748

4749 4750
	intel_runtime_pm_get(dev_priv);

4751 4752
	trace_i915_gem_object_destroy(obj);

4753
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4754 4755 4756 4757
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4758 4759
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4760

4761 4762
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4763

4764
			WARN_ON(i915_vma_unbind(vma));
4765

4766 4767
			dev_priv->mm.interruptible = was_interruptible;
		}
4768 4769
	}

B
Ben Widawsky 已提交
4770 4771 4772 4773 4774
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4775 4776
	WARN_ON(obj->frontbuffer_bits);

4777 4778 4779 4780 4781
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4782 4783
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4784
	if (discard_backing_storage(obj))
4785
		obj->madv = I915_MADV_DONTNEED;
4786
	i915_gem_object_put_pages(obj);
4787
	i915_gem_object_free_mmap_offset(obj);
4788

4789 4790
	BUG_ON(obj->pages);

4791 4792
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4793

4794 4795 4796
	if (obj->ops->release)
		obj->ops->release(obj);

4797 4798
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4799

4800
	kfree(obj->bit_17);
4801
	i915_gem_object_free(obj);
4802 4803

	intel_runtime_pm_put(dev_priv);
4804 4805
}

4806 4807
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4808 4809
{
	struct i915_vma *vma;
4810 4811 4812 4813 4814
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4815
			return vma;
4816 4817 4818 4819 4820 4821 4822 4823 4824
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4825

4826 4827 4828 4829
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4830 4831
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4832
			return vma;
4833 4834 4835
	return NULL;
}

B
Ben Widawsky 已提交
4836 4837
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4838
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4839
	WARN_ON(vma->node.allocated);
4840 4841 4842 4843 4844

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4845 4846
	vm = vma->vm;

4847 4848
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4849

4850
	list_del(&vma->vma_link);
4851

4852
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4853 4854
}

4855 4856 4857 4858
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4859
	struct intel_engine_cs *ring;
4860 4861 4862
	int i;

	for_each_ring(ring, dev_priv, i)
4863
		dev_priv->gt.stop_ring(ring);
4864 4865
}

4866
int
4867
i915_gem_suspend(struct drm_device *dev)
4868
{
4869
	struct drm_i915_private *dev_priv = dev->dev_private;
4870
	int ret = 0;
4871

4872
	mutex_lock(&dev->struct_mutex);
4873
	ret = i915_gpu_idle(dev);
4874
	if (ret)
4875
		goto err;
4876

4877
	i915_gem_retire_requests(dev);
4878

4879
	i915_gem_stop_ringbuffers(dev);
4880 4881
	mutex_unlock(&dev->struct_mutex);

4882
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4883
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4884
	flush_delayed_work(&dev_priv->mm.idle_work);
4885

4886 4887 4888 4889 4890
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4891
	return 0;
4892 4893 4894 4895

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4896 4897
}

4898
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4899
{
4900
	struct intel_engine_cs *ring = req->ring;
4901
	struct drm_device *dev = ring->dev;
4902
	struct drm_i915_private *dev_priv = dev->dev_private;
4903 4904
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4905
	int i, ret;
B
Ben Widawsky 已提交
4906

4907
	if (!HAS_L3_DPF(dev) || !remap_info)
4908
		return 0;
B
Ben Widawsky 已提交
4909

4910
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4911 4912
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4913

4914 4915 4916 4917 4918
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4919
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4920 4921 4922
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4923 4924
	}

4925
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4926

4927
	return ret;
B
Ben Widawsky 已提交
4928 4929
}

4930 4931
void i915_gem_init_swizzling(struct drm_device *dev)
{
4932
	struct drm_i915_private *dev_priv = dev->dev_private;
4933

4934
	if (INTEL_INFO(dev)->gen < 5 ||
4935 4936 4937 4938 4939 4940
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4941 4942 4943
	if (IS_GEN5(dev))
		return;

4944 4945
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4946
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4947
	else if (IS_GEN7(dev))
4948
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4949 4950
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4951 4952
	else
		BUG();
4953
}
D
Daniel Vetter 已提交
4954

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4998
int i915_gem_init_rings(struct drm_device *dev)
4999
{
5000
	struct drm_i915_private *dev_priv = dev->dev_private;
5001
	int ret;
5002

5003
	ret = intel_init_render_ring_buffer(dev);
5004
	if (ret)
5005
		return ret;
5006 5007

	if (HAS_BSD(dev)) {
5008
		ret = intel_init_bsd_ring_buffer(dev);
5009 5010
		if (ret)
			goto cleanup_render_ring;
5011
	}
5012

5013
	if (intel_enable_blt(dev)) {
5014 5015 5016 5017 5018
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5019 5020 5021 5022 5023 5024
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5025 5026 5027 5028 5029
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5030

5031
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5032
	if (ret)
5033
		goto cleanup_bsd2_ring;
5034 5035 5036

	return 0;

5037 5038
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
5039 5040
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5054
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
5055
	struct intel_engine_cs *ring;
5056
	int ret, i, j;
5057 5058 5059 5060

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

5061 5062 5063
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
5064
	if (dev_priv->ellc_size)
5065
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5066

5067 5068 5069
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5070

5071
	if (HAS_PCH_NOP(dev)) {
5072 5073 5074 5075 5076 5077 5078 5079 5080
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5081 5082
	}

5083 5084
	i915_gem_init_swizzling(dev);

5085 5086 5087 5088 5089 5090 5091 5092
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5093 5094
	BUG_ON(!dev_priv->ring[RCS].default_context);

5095 5096 5097 5098 5099 5100 5101
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
5102 5103 5104
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5105
			goto out;
D
Daniel Vetter 已提交
5106
	}
5107

