i915_gem.c 138.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static void
44 45 46
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55 56 57 58 59 60 61
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

62 63 64 65
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
66
	spin_lock(&dev_priv->mm.object_stat_lock);
67 68
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
69
	spin_unlock(&dev_priv->mm.object_stat_lock);
70 71 72 73 74
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
75
	spin_lock(&dev_priv->mm.object_stat_lock);
76 77
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
78
	spin_unlock(&dev_priv->mm.object_stat_lock);
79 80
}

81
static int
82
i915_gem_wait_for_error(struct i915_gpu_error *error)
83 84 85
{
	int ret;

86
	if (!i915_reset_in_progress(error))
87 88
		return 0;

89 90 91 92 93
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
94
	ret = wait_event_interruptible_timeout(error->reset_queue,
95
					       !i915_reset_in_progress(error),
96
					       10*HZ);
97 98 99 100
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
101
		return ret;
102 103
	} else {
		return 0;
104
	}
105 106
}

107
int i915_mutex_lock_interruptible(struct drm_device *dev)
108
{
109
	struct drm_i915_private *dev_priv = dev->dev_private;
110 111
	int ret;

112
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
113 114 115 116 117 118 119
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

120
	WARN_ON(i915_verify_lists(dev));
121 122
	return 0;
}
123

124 125
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
126
			    struct drm_file *file)
127
{
128
	struct drm_i915_private *dev_priv = to_i915(dev);
129
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
130
	struct drm_i915_gem_get_aperture *args = data;
131
	struct i915_vma *vma;
132
	size_t pinned;
133

134
	pinned = 0;
135
	mutex_lock(&dev->struct_mutex);
136
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
137 138
		if (vma->pin_count)
			pinned += vma->node.size;
139
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
140 141
		if (vma->pin_count)
			pinned += vma->node.size;
142
	mutex_unlock(&dev->struct_mutex);
143

144
	args->aper_size = ggtt->base.total;
145
	args->aper_available_size = args->aper_size - pinned;
146

147 148 149
	return 0;
}

150 151
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
152
{
153 154 155 156 157
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

175
		put_page(page);
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
193

194 195 196 197 198 199 200 201 202 203 204 205 206
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
207

208
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
209
	if (WARN_ON(ret)) {
210 211 212 213 214 215 216 217 218 219
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
220
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221
		char *vaddr = obj->phys_handle->vaddr;
222 223 224
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 226 227 228 229 230 231 232 233 234 235 236 237 238
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
239
				mark_page_accessed(page);
240
			put_page(page);
241 242
			vaddr += PAGE_SIZE;
		}
243
		obj->dirty = 0;
244 245
	}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
269
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
270 271 272 273 274 275 276
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
277 278 279 280 281 282 283
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
284
	int ret;
285 286 287 288 289 290 291 292 293 294 295 296 297 298

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

299 300 301 302
	ret = drop_pages(obj);
	if (ret)
		return ret;

303 304 305 306 307 308
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
309 310 311
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
312 313 314 315 316 317 318 319 320 321
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
322
	int ret = 0;
323 324 325 326 327 328 329

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
330

331
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
332 333 334 335 336 337 338 339 340 341
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
342 343 344 345
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
346 347
	}

348
	drm_clflush_virt_range(vaddr, args->size);
349
	i915_gem_chipset_flush(dev);
350 351

out:
352
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
353
	return ret;
354 355
}

356 357 358
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
359
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
360 361 362 363 364
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
365
	kmem_cache_free(dev_priv->objects, obj);
366 367
}

368 369 370 371 372
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
373
{
374
	struct drm_i915_gem_object *obj;
375 376
	int ret;
	u32 handle;
377

378
	size = roundup(size, PAGE_SIZE);
379 380
	if (size == 0)
		return -EINVAL;
381 382

	/* Allocate the new object */
383
	obj = i915_gem_alloc_object(dev, size);
384 385 386
	if (obj == NULL)
		return -ENOMEM;

387
	ret = drm_gem_handle_create(file, &obj->base, &handle);
388
	/* drop reference from allocate - handle holds it now */
389 390 391
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
392

393
	*handle_p = handle;
394 395 396
	return 0;
}

397 398 399 400 401 402
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
403
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
404 405
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
406
			       args->size, &args->handle);
407 408 409 410 411 412 413 414 415 416
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
417

418
	return i915_gem_create(file, dev,
419
			       args->size, &args->handle);
420 421
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

448
static inline int
449 450
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

474 475 476 477 478 479 480 481 482 483 484 485
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

486
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

510 511 512
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
513
static int
514 515 516 517 518 519 520
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

521
	if (unlikely(page_do_bit17_swizzling))
522 523 524 525 526 527 528 529 530 531 532
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

533
	return ret ? -EFAULT : 0;
534 535
}

536 537 538 539
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
540
	if (unlikely(swizzled)) {
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

558 559 560 561 562 563 564 565 566 567 568 569
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
570 571 572
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
573 574 575 576 577 578 579 580 581 582 583

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

584
	return ret ? - EFAULT : 0;
585 586
}

587
static int
588 589 590 591
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
592
{
593
	char __user *user_data;
594
	ssize_t remain;
595
	loff_t offset;
596
	int shmem_page_offset, page_length, ret = 0;
597
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
598
	int prefaulted = 0;
599
	int needs_clflush = 0;
600
	struct sg_page_iter sg_iter;
601

V
Ville Syrjälä 已提交
602
	user_data = to_user_ptr(args->data_ptr);
603 604
	remain = args->size;

605
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
606

607
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
608 609 610
	if (ret)
		return ret;

611
	offset = args->offset;
612

613 614
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
615
		struct page *page = sg_page_iter_page(&sg_iter);
616 617 618 619

		if (remain <= 0)
			break;

620 621 622 623 624
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
625
		shmem_page_offset = offset_in_page(offset);
626 627 628 629
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

630 631 632
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

633 634 635 636 637
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
638 639 640

		mutex_unlock(&dev->struct_mutex);

641
		if (likely(!i915.prefault_disable) && !prefaulted) {
642
			ret = fault_in_multipages_writeable(user_data, remain);
643 644 645 646 647 648 649
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
650

651 652 653
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
654

655
		mutex_lock(&dev->struct_mutex);
656 657

		if (ret)
658 659
			goto out;

660
next_page:
661
		remain -= page_length;
662
		user_data += page_length;
663 664 665
		offset += page_length;
	}

666
out:
667 668
	i915_gem_object_unpin_pages(obj);

669 670 671
	return ret;
}

672 673 674 675 676 677 678
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
679
		     struct drm_file *file)
680 681
{
	struct drm_i915_gem_pread *args = data;
682
	struct drm_i915_gem_object *obj;
683
	int ret = 0;
684

685 686 687 688
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
689
		       to_user_ptr(args->data_ptr),
690 691 692
		       args->size))
		return -EFAULT;

693
	ret = i915_mutex_lock_interruptible(dev);
694
	if (ret)
695
		return ret;
696

697
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
698
	if (&obj->base == NULL) {
699 700
		ret = -ENOENT;
		goto unlock;
701
	}
702

703
	/* Bounds check source.  */
704 705
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
706
		ret = -EINVAL;
707
		goto out;
C
Chris Wilson 已提交
708 709
	}

710 711 712 713 714 715 716 717
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
718 719
	trace_i915_gem_object_pread(obj, args->offset, args->size);

720
	ret = i915_gem_shmem_pread(dev, obj, args, file);
721

722
out:
723
	drm_gem_object_unreference(&obj->base);
724
unlock:
725
	mutex_unlock(&dev->struct_mutex);
726
	return ret;
727 728
}

729 730
/* This is the fast write path which cannot handle
 * page faults in the source data
731
 */
732 733 734 735 736 737

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
738
{
739 740
	void __iomem *vaddr_atomic;
	void *vaddr;
741
	unsigned long unwritten;
742

P
Peter Zijlstra 已提交
743
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
744 745 746
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
747
						      user_data, length);
P
Peter Zijlstra 已提交
748
	io_mapping_unmap_atomic(vaddr_atomic);
749
	return unwritten;
750 751
}

752 753 754 755
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
756
static int
757 758
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
759
			 struct drm_i915_gem_pwrite *args,
760
			 struct drm_file *file)
761
{
762 763
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
764
	ssize_t remain;
765
	loff_t offset, page_base;
766
	char __user *user_data;
D
Daniel Vetter 已提交
767 768
	int page_offset, page_length, ret;

769
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
770 771 772 773 774 775 776 777 778 779
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
780

V
Ville Syrjälä 已提交
781
	user_data = to_user_ptr(args->data_ptr);
782 783
	remain = args->size;

784
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
785

786
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
787

788 789 790
	while (remain > 0) {
		/* Operation in this page
		 *
791 792 793
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
794
		 */
795 796
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
797 798 799 800 801
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
802 803
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
804
		 */
805
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
806 807
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
808
			goto out_flush;
D
Daniel Vetter 已提交
809
		}
810

811 812 813
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
814 815
	}

816
out_flush:
817
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
818
out_unpin:
B
Ben Widawsky 已提交
819
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
820
out:
821
	return ret;
822 823
}

824 825 826 827
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
828
static int
829 830 831 832 833
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
834
{
835
	char *vaddr;
836
	int ret;
837

838
	if (unlikely(page_do_bit17_swizzling))
839
		return -EINVAL;
840

841 842 843 844
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
845 846
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
847 848 849 850
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
851

852
	return ret ? -EFAULT : 0;
853 854
}

855 856
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
857
static int
858 859 860 861 862
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
863
{
864 865
	char *vaddr;
	int ret;
866

867
	vaddr = kmap(page);
868
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
869 870 871
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
872 873
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
874 875
						user_data,
						page_length);
876 877 878 879 880
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
881 882 883
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
884
	kunmap(page);
885