5108 5109
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
5110 5111
		struct drm_i915_gem_request *req;

5112 5113
		WARN_ON(!ring->default_context);

5114 5115 5116 5117 5118 5119
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

5120 5121
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
5122
				i915_gem_l3_remap(req, j);
5123
		}
5124

5125
		ret = i915_ppgtt_init_ring(req);
5126 5127
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5128
			i915_gem_request_cancel(req);
5129 5130 5131
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5132

5133
		ret = i915_gem_context_enable(req);
5134 5135
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5136
			i915_gem_request_cancel(req);
5137 5138 5139
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5140

5141
		i915_add_request_no_flush(req);
5142
	}
D
Daniel Vetter 已提交
5143

5144 5145
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5146
	return ret;
5147 5148
}

5149 5150 5151 5152 5153
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5154 5155 5156
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5157
	mutex_lock(&dev->struct_mutex);
5158 5159 5160

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5161 5162 5163
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5164 5165 5166
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5167
	if (!i915.enable_execlists) {
5168
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5169 5170 5171
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5172
	} else {
5173
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5174 5175 5176
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5177 5178
	}

5179 5180 5181 5182 5183 5184 5185 5186
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5187
	ret = i915_gem_init_userptr(dev);
5188 5189
	if (ret)
		goto out_unlock;
5190

5191
	i915_gem_init_global_gtt(dev);
5192

5193
	ret = i915_gem_context_init(dev);
5194 5195
	if (ret)
		goto out_unlock;
5196

D
Daniel Vetter 已提交
5197 5198
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5199
		goto out_unlock;
5200

5201
	ret = i915_gem_init_hw(dev);
5202 5203 5204 5205 5206 5207 5208 5209
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5210
	}
5211 5212

out_unlock:
5213
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5214
	mutex_unlock(&dev->struct_mutex);
5215

5216
	return ret;
5217 5218
}

5219 5220 5221
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5222
	struct drm_i915_private *dev_priv = dev->dev_private;
5223
	struct intel_engine_cs *ring;
5224
	int i;
5225

5226
	for_each_ring(ring, dev_priv, i)
5227
		dev_priv->gt.cleanup_ring(ring);
5228 5229
}

5230
static void
5231
init_ring_lists(struct intel_engine_cs *ring)
5232 5233 5234 5235 5236
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5237 5238
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5239
{
5240 5241
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5242 5243 5244 5245
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5246
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5247 5248
}

5249 5250 5251
void
i915_gem_load(struct drm_device *dev)
{
5252
	struct drm_i915_private *dev_priv = dev->dev_private;
5253 5254
	int i;

5255
	dev_priv->objects =
5256 5257 5258 5259
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5260 5261 5262 5263 5264
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5265 5266 5267 5268 5269
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5270

B
Ben Widawsky 已提交
5271 5272 5273
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5274
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5275 5276
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5277
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5278 5279
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5280
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5281
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5282 5283
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5284 5285
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5286
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5287

5288 5289
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5290 5291 5292
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5293 5294 5295 5296
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5297 5298 5299 5300
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5301
	/* Initialize fence registers to zero */
5302 5303
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5304

5305
	i915_gem_detect_bit_6_swizzle(dev);
5306
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5307

5308 5309
	dev_priv->mm.interruptible = true;

5310
	i915_gem_shrinker_init(dev_priv);
5311 5312

	mutex_init(&dev_priv->fb_tracking.lock);
5313
}
5314

5315
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5316
{
5317
	struct drm_i915_file_private *file_priv = file->driver_priv;
5318 5319 5320 5321 5322

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5323
	spin_lock(&file_priv->mm.lock);
5324 5325 5326 5327 5328 5329 5330 5331 5332
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5333
	spin_unlock(&file_priv->mm.lock);
5334

5335
	if (!list_empty(&file_priv->rps.link)) {
5336
		spin_lock(&to_i915(dev)->rps.client_lock);
5337
		list_del(&file_priv->rps.link);
5338
		spin_unlock(&to_i915(dev)->rps.client_lock);
5339
	}
5340 5341 5342 5343 5344
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5345
	int ret;
5346 5347 5348 5349 5350 5351 5352 5353 5354

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5355
	file_priv->file = file;
5356
	INIT_LIST_HEAD(&file_priv->rps.link);
5357 5358 5359 5360

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5361 5362 5363
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5364

5365
	return ret;
5366 5367
}

5368 5369 5370 5371 5372 5373 5374 5375 5376
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5394
/* All the new VM stuff */
5395 5396 5397
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5398 5399 5400 5401
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5402
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5403 5404

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5405 5406 5407 5408
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5409 5410
			return vma->node.start;
	}
5411

5412 5413
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5414 5415 5416
	return -1;
}

5417 5418
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5419
			      const struct i915_ggtt_view *view)
5420
{
5421
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5422 5423 5424
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5425 5426
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5427 5428
			return vma->node.start;

5429
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5450
				  const struct i915_ggtt_view *view)
5451 5452 5453 5454 5455 5456
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5457
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5458
		    drm_mm_node_allocated(&vma->node))
5459 5460 5461 5462 5463 5464 5465
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5466
	struct i915_vma *vma;
5467

5468 5469
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5481
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5482 5483 5484

	BUG_ON(list_empty(&o->vma_list));

5485 5486 5487 5488
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5489 5490
		if (vma->vm == vm)
			return vma->node.size;
5491
	}
5492 5493 5494
	return 0;
}

5495
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5496 5497
{
	struct i915_vma *vma;
5498
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5499 5500
		if (vma->pin_count > 0)
			return true;
5501

5502
	return false;
5503
}
5504