886
	return ret ? -EFAULT : 0;
887 888 889
}

static int
890 891 892 893
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
894 895
{
	ssize_t remain;
896 897
	loff_t offset;
	char __user *user_data;
898
	int shmem_page_offset, page_length, ret = 0;
899
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
900
	int hit_slowpath = 0;
901 902
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
903
	struct sg_page_iter sg_iter;
904

V
Ville Syrjälä 已提交
905
	user_data = to_user_ptr(args->data_ptr);
906 907
	remain = args->size;

908
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
909

910 911 912 913 914
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
915
		needs_clflush_after = cpu_write_needs_clflush(obj);
916 917 918
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
919
	}
920 921 922 923 924
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
925

926 927 928 929
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

930
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
931

932 933
	i915_gem_object_pin_pages(obj);

934
	offset = args->offset;
935
	obj->dirty = 1;
936

937 938
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
939
		struct page *page = sg_page_iter_page(&sg_iter);
940
		int partial_cacheline_write;
941

942 943 944
		if (remain <= 0)
			break;

945 946 947 948 949
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
950
		shmem_page_offset = offset_in_page(offset);
951 952 953 954 955

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

956 957 958 959 960 961 962
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

963 964 965
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

966 967 968 969 970 971
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
972 973 974

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
975 976 977 978
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
979

980
		mutex_lock(&dev->struct_mutex);
981 982

		if (ret)
983 984
			goto out;

985
next_page:
986
		remain -= page_length;
987
		user_data += page_length;
988
		offset += page_length;
989 990
	}

991
out:
992 993
	i915_gem_object_unpin_pages(obj);

994
	if (hit_slowpath) {
995 996 997 998 999 1000 1001
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1002
			if (i915_gem_clflush_object(obj, obj->pin_display))
1003
				needs_clflush_after = true;
1004
		}
1005
	}
1006

1007
	if (needs_clflush_after)
1008
		i915_gem_chipset_flush(dev);
1009 1010
	else
		obj->cache_dirty = true;
1011

1012
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1013
	return ret;
1014 1015 1016 1017 1018 1019 1020 1021 1022
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1023
		      struct drm_file *file)
1024
{
1025
	struct drm_i915_private *dev_priv = dev->dev_private;
1026
	struct drm_i915_gem_pwrite *args = data;
1027
	struct drm_i915_gem_object *obj;
1028 1029 1030 1031 1032 1033
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1034
		       to_user_ptr(args->data_ptr),
1035 1036 1037
		       args->size))
		return -EFAULT;

1038
	if (likely(!i915.prefault_disable)) {
1039 1040 1041 1042 1043
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1044

1045 1046
	intel_runtime_pm_get(dev_priv);

1047
	ret = i915_mutex_lock_interruptible(dev);
1048
	if (ret)
1049
		goto put_rpm;
1050

1051
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1052
	if (&obj->base == NULL) {
1053 1054
		ret = -ENOENT;
		goto unlock;
1055
	}
1056

1057
	/* Bounds check destination. */
1058 1059
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1060
		ret = -EINVAL;
1061
		goto out;
C
Chris Wilson 已提交
1062 1063
	}

1064 1065 1066 1067 1068 1069 1070 1071
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1072 1073
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1074
	ret = -EFAULT;
1075 1076 1077 1078 1079 1080
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1081 1082 1083
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1084
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1085 1086 1087
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1088
	}
1089

1090 1091 1092 1093 1094 1095
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1096

1097
out:
1098
	drm_gem_object_unreference(&obj->base);
1099
unlock:
1100
	mutex_unlock(&dev->struct_mutex);
1101 1102 1103
put_rpm:
	intel_runtime_pm_put(dev_priv);

1104 1105 1106
	return ret;
}

1107 1108
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1109
{
1110 1111
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1112

1113
	if (__i915_reset_in_progress(reset_counter)) {
1114 1115 1116 1117 1118
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1119
		return -EAGAIN;
1120 1121 1122 1123 1124
	}

	return 0;
}

1125 1126 1127 1128 1129 1130
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1131
		       struct intel_engine_cs *engine)
1132
{
1133
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1168
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1169
{
1170
	unsigned long timeout;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1182

1183
	if (req->engine->irq_refcount)
1184 1185
		return -EBUSY;

1186 1187 1188 1189
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1190
	timeout = local_clock_us(&cpu) + 5;
1191
	while (!need_resched()) {
D
Daniel Vetter 已提交
1192
		if (i915_gem_request_completed(req, true))
1193 1194
			return 0;

1195 1196 1197
		if (signal_pending_state(state, current))
			break;

1198
		if (busywait_stop(timeout, cpu))
1199
			break;
1200

1201 1202
		cpu_relax_lowlatency();
	}
1203

D
Daniel Vetter 已提交
1204
	if (i915_gem_request_completed(req, false))
1205 1206 1207
		return 0;

	return -EAGAIN;
1208 1209
}

1210
/**
1211 1212
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1213 1214 1215
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1216 1217 1218 1219 1220 1221 1222
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1223
 * Returns 0 if the request was found within the alloted time. Else returns the
1224 1225
 * errno with remaining time filled in timeout argument.
 */
1226
int __i915_wait_request(struct drm_i915_gem_request *req,
1227
			bool interruptible,
1228
			s64 *timeout,
1229
			struct intel_rps_client *rps)
1230
{
1231
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1232
	struct drm_device *dev = engine->dev;
1233
	struct drm_i915_private *dev_priv = dev->dev_private;
1234
	const bool irq_test_in_progress =
1235
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237
	DEFINE_WAIT(wait);
1238
	unsigned long timeout_expire;
1239
	s64 before = 0; /* Only to silence a compiler warning. */
1240 1241
	int ret;

1242
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243

1244 1245 1246
	if (list_empty(&req->list))
		return 0;

1247
	if (i915_gem_request_completed(req, true))
1248 1249
		return 0;

1250 1251 1252 1253 1254 1255 1256 1257 1258
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259 1260 1261 1262 1263

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1264
	}
1265

1266
	if (INTEL_INFO(dev_priv)->gen >= 6)
1267
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268

1269
	trace_i915_gem_request_wait_begin(req);
1270 1271

	/* Optimistic spin for the next jiffie before touching IRQs */
1272
	ret = __i915_spin_request(req, state);
1273 1274 1275
	if (ret == 0)
		goto out;

1276
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 1278 1279 1280
		ret = -ENODEV;
		goto out;
	}

1281 1282
	for (;;) {
		struct timer_list timer;
1283

1284
		prepare_to_wait(&engine->irq_queue, &wait, state);
1285

1286
		/* We need to check whether any gpu reset happened in between
1287 1288 1289 1290 1291 1292
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1293
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294
			ret = 0;
1295 1296
			break;
		}
1297

1298
		if (i915_gem_request_completed(req, false)) {
1299 1300 1301
			ret = 0;
			break;
		}
1302

1303
		if (signal_pending_state(state, current)) {
1304 1305 1306 1307
			ret = -ERESTARTSYS;
			break;
		}

1308
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 1310 1311 1312 1313
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1314
		if (timeout || missed_irq(dev_priv, engine)) {
1315 1316
			unsigned long expire;

1317
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 1320 1321
			mod_timer(&timer, expire);
		}

1322
		io_schedule();
1323 1324 1325 1326 1327 1328

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1329
	if (!irq_test_in_progress)
1330
		engine->irq_put(engine);
1331

1332
	finish_wait(&engine->irq_queue, &wait);
1333

1334 1335 1336
out:
	trace_i915_gem_request_wait_end(req);

1337
	if (timeout) {
1338
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339 1340

		*timeout = tres < 0 ? 0 : tres;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1351 1352
	}

1353
	return ret;
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1393 1394 1395

	put_pid(request->pid);
	request->pid = NULL;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1421
	struct intel_engine_cs *engine = req->engine;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1439
/**
1440
 * Waits for a request to be signaled, and cleans up the
1441 1442 1443
 * request and object lists appropriately for that event.
 */
int
1444
i915_wait_request(struct drm_i915_gem_request *req)
1445
{
1446 1447 1448
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1449 1450
	int ret;

1451 1452
	BUG_ON(req == NULL);

1453
	dev = req->engine->dev;
1454 1455 1456
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1457 1458
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1459
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1460 1461
	if (ret)
		return ret;
1462

1463
	__i915_gem_request_retire__upto(req);
1464 1465 1466
	return 0;
}

1467 1468 1469 1470
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1471
int
1472 1473 1474
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1475
	int ret, i;
1476

1477
	if (!obj->active)
1478 1479
		return 0;

1480 1481 1482 1483 1484
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1485

1486
			i = obj->last_write_req->engine->id;
1487 1488 1489 1490 1491 1492
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1493
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1494 1495 1496 1497 1498 1499 1500 1501 1502
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1503
		GEM_BUG_ON(obj->active);
1504 1505 1506 1507 1508 1509 1510 1511 1512
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1513
	int ring = req->engine->id;
1514 1515 1516 1517 1518 1519 1520

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1521 1522
}

1523 1524 1525 1526 1527
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1528
					    struct intel_rps_client *rps,
1529 1530 1531 1532
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1533
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1534
	int ret, i, n = 0;
1535 1536 1537 1538

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1539
	if (!obj->active)
1540 1541
		return 0;

1542 1543 1544 1545 1546 1547 1548 1549 1550
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1551
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1562
	mutex_unlock(&dev->struct_mutex);
1563
	ret = 0;
1564
	for (i = 0; ret == 0 && i < n; i++)
1565
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1566 1567
	mutex_lock(&dev->struct_mutex);

1568 1569 1570 1571 1572 1573 1574
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1575 1576
}

1577 1578 1579 1580 1581 1582
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1583
/**
1584 1585
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1586 1587 1588
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1589
			  struct drm_file *file)
1590 1591
{
	struct drm_i915_gem_set_domain *args = data;
1592
	struct drm_i915_gem_object *obj;
1593 1594
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1595 1596
	int ret;

1597
	/* Only handle setting domains to types used by the CPU. */
1598
	if (write_domain & I915_GEM_GPU_DOMAINS)
1599 1600
		return -EINVAL;

1601
	if (read_domains & I915_GEM_GPU_DOMAINS)
1602 1603 1604 1605 1606 1607 1608 1609
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1610
	ret = i915_mutex_lock_interruptible(dev);
1611
	if (ret)
1612
		return ret;
1613

1614
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1615
	if (&obj->base == NULL) {
1616 1617
		ret = -ENOENT;
		goto unlock;
1618
	}
1619

1620 1621 1622 1623
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1624
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1625
							  to_rps_client(file),
1626
							  !write_domain);
1627 1628 1629
	if (ret)
		goto unref;

1630
	if (read_domains & I915_GEM_DOMAIN_GTT)
1631
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1632
	else
1633
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1634

1635 1636 1637 1638 1639
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1640
unref:
1641
	drm_gem_object_unreference(&obj->base);
1642
unlock:
1643 1644 1645 1646 1647 1648 1649 1650 1651
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1652
			 struct drm_file *file)
1653 1654
{
	struct drm_i915_gem_sw_finish *args = data;
1655
	struct drm_i915_gem_object *obj;
1656 1657
	int ret = 0;

1658
	ret = i915_mutex_lock_interruptible(dev);
1659
	if (ret)
1660
		return ret;
1661

1662
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1663
	if (&obj->base == NULL) {
1664 1665
		ret = -ENOENT;
		goto unlock;
1666 1667 1668
	}

	/* Pinned buffers may be scanout, so flush the cache */
1669
	if (obj->pin_display)
1670
		i915_gem_object_flush_cpu_write_domain(obj);
1671

1672
	drm_gem_object_unreference(&obj->base);
1673
unlock:
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1694 1695 1696
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1697
		    struct drm_file *file)
1698 1699 1700 1701 1702
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1703 1704 1705 1706 1707 1708
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1709
	obj = drm_gem_object_lookup(dev, file, args->handle);
1710
	if (obj == NULL)
1711
		return -ENOENT;
1712

1713 1714 1715 1716 1717 1718 1719 1720
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1721
	addr = vm_mmap(obj->filp, 0, args->size,
1722 1723
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1737
	drm_gem_object_unreference_unlocked(obj);
1738 1739 1740 1741 1742 1743 1744 1745
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1746 1747
/**
 * i915_gem_fault - fault a page into the GTT
1748 1749
 * @vma: VMA in question
 * @vmf: fault info
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1764 1765
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1766 1767
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1768
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1769 1770 1771
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1772
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1773

1774 1775
	intel_runtime_pm_get(dev_priv);

1776 1777 1778 1779
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1780 1781 1782
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1783

C
Chris Wilson 已提交
1784 1785
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1786 1787 1788 1789 1790 1791 1792 1793 1794
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1795 1796
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1797
		ret = -EFAULT;
1798 1799 1800
		goto unlock;
	}

1801
	/* Use a partial view if the object is bigger than the aperture. */
1802
	if (obj->base.size >= ggtt->mappable_end &&
1803
	    obj->tiling_mode == I915_TILING_NONE) {
1804
		static const unsigned int chunk_size = 256; // 1 MiB
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1818 1819
	if (ret)
		goto unlock;
1820

1821 1822 1823
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1824

1825
	ret = i915_gem_object_get_fence(obj);
1826
	if (ret)
1827
		goto unpin;
1828

1829
	/* Finally, remap it using the new GTT offset */
1830
	pfn = ggtt->mappable_base +
1831
		i915_gem_obj_ggtt_offset_view(obj, &view);
1832
	pfn >>= PAGE_SHIFT;
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1843

1844 1845
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1846 1847 1848 1849 1850
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1872
unpin:
1873
	i915_gem_object_ggtt_unpin_view(obj, &view);
1874
unlock:
1875
	mutex_unlock(&dev->struct_mutex);
1876
out:
1877
	switch (ret) {
1878
	case -EIO:
1879 1880 1881 1882 1883 1884 1885
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1886 1887 1888
			ret = VM_FAULT_SIGBUS;
			break;
		}
1889
	case -EAGAIN:
D
Daniel Vetter 已提交
1890 1891 1892 1893
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1894
		 */
1895 1896
	case 0:
	case -ERESTARTSYS:
1897
	case -EINTR:
1898 1899 1900 1901 1902
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1903 1904
		ret = VM_FAULT_NOPAGE;
		break;
1905
	case -ENOMEM:
1906 1907
		ret = VM_FAULT_OOM;
		break;
1908
	case -ENOSPC:
1909
	case -EFAULT:
1910 1911
		ret = VM_FAULT_SIGBUS;
		break;
1912
	default:
1913
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1914 1915
		ret = VM_FAULT_SIGBUS;
		break;
1916
	}
1917 1918 1919

	intel_runtime_pm_put(dev_priv);
	return ret;
1920 1921
}

1922 1923 1924 1925
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1926
 * Preserve the reservation of the mmapping with the DRM core code, but
1927 1928 1929 1930 1931 1932 1933 1934 1935
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1936
void
1937
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1938
{
1939 1940 1941 1942 1943 1944
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1945 1946
	if (!obj->fault_mappable)
		return;
1947

1948 1949
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1960
	obj->fault_mappable = false;
1961 1962
}

1963 1964 1965 1966 1967 1968 1969 1970 1971
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1972
uint32_t
1973
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1974
{
1975
	uint32_t gtt_size;
1976 1977

	if (INTEL_INFO(dev)->gen >= 4 ||
1978 1979
	    tiling_mode == I915_TILING_NONE)
		return size;
1980 1981 1982

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1983
		gtt_size = 1024*1024;
1984
	else
1985
		gtt_size = 512*1024;
1986

1987 1988
	while (gtt_size < size)
		gtt_size <<= 1;
1989

1990
	return gtt_size;
1991 1992
}

1993 1994 1995 1996 1997
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1998
 * potential fence register mapping.
1999
 */
2000 2001 2002
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2003 2004 2005 2006 2007
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2008
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2009
	    tiling_mode == I915_TILING_NONE)
2010 2011
		return 4096;

2012 2013 2014 2015
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2016
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2017 2018
}

2019 2020 2021 2022 2023
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2024
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2025 2026
		return 0;

2027 2028
	dev_priv->mm.shrinker_no_lock_stealing = true;

2029 2030
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2031
		goto out;
2032 2033 2034 2035 2036 2037 2038 2039

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2040 2041 2042 2043 2044
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2045 2046
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2047
		goto out;
2048 2049

	i915_gem_shrink_all(dev_priv);
2050 2051 2052 2053 2054
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2055 2056 2057 2058 2059 2060 2061
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2062
int
2063 2064
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2065
		  uint32_t handle,
2066
		  uint64_t *offset)
2067
{
2068
	struct drm_i915_gem_object *obj;
2069 2070
	int ret;

2071
	ret = i915_mutex_lock_interruptible(dev);
2072
	if (ret)
2073
		return ret;
2074

2075
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2076
	if (&obj->base == NULL) {
2077 2078 2079
		ret = -ENOENT;
		goto unlock;
	}
2080

2081
	if (obj->madv != I915_MADV_WILLNEED) {
2082
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2083
		ret = -EFAULT;
2084
		goto out;
2085 2086
	}

2087 2088 2089
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2090

2091
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2092

2093
out:
2094
	drm_gem_object_unreference(&obj->base);
2095
unlock:
2096
	mutex_unlock(&dev->struct_mutex);
2097
	return ret;
2098 2099
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2121
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2122 2123
}

D
Daniel Vetter 已提交
2124 2125 2126
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2127
{
2128
	i915_gem_object_free_mmap_offset(obj);
2129

2130 2131
	if (obj->base.filp == NULL)
		return;
2132

D
Daniel Vetter 已提交
2133 2134 2135 2136 2137
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2138
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2139 2140
	obj->madv = __I915_MADV_PURGED;
}
2141

2142 2143 2144
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2145
{
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2160 2161
}

2162
static void
2163
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2164
{
2165 2166
	struct sg_page_iter sg_iter;
	int ret;
2167

2168
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2169

C
Chris Wilson 已提交
2170
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2171
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2172 2173 2174
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2175
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2176 2177 2178
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2179 2180
	i915_gem_gtt_finish_object(obj);

2181
	if (i915_gem_object_needs_bit17_swizzle(obj))
2182 2183
		i915_gem_object_save_bit_17_swizzle(obj);

2184 2185
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2186

2187
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2188
		struct page *page = sg_page_iter_page(&sg_iter);
2189

2190
		if (obj->dirty)
2191
			set_page_dirty(page);
2192

2193
		if (obj->madv == I915_MADV_WILLNEED)
2194
			mark_page_accessed(page);
2195

2196
		put_page(page);
2197
	}
2198
	obj->dirty = 0;
2199

2200 2201
	sg_free_table(obj->pages);
	kfree(obj->pages);
2202
}
C
Chris Wilson 已提交
2203

2204
int
2205 2206 2207 2208
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2209
	if (obj->pages == NULL)
2210 2211
		return 0;

2212 2213 2214
	if (obj->pages_pin_count)
		return -EBUSY;

2215
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2216

2217 2218 2219
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2220
	list_del(&obj->global_list);
2221

2222
	if (obj->mapping) {
2223 2224 2225 2226
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2227 2228 2229
		obj->mapping = NULL;
	}

2230
	ops->put_pages(obj);
2231
	obj->pages = NULL;
2232

2233
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2234 2235 2236 2237

	return 0;
}

2238
static int
C
Chris Wilson 已提交
2239
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2240
{
C
Chris Wilson 已提交
2241
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2242 2243
	int page_count, i;
	struct address_space *mapping;
2244 2245
	struct sg_table *st;
	struct scatterlist *sg;
2246
	struct sg_page_iter sg_iter;
2247
	struct page *page;
2248
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2249
	int ret;
C
Chris Wilson 已提交
2250
	gfp_t gfp;
2251

C
Chris Wilson 已提交
2252 2253 2254 2255 2256 2257 2258
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2259 2260 2261 2262
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2263
	page_count = obj->base.size / PAGE_SIZE;
2264 2265
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2266
		return -ENOMEM;
2267
	}
2268

2269 2270 2271 2272 2273
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2274
	mapping = file_inode(obj->base.filp)->i_mapping;
2275
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2276
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2277 2278 2279
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2280 2281
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2282 2283 2284 2285 2286
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2287 2288 2289 2290 2291 2292 2293 2294
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2295
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2296 2297
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2298
				goto err_pages;
I
Imre Deak 已提交
2299
			}
C
Chris Wilson 已提交
2300
		}
2301 2302 2303 2304 2305 2306 2307 2308
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2309 2310 2311 2312 2313 2314 2315 2316 2317
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2318 2319 2320

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2321
	}
2322 2323 2324 2325
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2326 2327
	obj->pages = st;

I
Imre Deak 已提交
2328 2329 2330 2331
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2332
	if (i915_gem_object_needs_bit17_swizzle(obj))
2333 2334
		i915_gem_object_do_bit_17_swizzle(obj);

2335 2336 2337 2338
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2339 2340 2341
	return 0;

err_pages:
2342 2343
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2344
		put_page(sg_page_iter_page(&sg_iter));
2345 2346
	sg_free_table(st);
	kfree(st);
2347 2348 2349 2350 2351 2352 2353 2354 2355

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2356 2357 2358 2359
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2360 2361
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2376
	if (obj->pages)
2377 2378
		return 0;

2379
	if (obj->madv != I915_MADV_WILLNEED) {
2380
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2381
		return -EFAULT;
2382 2383
	}

2384 2385
	BUG_ON(obj->pages_pin_count);

2386 2387 2388 2389
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2390
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2391 2392 2393 2394

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2395
	return 0;
2396 2397
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2413 2414 2415 2416 2417 2418 2419
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2420
		if (pages != NULL) {
2421 2422 2423
			struct sg_page_iter sg_iter;
			int n;

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2441
void i915_vma_move_to_active(struct i915_vma *vma,
2442
			     struct drm_i915_gem_request *req)
2443
{
2444
	struct drm_i915_gem_object *obj = vma->obj;
2445
	struct intel_engine_cs *engine;
2446

2447
	engine = i915_gem_request_get_engine(req);
2448 2449

	/* Add a reference if we're newly entering the active list. */
2450
	if (obj->active == 0)
2451
		drm_gem_object_reference(&obj->base);
2452
	obj->active |= intel_engine_flag(engine);
2453

2454
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2455
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2456

2457
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2458 2459
}

2460 2461
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2462
{
2463 2464
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2465 2466

	i915_gem_request_assign(&obj->last_write_req, NULL);
2467
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2468 2469
}

2470
static void
2471
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2472
{
2473
	struct i915_vma *vma;
2474

2475 2476
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2477

2478
	list_del_init(&obj->engine_list[ring]);
2479 2480
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2481
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2482 2483 2484 2485 2486
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2487

2488 2489 2490 2491 2492 2493 2494
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2495 2496 2497
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2498
	}
2499

2500
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2501
	drm_gem_object_unreference(&obj->base);
2502 2503
}

2504
static int
2505
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2506
{
2507
	struct drm_i915_private *dev_priv = dev->dev_private;
2508
	struct intel_engine_cs *engine;
2509
	int ret;
2510

2511
	/* Carefully retire all requests without writing to the rings */
2512
	for_each_engine(engine, dev_priv) {
2513
		ret = intel_engine_idle(engine);
2514 2515
		if (ret)
			return ret;
2516 2517
	}
	i915_gem_retire_requests(dev);
2518 2519

	/* Finally reset hw state */
2520
	for_each_engine(engine, dev_priv)
2521
		intel_ring_init_seqno(engine, seqno);
2522

2523
	return 0;
2524 2525
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2552 2553
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2554
{
2555 2556 2557 2558
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2559
		int ret = i915_gem_init_seqno(dev, 0);
2560 2561
		if (ret)
			return ret;
2562

2563 2564
		dev_priv->next_seqno = 1;
	}
2565

2566
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2567
	return 0;
2568 2569
}

2570 2571 2572 2573 2574
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2575
void __i915_add_request(struct drm_i915_gem_request *request,
2576 2577
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2578
{
2579
	struct intel_engine_cs *engine;
2580
	struct drm_i915_private *dev_priv;
2581
	struct intel_ringbuffer *ringbuf;
2582
	u32 request_start;
2583 2584
	int ret;

2585
	if (WARN_ON(request == NULL))
2586
		return;
2587

2588
	engine = request->engine;
2589
	dev_priv = request->i915;
2590 2591
	ringbuf = request->ringbuf;

2592 2593 2594 2595 2596 2597 2598
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2599
	request_start = intel_ring_get_tail(ringbuf);
2600 2601 2602 2603 2604 2605 2606
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2607 2608
	if (flush_caches) {
		if (i915.enable_execlists)
2609
			ret = logical_ring_flush_all_caches(request);
2610
		else
2611
			ret = intel_ring_flush_all_caches(request);
2612 2613 2614
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2638 2639 2640 2641 2642
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2643
	request->postfix = intel_ring_get_tail(ringbuf);
2644

2645
	if (i915.enable_execlists)
2646
		ret = engine->emit_request(request);
2647
	else {
2648
		ret = engine->add_request(request);
2649 2650

		request->tail = intel_ring_get_tail(ringbuf);
2651
	}
2652 2653
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2654

2655
	i915_queue_hangcheck(engine->dev);
2656

2657 2658 2659 2660
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2661

2662 2663
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2664 2665
}

2666
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2667
				   const struct intel_context *ctx)
2668
{
2669
	unsigned long elapsed;
2670

2671 2672 2673
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2674 2675
		return true;

2676 2677
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2678
		if (!i915_gem_context_is_default(ctx)) {
2679
			DRM_DEBUG("context hanging too fast, banning!\n");
2680
			return true;
2681 2682 2683
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2684
			return true;
2685
		}
2686 2687 2688 2689 2690
	}

	return false;
}

2691
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2692
				  struct intel_context *ctx,
2693
				  const bool guilty)
2694
{
2695 2696 2697 2698
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2699

2700 2701 2702
	hs = &ctx->hang_stats;

	if (guilty) {
2703
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2704 2705 2706 2707
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2708 2709 2710
	}
}

2711 2712 2713 2714 2715 2716
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2717 2718 2719
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2720
	if (ctx) {
D
Dave Gordon 已提交
2721
		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2722
			intel_lr_context_unpin(ctx, req->engine);
2723

2724 2725
		i915_gem_context_unreference(ctx);
	}
2726

2727
	kmem_cache_free(req->i915->requests, req);
2728 2729
}

2730
static inline int
2731
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2732 2733
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2734
{
2735
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2736
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2737
	struct drm_i915_gem_request *req;
2738 2739
	int ret;

2740 2741 2742
	if (!req_out)
		return -EINVAL;

2743
	*req_out = NULL;
2744

2745 2746 2747 2748 2749
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2750 2751 2752
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2753 2754
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2755 2756
		return -ENOMEM;

2757
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2758 2759
	if (ret)
		goto err;
2760

2761 2762
	kref_init(&req->ref);
	req->i915 = dev_priv;
2763
	req->engine = engine;
2764
	req->reset_counter = reset_counter;
2765 2766
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2767 2768

	if (i915.enable_execlists)
2769
		ret = intel_logical_ring_alloc_request_extras(req);
2770
	else
D
Daniel Vetter 已提交
2771
		ret = intel_ring_alloc_request_extras(req);
2772 2773
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2774
		goto err;
2775
	}
2776

2777 2778 2779 2780 2781 2782 2783
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2797

2798
	*req_out = req;
2799
	return 0;
2800 2801 2802 2803

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2804 2805
}

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2826
		ctx = to_i915(engine->dev)->kernel_context;
2827 2828 2829 2830
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2831 2832 2833 2834 2835 2836 2837
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2838
struct drm_i915_gem_request *
2839
i915_gem_find_active_request(struct intel_engine_cs *engine)
2840
{
2841 2842
	struct drm_i915_gem_request *request;

2843
	list_for_each_entry(request, &engine->request_list, list) {
2844
		if (i915_gem_request_completed(request, false))
2845
			continue;
2846

2847
		return request;
2848
	}
2849 2850 2851 2852

	return NULL;
}

2853
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2854
				       struct intel_engine_cs *engine)
2855 2856 2857 2858
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2859
	request = i915_gem_find_active_request(engine);
2860 2861 2862 2863

	if (request == NULL)
		return;

2864
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2865

2866
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2867

2868
	list_for_each_entry_continue(request, &engine->request_list, list)
2869
		i915_set_reset_status(dev_priv, request->ctx, false);
2870
}
2871

2872
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2873
					struct intel_engine_cs *engine)
2874
{
2875 2876
	struct intel_ringbuffer *buffer;

2877
	while (!list_empty(&engine->active_list)) {
2878
		struct drm_i915_gem_object *obj;
2879

2880
		obj = list_first_entry(&engine->active_list,
2881
				       struct drm_i915_gem_object,
2882
				       engine_list[engine->id]);
2883

2884
		i915_gem_object_retire__read(obj, engine->id);
2885
	}
2886

2887 2888 2889 2890 2891 2892
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2893
	if (i915.enable_execlists) {
2894 2895
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2896

2897
		spin_lock_bh(&engine->execlist_lock);
2898
		/* list_splice_tail_init checks for empty lists */
2899 2900
		list_splice_tail_init(&engine->execlist_queue,
				      &engine->execlist_retired_req_list);
2901
		spin_unlock_bh(&engine->execlist_lock);
2902

2903
		intel_execlists_retire_requests(engine);
2904 2905
	}

2906 2907 2908 2909 2910 2911 2912
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2913
	while (!list_empty(&engine->request_list)) {
2914 2915
		struct drm_i915_gem_request *request;

2916
		request = list_first_entry(&engine->request_list,
2917 2918 2919
					   struct drm_i915_gem_request,
					   list);

2920
		i915_gem_request_retire(request);
2921
	}
2922 2923 2924 2925 2926 2927 2928 2929

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2930
	list_for_each_entry(buffer, &engine->buffers, link) {
2931 2932 2933
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2934 2935

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2936 2937
}

2938
void i915_gem_reset(struct drm_device *dev)
2939
{
2940
	struct drm_i915_private *dev_priv = dev->dev_private;
2941
	struct intel_engine_cs *engine;
2942

2943 2944 2945 2946 2947
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2948
	for_each_engine(engine, dev_priv)
2949
		i915_gem_reset_engine_status(dev_priv, engine);
2950

2951
	for_each_engine(engine, dev_priv)
2952
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2953

2954 2955
	i915_gem_context_reset(dev);

2956
	i915_gem_restore_fences(dev);
2957 2958

	WARN_ON(i915_verify_lists(dev));
2959 2960 2961 2962 2963
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2964
void
2965
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2966
{
2967
	WARN_ON(i915_verify_lists(engine->dev));
2968

2969 2970 2971 2972
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2973
	 */
2974
	while (!list_empty(&engine->request_list)) {
2975 2976
		struct drm_i915_gem_request *request;

2977
		request = list_first_entry(&engine->request_list,
2978 2979 2980
					   struct drm_i915_gem_request,
					   list);

2981
		if (!i915_gem_request_completed(request, true))
2982 2983
			break;

2984
		i915_gem_request_retire(request);
2985
	}
2986

2987 2988 2989 2990
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2991
	while (!list_empty(&engine->active_list)) {
2992 2993
		struct drm_i915_gem_object *obj;

2994 2995
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2996
				       engine_list[engine->id]);
2997

2998
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2999 3000
			break;

3001
		i915_gem_object_retire__read(obj, engine->id);
3002 3003
	}

3004 3005 3006 3007
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3008
	}
3009

3010
	WARN_ON(i915_verify_lists(engine->dev));
3011 3012
}

3013
bool
3014 3015
i915_gem_retire_requests(struct drm_device *dev)
{
3016
	struct drm_i915_private *dev_priv = dev->dev_private;
3017
	struct intel_engine_cs *engine;
3018
	bool idle = true;
3019

3020
	for_each_engine(engine, dev_priv) {
3021 3022
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3023
		if (i915.enable_execlists) {
3024
			spin_lock_bh(&engine->execlist_lock);
3025
			idle &= list_empty(&engine->execlist_queue);
3026
			spin_unlock_bh(&engine->execlist_lock);
3027

3028
			intel_execlists_retire_requests(engine);
3029
		}
3030 3031 3032 3033 3034 3035 3036 3037
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3038 3039
}

3040
static void
3041 3042
i915_gem_retire_work_handler(struct work_struct *work)
{
3043 3044 3045
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3046
	bool idle;
3047

3048
	/* Come back later if the device is busy... */
3049 3050 3051 3052
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3053
	}
3054
	if (!idle)
3055 3056
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3057
}
3058

3059 3060 3061 3062 3063
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3064
	struct drm_device *dev = dev_priv->dev;
3065
	struct intel_engine_cs *engine;
3066

3067 3068
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3069
			return;
3070

3071
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3072
	 * Also locking seems to be fubar here, engine->request_list is protected
3073 3074
	 * by dev->struct_mutex. */

3075 3076 3077
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3078
		for_each_engine(engine, dev_priv)
3079
			i915_gem_batch_pool_fini(&engine->batch_pool);
3080

3081 3082
		mutex_unlock(&dev->struct_mutex);
	}
3083 3084
}

3085 3086 3087 3088 3089 3090 3091 3092
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3093
	int i;
3094 3095 3096

	if (!obj->active)
		return 0;
3097

3098
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3099
		struct drm_i915_gem_request *req;
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3113 3114 3115 3116 3117
	}

	return 0;
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3145
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3146 3147
	int i, n = 0;
	int ret;
3148

3149 3150 3151
	if (args->flags != 0)
		return -EINVAL;

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3162 3163
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3164 3165 3166
	if (ret)
		goto out;

3167
	if (!obj->active)
3168
		goto out;
3169 3170

	/* Do this after OLR check to make sure we make forward progress polling
3171
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3172
	 */
3173
	if (args->timeout_ns == 0) {
3174 3175 3176 3177 3178
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3179

3180
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3181 3182 3183 3184 3185 3186
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3187 3188
	mutex_unlock(&dev->struct_mutex);

3189 3190
	for (i = 0; i < n; i++) {
		if (ret == 0)
3191
			ret = __i915_wait_request(req[i], true,
3192
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3193
						  to_rps_client(file));
3194 3195
		i915_gem_request_unreference__unlocked(req[i]);
	}
3196
	return ret;
3197 3198 3199 3200 3201 3202 3203

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3204 3205 3206
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3207 3208
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3209 3210 3211 3212
{
	struct intel_engine_cs *from;
	int ret;

3213
	from = i915_gem_request_get_engine(from_req);
3214 3215 3216
	if (to == from)
		return 0;

3217
	if (i915_gem_request_completed(from_req, true))
3218 3219 3220
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3221
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3222
		ret = __i915_wait_request(from_req,
3223 3224 3225
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3226 3227 3228
		if (ret)
			return ret;

3229
		i915_gem_object_retire_request(obj, from_req);
3230 3231
	} else {
		int idx = intel_ring_sync_index(from, to);
3232 3233 3234
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3235 3236 3237 3238

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3239
		if (*to_req == NULL) {
3240 3241 3242 3243 3244 3245 3246
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3247 3248
		}

3249 3250
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3265 3266 3267 3268 3269
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3270 3271 3272
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3273 3274 3275
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3276
 * rather than a particular GPU ring. Conceptually we serialise writes
3277
 * between engines inside the GPU. We only allow one engine to write
3278 3279 3280 3281 3282 3283 3284 3285 3286
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3287
 *
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3298 3299
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3300 3301
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3302 3303
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3304
{
3305
	const bool readonly = obj->base.pending_write_domain == 0;
3306
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3307
	int ret, i, n;
3308

3309
	if (!obj->active)
3310 3311
		return 0;

3312 3313
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3314

3315 3316 3317 3318 3319
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3320
		for (i = 0; i < I915_NUM_ENGINES; i++)
3321 3322 3323 3324
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3325
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3326 3327 3328
		if (ret)
			return ret;
	}
3329

3330
	return 0;
3331 3332
}

3333 3334 3335 3336 3337 3338 3339
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3340 3341 3342
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3354
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3355
{
3356
	struct drm_i915_gem_object *obj = vma->obj;
3357
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3358
	int ret;
3359

3360
	if (list_empty(&vma->obj_link))
3361 3362
		return 0;

3363 3364 3365 3366
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3367

B
Ben Widawsky 已提交
3368
	if (vma->pin_count)
3369
		return -EBUSY;
3370

3371 3372
	BUG_ON(obj->pages == NULL);

3373 3374 3375 3376 3377
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3378

3379
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3380
		i915_gem_object_finish_gtt(obj);
3381

3382 3383 3384 3385 3386
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3387

3388
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3389

3390
	vma->vm->unbind_vma(vma);
3391
	vma->bound = 0;
3392

3393
	list_del_init(&vma->vm_link);
3394
	if (vma->is_ggtt) {
3395 3396 3397 3398 3399 3400
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3401
		vma->ggtt_view.pages = NULL;
3402
	}
3403

B
Ben Widawsky 已提交
3404 3405 3406 3407
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3408
	 * no more VMAs exist. */
I
Imre Deak 已提交
3409
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3410
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3411

3412 3413 3414 3415 3416 3417
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3418
	return 0;
3419 3420
}

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3431
int i915_gpu_idle(struct drm_device *dev)
3432
{
3433
	struct drm_i915_private *dev_priv = dev->dev_private;
3434
	struct intel_engine_cs *engine;
3435
	int ret;
3436 3437

	/* Flush everything onto the inactive list. */
3438
	for_each_engine(engine, dev_priv) {
3439
		if (!i915.enable_execlists) {
3440 3441
			struct drm_i915_gem_request *req;

3442
			req = i915_gem_request_alloc(engine, NULL);
3443 3444
			if (IS_ERR(req))
				return PTR_ERR(req);
3445

3446
			ret = i915_switch_context(req);
3447 3448 3449 3450 3451
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3452
			i915_add_request_no_flush(req);
3453
		}
3454

3455
		ret = intel_engine_idle(engine);
3456 3457 3458
		if (ret)
			return ret;
	}
3459

3460
	WARN_ON(i915_verify_lists(dev));
3461
	return 0;
3462 3463
}

3464
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3465 3466
				     unsigned long cache_level)
{
3467
	struct drm_mm_node *gtt_space = &vma->node;
3468 3469
	struct drm_mm_node *other;

3470 3471 3472 3473 3474 3475
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3476
	 */
3477
	if (vma->vm->mm.color_adjust == NULL)
3478 3479
		return true;

3480
	if (!drm_mm_node_allocated(gtt_space))
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3497
/**
3498 3499
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3500
 */
3501
static struct i915_vma *
3502 3503
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3504
			   const struct i915_ggtt_view *ggtt_view,
3505
			   unsigned alignment,
3506
			   uint64_t flags)
3507
{
3508
	struct drm_device *dev = obj->base.dev;
3509 3510
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3511
	u32 fence_alignment, unfenced_alignment;
3512 3513
	u32 search_flag, alloc_flag;
	u64 start, end;
3514
	u64 size, fence_size;
B
Ben Widawsky 已提交
3515
	struct i915_vma *vma;
3516
	int ret;
3517

3518 3519 3520 3521 3522
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3553

3554 3555 3556
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3557
		end = min_t(u64, end, ggtt->mappable_end);
3558
	if (flags & PIN_ZONE_4G)
3559
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3560

3561
	if (alignment == 0)
3562
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3563
						unfenced_alignment;
3564
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3565 3566 3567
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3568
		return ERR_PTR(-EINVAL);
3569 3570
	}

3571 3572 3573
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3574
	 */
3575
	if (size > end) {
3576
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3577 3578
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3579
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3580
			  end);
3581
		return ERR_PTR(-E2BIG);
3582 3583
	}

3584
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3585
	if (ret)
3586
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3587

3588 3589
	i915_gem_object_pin_pages(obj);

3590 3591 3592
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3593
	if (IS_ERR(vma))
3594
		goto err_unpin;
B
Ben Widawsky 已提交
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3614
	} else {
3615 3616 3617 3618 3619 3620 3621
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3622

3623
search_free:
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3637

3638 3639
			goto err_free_vma;
		}
3640
	}
3641
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3642
		ret = -EINVAL;
3643
		goto err_remove_node;
3644 3645
	}

3646
	trace_i915_vma_bind(vma, flags);
3647
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3648
	if (ret)
I
Imre Deak 已提交
3649
		goto err_remove_node;
3650

3651
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3652
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3653

3654
	return vma;
B
Ben Widawsky 已提交
3655

3656
err_remove_node:
3657
	drm_mm_remove_node(&vma->node);
3658
err_free_vma:
B
Ben Widawsky 已提交
3659
	i915_gem_vma_destroy(vma);
3660
	vma = ERR_PTR(ret);
3661
err_unpin:
B
Ben Widawsky 已提交
3662
	i915_gem_object_unpin_pages(obj);
3663
	return vma;
3664 3665
}

3666
bool
3667 3668
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3669 3670 3671 3672 3673
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3674
	if (obj->pages == NULL)
3675
		return false;
3676

3677 3678 3679 3680
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3681
	if (obj->stolen || obj->phys_handle)
3682
		return false;
3683

3684 3685 3686 3687 3688 3689 3690 3691
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3692 3693
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3694
		return false;
3695
	}
3696

C
Chris Wilson 已提交
3697
	trace_i915_gem_object_clflush(obj);
3698
	drm_clflush_sg(obj->pages);
3699
	obj->cache_dirty = false;
3700 3701

	return true;
3702 3703 3704 3705
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3706
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3707
{
C
Chris Wilson 已提交
3708 3709
	uint32_t old_write_domain;

3710
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3711 3712
		return;

3713
	/* No actual flushing is required for the GTT write domain.  Writes
3714 3715
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3716 3717 3718 3719
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3720
	 */
3721 3722
	wmb();

3723 3724
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3725

3726
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3727

C
Chris Wilson 已提交
3728
	trace_i915_gem_object_change_domain(obj,
3729
					    obj->base.read_domains,
C
Chris Wilson 已提交
3730
					    old_write_domain);
3731 3732 3733 3734
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3735
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3736
{
C
Chris Wilson 已提交
3737
	uint32_t old_write_domain;
3738

3739
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3740 3741
		return;

3742
	if (i915_gem_clflush_object(obj, obj->pin_display))
3743 3744
		i915_gem_chipset_flush(obj->base.dev);

3745 3746
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3747

3748
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3749

C
Chris Wilson 已提交
3750
	trace_i915_gem_object_change_domain(obj,
3751
					    obj->base.read_domains,
C
Chris Wilson 已提交
3752
					    old_write_domain);
3753 3754
}

3755 3756 3757 3758 3759 3760
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3761
int
3762
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3763
{
3764 3765 3766
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3767
	uint32_t old_write_domain, old_read_domains;
3768
	struct i915_vma *vma;
3769
	int ret;
3770

3771 3772 3773
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3774
	ret = i915_gem_object_wait_rendering(obj, !write);
3775 3776 3777
	if (ret)
		return ret;

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3790
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3791

3792 3793 3794 3795 3796 3797 3798
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3799 3800
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3801

3802 3803 3804
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3805 3806
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3807
	if (write) {
3808 3809 3810
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3811 3812
	}

C
Chris Wilson 已提交
3813 3814 3815 3816
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3817
	/* And bump the LRU for this access */
3818 3819
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3820
		list_move_tail(&vma->vm_link,
3821
			       &ggtt->base.inactive_list);
3822

3823 3824 3825
	return 0;
}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3839 3840 3841
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3842
	struct drm_device *dev = obj->base.dev;
3843
	struct i915_vma *vma, *next;
3844
	bool bound = false;
3845
	int ret = 0;
3846 3847

	if (obj->cache_level == cache_level)
3848
		goto out;
3849

3850 3851 3852 3853 3854
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3855
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3856 3857 3858 3859 3860 3861 3862 3863
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3864
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3865
			ret = i915_vma_unbind(vma);
3866 3867
			if (ret)
				return ret;
3868 3869
		} else
			bound = true;
3870 3871
	}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3884
		ret = i915_gem_object_wait_rendering(obj, false);
3885 3886 3887
		if (ret)
			return ret;

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3905 3906 3907
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3908 3909 3910 3911 3912 3913 3914 3915
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3916 3917
		}

3918
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3919 3920 3921 3922 3923 3924 3925
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3926 3927
	}

3928
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3929 3930 3931
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3932
out:
3933 3934 3935 3936
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3937 3938 3939 3940 3941
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3942 3943 3944 3945 3946
	}

	return 0;
}

B
Ben Widawsky 已提交
3947 3948
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3949
{
B
Ben Widawsky 已提交
3950
	struct drm_i915_gem_caching *args = data;
3951 3952 3953
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3954 3955
	if (&obj->base == NULL)
		return -ENOENT;
3956

3957 3958 3959 3960 3961 3962
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3963 3964 3965 3966
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3967 3968 3969 3970
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3971

3972 3973
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3974 3975
}

B
Ben Widawsky 已提交
3976 3977
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3978
{
3979
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3980
	struct drm_i915_gem_caching *args = data;
3981 3982 3983 3984
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3985 3986
	switch (args->caching) {
	case I915_CACHING_NONE:
3987 3988
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3989
	case I915_CACHING_CACHED:
3990 3991 3992 3993 3994 3995
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3996
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3997 3998
			return -ENODEV;

3999 4000
		level = I915_CACHE_LLC;
		break;
4001 4002 4003
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4004 4005 4006 4007
	default:
		return -EINVAL;
	}

4008 4009
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4010 4011
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4012
		goto rpm_put;
B
Ben Widawsky 已提交
4013

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4025 4026 4027
rpm_put:
	intel_runtime_pm_put(dev_priv);

4028 4029 4030
	return ret;
}

4031
/*
4032 4033 4034
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4035 4036
 */
int
4037 4038
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4039
				     const struct i915_ggtt_view *view)
4040
{
4041
	u32 old_read_domains, old_write_domain;
4042 4043
	int ret;

4044 4045 4046
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4047
	obj->pin_display++;
4048

4049 4050 4051 4052 4053 4054 4055 4056 4057
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4058 4059
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4060
	if (ret)
4061
		goto err_unpin_display;
4062

4063 4064 4065 4066
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4067 4068 4069
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4070
	if (ret)
4071
		goto err_unpin_display;
4072

4073
	i915_gem_object_flush_cpu_write_domain(obj);
4074

4075
	old_write_domain = obj->base.write_domain;
4076
	old_read_domains = obj->base.read_domains;
4077 4078 4079 4080

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4081
	obj->base.write_domain = 0;
4082
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4083 4084 4085

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4086
					    old_write_domain);
4087 4088

	return 0;
4089 4090

err_unpin_display:
4091
	obj->pin_display--;
4092 4093 4094 4095
	return ret;
}

void
4096 4097
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4098
{
4099 4100 4101
	if (WARN_ON(obj->pin_display == 0))
		return;

4102 4103
	i915_gem_object_ggtt_unpin_view(obj, view);

4104
	obj->pin_display--;
4105 4106
}

4107 4108 4109 4110 4111 4112
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4113
int
4114
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4115
{
C
Chris Wilson 已提交
4116
	uint32_t old_write_domain, old_read_domains;
4117 4118
	int ret;

4119 4120 4121
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4122
	ret = i915_gem_object_wait_rendering(obj, !write);
4123 4124 4125
	if (ret)
		return ret;

4126
	i915_gem_object_flush_gtt_write_domain(obj);
4127

4128 4129
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4130

4131
	/* Flush the CPU cache if it's still invalid. */
4132
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4133
		i915_gem_clflush_object(obj, false);
4134

4135
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4136 4137 4138 4139 4140
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4141
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4142 4143 4144 4145 4146

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4147 4148
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4149
	}
4150

C
Chris Wilson 已提交
4151 4152 4153 4154
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4155 4156 4157
	return 0;
}

4158 4159 4160
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4161 4162 4163 4164
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4165 4166 4167
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4168
static int
4169
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4170
{
4171 4172
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4173
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4174
	struct drm_i915_gem_request *request, *target = NULL;
4175
	int ret;
4176

4177 4178 4179 4180
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4181 4182 4183
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4184

4185
	spin_lock(&file_priv->mm.lock);
4186
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4187 4188
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4189

4190 4191 4192 4193 4194 4195 4196
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4197
		target = request;
4198
	}
4199 4200
	if (target)
		i915_gem_request_reference(target);
4201
	spin_unlock(&file_priv->mm.lock);
4202

4203
	if (target == NULL)
4204
		return 0;
4205

4206
	ret = __i915_wait_request(target, true, NULL, NULL);
4207 4208
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4209

4210
	i915_gem_request_unreference__unlocked(target);
4211

4212 4213 4214
	return ret;
}

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4231 4232 4233 4234
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4235 4236 4237
	return false;
}

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4256
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4257 4258 4259 4260

	obj->map_and_fenceable = mappable && fenceable;
}

4261 4262 4263 4264 4265 4266
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4267
{
4268
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4269
	struct i915_vma *vma;
4270
	unsigned bound;
4271 4272
	int ret;

4273 4274 4275
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4276
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4277
		return -EINVAL;
4278

4279 4280 4281
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4282 4283 4284 4285 4286 4287
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4288
	if (vma) {
B
Ben Widawsky 已提交
4289 4290 4291
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4292
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4293
			WARN(vma->pin_count,
4294
			     "bo is already pinned in %s with incorrect alignment:"
4295
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4296
			     " obj->map_and_fenceable=%d\n",
4297
			     ggtt_view ? "ggtt" : "ppgtt",
4298 4299
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4300
			     alignment,
4301
			     !!(flags & PIN_MAPPABLE),
4302
			     obj->map_and_fenceable);
4303
			ret = i915_vma_unbind(vma);
4304 4305
			if (ret)
				return ret;
4306 4307

			vma = NULL;
4308 4309 4310
		}
	}

4311
	bound = vma ? vma->bound : 0;
4312
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4313 4314
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4315 4316
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4317 4318
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4319 4320 4321
		if (ret)
			return ret;
	}
4322

4323 4324
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4325
		__i915_vma_set_map_and_fenceable(vma);
4326 4327
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4328

4329
	vma->pin_count++;
4330 4331 4332
	return 0;
}

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4350 4351 4352 4353
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4354
	BUG_ON(!view);
4355

4356
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4357
				      alignment, flags | PIN_GLOBAL);
4358 4359
}

4360
void
4361 4362
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4363
{
4364
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4365

B
Ben Widawsky 已提交
4366
	BUG_ON(!vma);
4367
	WARN_ON(vma->pin_count == 0);
4368
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4369

4370
	--vma->pin_count;
4371 4372 4373 4374
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4375
		    struct drm_file *file)
4376 4377
{
	struct drm_i915_gem_busy *args = data;
4378
	struct drm_i915_gem_object *obj;
4379 4380
	int ret;

4381
	ret = i915_mutex_lock_interruptible(dev);
4382
	if (ret)
4383
		return ret;
4384

4385
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4386
	if (&obj->base == NULL) {
4387 4388
		ret = -ENOENT;
		goto unlock;
4389
	}
4390

4391 4392 4393 4394
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4395
	 */
4396
	ret = i915_gem_object_flush_active(obj);
4397 4398
	if (ret)
		goto unref;
4399

4400 4401 4402 4403
	args->busy = 0;
	if (obj->active) {
		int i;

4404
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4405 4406 4407 4408
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4409
				args->busy |= 1 << (16 + req->engine->exec_id);
4410 4411
		}
		if (obj->last_write_req)
4412
			args->busy |= obj->last_write_req->engine->exec_id;
4413
	}
4414

4415
unref:
4416
	drm_gem_object_unreference(&obj->base);
4417
unlock:
4418
	mutex_unlock(&dev->struct_mutex);
4419
	return ret;
4420 4421 4422 4423 4424 4425
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4426
	return i915_gem_ring_throttle(dev, file_priv);
4427 4428
}

4429 4430 4431 4432
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4433
	struct drm_i915_private *dev_priv = dev->dev_private;
4434
	struct drm_i915_gem_madvise *args = data;
4435
	struct drm_i915_gem_object *obj;
4436
	int ret;
4437 4438 4439 4440 4441 4442 4443 4444 4445

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4446 4447 4448 4449
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4450
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4451
	if (&obj->base == NULL) {
4452 4453
		ret = -ENOENT;
		goto unlock;
4454 4455
	}

B
Ben Widawsky 已提交
4456
	if (i915_gem_obj_is_pinned(obj)) {
4457 4458
		ret = -EINVAL;
		goto out;
4459 4460
	}

4461 4462 4463 4464 4465 4466 4467 4468 4469
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4470 4471
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4472

C
Chris Wilson 已提交
4473
	/* if the object is no longer attached, discard its backing storage */
4474
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4475 4476
		i915_gem_object_truncate(obj);

4477
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4478

4479
out:
4480
	drm_gem_object_unreference(&obj->base);
4481
unlock:
4482
	mutex_unlock(&dev->struct_mutex);
4483
	return ret;
4484 4485
}

4486 4487
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4488
{
4489 4490
	int i;

4491
	INIT_LIST_HEAD(&obj->global_list);
4492
	for (i = 0; i < I915_NUM_ENGINES; i++)
4493
		INIT_LIST_HEAD(&obj->engine_list[i]);
4494
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4495
	INIT_LIST_HEAD(&obj->vma_list);
4496
	INIT_LIST_HEAD(&obj->batch_pool_link);
4497

4498 4499
	obj->ops = ops;

4500 4501 4502 4503 4504 4505
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4506
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4507
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4508 4509 4510 4511
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4512 4513
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4514
{
4515
	struct drm_i915_gem_object *obj;
4516
	struct address_space *mapping;
D
Daniel Vetter 已提交
4517
	gfp_t mask;
4518

4519
	obj = i915_gem_object_alloc(dev);
4520 4521
	if (obj == NULL)
		return NULL;
4522

4523
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4524
		i915_gem_object_free(obj);
4525 4526
		return NULL;
	}
4527

4528 4529 4530 4531 4532 4533 4534
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4535
	mapping = file_inode(obj->base.filp)->i_mapping;
4536
	mapping_set_gfp_mask(mapping, mask);
4537

4538
	i915_gem_object_init(obj, &i915_gem_object_ops);
4539

4540 4541
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4542

4543 4544
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4560 4561
	trace_i915_gem_object_create(obj);

4562
	return obj;
4563 4564
}

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4589
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4590
{
4591
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4592
	struct drm_device *dev = obj->base.dev;
4593
	struct drm_i915_private *dev_priv = dev->dev_private;
4594
	struct i915_vma *vma, *next;
4595

4596 4597
	intel_runtime_pm_get(dev_priv);

4598 4599
	trace_i915_gem_object_destroy(obj);

4600
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4601 4602 4603 4604
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4605 4606
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4607

4608 4609
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4610

4611
			WARN_ON(i915_vma_unbind(vma));
4612

4613 4614
			dev_priv->mm.interruptible = was_interruptible;
		}
4615 4616
	}

B
Ben Widawsky 已提交
4617 4618 4619 4620 4621
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4622 4623
	WARN_ON(obj->frontbuffer_bits);

4624 4625 4626 4627 4628
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4629 4630
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4631
	if (discard_backing_storage(obj))
4632
		obj->madv = I915_MADV_DONTNEED;
4633
	i915_gem_object_put_pages(obj);
4634
	i915_gem_object_free_mmap_offset(obj);
4635

4636 4637
	BUG_ON(obj->pages);

4638 4639
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4640

4641 4642 4643
	if (obj->ops->release)
		obj->ops->release(obj);

4644 4645
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4646

4647
	kfree(obj->bit_17);
4648
	i915_gem_object_free(obj);
4649 4650

	intel_runtime_pm_put(dev_priv);
4651 4652
}

4653 4654
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4655 4656
{
	struct i915_vma *vma;
4657
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4658 4659
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4660
			return vma;
4661 4662 4663 4664 4665 4666 4667
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
4668 4669 4670
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4671
	struct i915_vma *vma;
4672

4673
	BUG_ON(!view);
4674

4675
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4676
		if (vma->vm == &ggtt->base &&
4677
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4678
			return vma;
4679 4680 4681
	return NULL;
}

B
Ben Widawsky 已提交
4682 4683 4684
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4685 4686 4687 4688 4689

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4690 4691
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4692

4693
	list_del(&vma->obj_link);
4694

4695
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4696 4697
}

4698
static void
4699
i915_gem_stop_engines(struct drm_device *dev)
4700 4701
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4702
	struct intel_engine_cs *engine;
4703

4704
	for_each_engine(engine, dev_priv)
4705
		dev_priv->gt.stop_engine(engine);
4706 4707
}

4708
int
4709
i915_gem_suspend(struct drm_device *dev)
4710
{
4711
	struct drm_i915_private *dev_priv = dev->dev_private;
4712
	int ret = 0;
4713

4714
	mutex_lock(&dev->struct_mutex);
4715
	ret = i915_gpu_idle(dev);
4716
	if (ret)
4717
		goto err;
4718

4719
	i915_gem_retire_requests(dev);
4720

4721
	i915_gem_stop_engines(dev);
4722 4723
	mutex_unlock(&dev->struct_mutex);

4724
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4725
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4726
	flush_delayed_work(&dev_priv->mm.idle_work);
4727

4728 4729 4730 4731 4732
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4733
	return 0;
4734 4735 4736 4737

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4738 4739
}

4740
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4741
{
4742
	struct intel_engine_cs *engine = req->engine;
4743
	struct drm_device *dev = engine->dev;
4744
	struct drm_i915_private *dev_priv = dev->dev_private;
4745
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4746
	int i, ret;
B
Ben Widawsky 已提交
4747

4748
	if (!HAS_L3_DPF(dev) || !remap_info)
4749
		return 0;
B
Ben Widawsky 已提交
4750

4751
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4752 4753
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4754

4755 4756 4757 4758 4759
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4760
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4761 4762 4763
		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
		intel_ring_emit(engine, remap_info[i]);
B
Ben Widawsky 已提交
4764 4765
	}

4766
	intel_ring_advance(engine);
B
Ben Widawsky 已提交
4767

4768
	return ret;
B
Ben Widawsky 已提交
4769 4770
}

4771 4772
void i915_gem_init_swizzling(struct drm_device *dev)
{
4773
	struct drm_i915_private *dev_priv = dev->dev_private;
4774

4775
	if (INTEL_INFO(dev)->gen < 5 ||
4776 4777 4778 4779 4780 4781
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4782 4783 4784
	if (IS_GEN5(dev))
		return;

4785 4786
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4787
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4788
	else if (IS_GEN7(dev))
4789
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4790 4791
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4792 4793
	else
		BUG();
4794
}
D
Daniel Vetter 已提交
4795

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4823
int i915_gem_init_engines(struct drm_device *dev)
4824
{
4825
	struct drm_i915_private *dev_priv = dev->dev_private;
4826
	int ret;
4827

4828
	ret = intel_init_render_ring_buffer(dev);
4829
	if (ret)
4830
		return ret;
4831 4832

	if (HAS_BSD(dev)) {
4833
		ret = intel_init_bsd_ring_buffer(dev);
4834 4835
		if (ret)
			goto cleanup_render_ring;
4836
	}
4837

4838
	if (HAS_BLT(dev)) {
4839 4840 4841 4842 4843
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4844 4845 4846 4847 4848 4849
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4850 4851 4852 4853 4854
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4855

4856 4857
	return 0;

B
Ben Widawsky 已提交
4858
cleanup_vebox_ring:
4859
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4860
cleanup_blt_ring:
4861
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4862
cleanup_bsd_ring:
4863
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4864
cleanup_render_ring:
4865
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4866 4867 4868 4869 4870 4871 4872

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4873
	struct drm_i915_private *dev_priv = dev->dev_private;
4874
	struct intel_engine_cs *engine;
4875
	int ret, j;
4876 4877 4878 4879

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4880 4881 4882
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4883
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4884
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4885

4886 4887 4888
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4889

4890
	if (HAS_PCH_NOP(dev)) {
4891 4892 4893 4894 4895 4896 4897 4898 4899
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4900 4901
	}

4902 4903
	i915_gem_init_swizzling(dev);

4904 4905 4906 4907 4908 4909 4910 4911
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4912
	BUG_ON(!dev_priv->kernel_context);
4913

4914 4915 4916 4917 4918 4919 4920
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4921
	for_each_engine(engine, dev_priv) {
4922
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4923
		if (ret)
4924
			goto out;
D
Daniel Vetter 已提交
4925
	}
4926

4927
	/* We can't enable contexts until all firmware is loaded */
4928 4929 4930
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4931 4932 4933
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4934
		}
4935 4936
	}

4937 4938 4939 4940 4941 4942 4943 4944
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4945
	/* Now it is safe to go back round and do everything else: */
4946
	for_each_engine(engine, dev_priv) {
4947 4948
		struct drm_i915_gem_request *req;

4949
		req = i915_gem_request_alloc(engine, NULL);
4950 4951
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
4952
			i915_gem_cleanup_engines(dev);
4953 4954 4955
			goto out;
		}

4956
		if (engine->id == RCS) {
4957
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4958
				i915_gem_l3_remap(req, j);
4959
		}
4960

4961
		ret = i915_ppgtt_init_ring(req);
4962
		if (ret && ret != -EIO) {
4963 4964
			DRM_ERROR("PPGTT enable %s failed %d\n",
				  engine->name, ret);
4965
			i915_gem_request_cancel(req);
4966
			i915_gem_cleanup_engines(dev);
4967 4968
			goto out;
		}
4969

4970
		ret = i915_gem_context_enable(req);
4971
		if (ret && ret != -EIO) {
4972 4973
			DRM_ERROR("Context enable %s failed %d\n",
				  engine->name, ret);
4974
			i915_gem_request_cancel(req);
4975
			i915_gem_cleanup_engines(dev);
4976 4977
			goto out;
		}
4978

4979
		i915_add_request_no_flush(req);
4980
	}
D
Daniel Vetter 已提交
4981

4982 4983
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4984
	return ret;
4985 4986
}

4987 4988 4989 4990 4991
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4992 4993 4994
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4995
	mutex_lock(&dev->struct_mutex);
4996

4997
	if (!i915.enable_execlists) {
4998
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4999 5000 5001
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5002
	} else {
5003
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5004 5005 5006
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5007 5008
	}

5009 5010 5011 5012 5013 5014 5015 5016
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5017
	ret = i915_gem_init_userptr(dev);
5018 5019
	if (ret)
		goto out_unlock;
5020

5021
	i915_gem_init_ggtt(dev);
5022

5023
	ret = i915_gem_context_init(dev);
5024 5025
	if (ret)
		goto out_unlock;
5026

5027
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5028
	if (ret)
5029
		goto out_unlock;
5030

5031
	ret = i915_gem_init_hw(dev);
5032 5033 5034 5035 5036 5037
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5038
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5039
		ret = 0;
5040
	}
5041 5042

out_unlock:
5043
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5044
	mutex_unlock(&dev->struct_mutex);
5045

5046
	return ret;
5047 5048
}

5049
void
5050
i915_gem_cleanup_engines(struct drm_device *dev)
5051
{
5052
	struct drm_i915_private *dev_priv = dev->dev_private;
5053
	struct intel_engine_cs *engine;
5054

5055
	for_each_engine(engine, dev_priv)
5056
		dev_priv->gt.cleanup_engine(engine);
5057

5058 5059 5060 5061 5062 5063 5064
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
5065 5066
}

5067
static void
5068
init_engine_lists(struct intel_engine_cs *engine)
5069
{
5070 5071
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5072 5073
}

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5098
void
5099
i915_gem_load_init(struct drm_device *dev)
5100
{
5101
	struct drm_i915_private *dev_priv = dev->dev_private;
5102 5103
	int i;

5104
	dev_priv->objects =
5105 5106 5107 5108
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5109 5110 5111 5112 5113
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5114 5115 5116 5117 5118
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5119

B
Ben Widawsky 已提交
5120
	INIT_LIST_HEAD(&dev_priv->vm_list);
5121
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5122 5123
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5124
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5125 5126
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5127
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5128
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5129 5130
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5131 5132
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5133
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5134

5135 5136
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5137 5138 5139 5140 5141 5142 5143 5144
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5145
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5146

5147
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5148

5149 5150
	dev_priv->mm.interruptible = true;

5151
	mutex_init(&dev_priv->fb_tracking.lock);
5152
}
5153

5154 5155 5156 5157 5158 5159 5160 5161 5162
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5163
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5164
{
5165
	struct drm_i915_file_private *file_priv = file->driver_priv;
5166 5167 5168 5169 5170

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5171
	spin_lock(&file_priv->mm.lock);
5172 5173 5174 5175 5176 5177 5178 5179 5180
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5181
	spin_unlock(&file_priv->mm.lock);
5182

5183
	if (!list_empty(&file_priv->rps.link)) {
5184
		spin_lock(&to_i915(dev)->rps.client_lock);
5185
		list_del(&file_priv->rps.link);
5186
		spin_unlock(&to_i915(dev)->rps.client_lock);
5187
	}
5188 5189 5190 5191 5192
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5193
	int ret;
5194 5195 5196 5197 5198 5199 5200 5201 5202

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5203
	file_priv->file = file;
5204
	INIT_LIST_HEAD(&file_priv->rps.link);
5205 5206 5207 5208

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5209 5210
	file_priv->bsd_ring = -1;

5211 5212 5213
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5214

5215
	return ret;
5216 5217
}

5218 5219
/**
 * i915_gem_track_fb - update frontbuffer tracking
5220 5221 5222
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5223 5224 5225 5226
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5244
/* All the new VM stuff */
5245 5246
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5247 5248 5249 5250
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5251
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5252

5253
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5254
		if (vma->is_ggtt &&
5255 5256 5257
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5258 5259
			return vma->node.start;
	}
5260

5261 5262
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5263 5264 5265
	return -1;
}

5266 5267
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5268
{
5269 5270
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5271 5272
	struct i915_vma *vma;

5273
	list_for_each_entry(vma, &o->vma_list, obj_link)
5274
		if (vma->vm == &ggtt->base &&
5275
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5276 5277
			return vma->node.start;

5278
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5279 5280 5281 5282 5283 5284 5285 5286
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5287
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5288
		if (vma->is_ggtt &&
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5299
				  const struct i915_ggtt_view *view)
5300
{
5301 5302
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5303 5304
	struct i915_vma *vma;

5305
	list_for_each_entry(vma, &o->vma_list, obj_link)
5306
		if (vma->vm == &ggtt->base &&
5307
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5308
		    drm_mm_node_allocated(&vma->node))
5309 5310 5311 5312 5313 5314 5315
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5316
	struct i915_vma *vma;
5317

5318
	list_for_each_entry(vma, &o->vma_list, obj_link)
5319
		if (drm_mm_node_allocated(&vma->node))
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5331
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5332 5333 5334

	BUG_ON(list_empty(&o->vma_list));

5335
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5336
		if (vma->is_ggtt &&
5337 5338
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5339 5340
		if (vma->vm == vm)
			return vma->node.size;
5341
	}
5342 5343 5344
	return 0;
}

5345
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5346 5347
{
	struct i915_vma *vma;
5348
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5349 5350
		if (vma->pin_count > 0)
			return true;
5351

5352
	return false;
5353
}
5354

5355 5356 5357 5358 5359 5360 5361
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5362
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5363 5364 5365 5366 5367 5368 5369
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5395
	obj->dirty = 1;		/* Backing store is now out of date */
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}