i915_gem.c 134.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156
static inline bool
157
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158
{
159
	return i915_gem_obj_bound_any(obj) && !obj->active;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
174
		if (i915_gem_obj_is_pinned(obj))
175
			pinned += i915_gem_obj_ggtt_size(obj);
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->gtt.base.total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186
{
187 188 189 190 191
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
242

243 244 245 246 247 248 249 250 251 252 253 254 255
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
256
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257
		char *vaddr = obj->phys_handle->vaddr;
258 259 260
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
275
				mark_page_accessed(page);
276
			page_cache_release(page);
277 278
			vaddr += PAGE_SIZE;
		}
279
		obj->dirty = 0;
280 281
	}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
315 316 317 318 319 320 321
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
322
	int ret;
323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

337 338 339 340
	ret = drop_pages(obj);
	if (ret)
		return ret;

341 342 343 344 345 346
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
347 348 349
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
350 351 352 353 354 355 356 357 358 359
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
360 361 362 363 364 365 366 367
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

383
	drm_clflush_virt_range(vaddr, args->size);
384 385 386 387
	i915_gem_chipset_flush(dev);
	return 0;
}

388 389 390
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
391
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 393 394 395 396 397 398 399
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

400 401 402 403
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
404
		bool dumb,
405
		uint32_t *handle_p)
406
{
407
	struct drm_i915_gem_object *obj;
408 409
	int ret;
	u32 handle;
410

411
	size = roundup(size, PAGE_SIZE);
412 413
	if (size == 0)
		return -EINVAL;
414 415

	/* Allocate the new object */
416
	obj = i915_gem_alloc_object(dev, size);
417 418 419
	if (obj == NULL)
		return -ENOMEM;

420
	obj->base.dumb = dumb;
421
	ret = drm_gem_handle_create(file, &obj->base, &handle);
422
	/* drop reference from allocate - handle holds it now */
423 424 425
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
426

427
	*handle_p = handle;
428 429 430
	return 0;
}

431 432 433 434 435 436
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
437
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 439
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
440
			       args->size, true, &args->handle);
441 442 443 444 445 446 447 448 449 450
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
451

452
	return i915_gem_create(file, dev,
453
			       args->size, false, &args->handle);
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

482
static inline int
483 484
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
533 534

		i915_gem_object_retire(obj);
535 536 537 538 539 540 541 542 543 544 545
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

546 547 548
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
549
static int
550 551 552 553 554 555 556
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

557
	if (unlikely(page_do_bit17_swizzling))
558 559 560 561 562 563 564 565 566 567 568
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

569
	return ret ? -EFAULT : 0;
570 571
}

572 573 574 575
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
576
	if (unlikely(swizzled)) {
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

594 595 596 597 598 599 600 601 602 603 604 605
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
606 607 608
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
609 610 611 612 613 614 615 616 617 618 619

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

620
	return ret ? - EFAULT : 0;
621 622
}

623
static int
624 625 626 627
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
628
{
629
	char __user *user_data;
630
	ssize_t remain;
631
	loff_t offset;
632
	int shmem_page_offset, page_length, ret = 0;
633
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634
	int prefaulted = 0;
635
	int needs_clflush = 0;
636
	struct sg_page_iter sg_iter;
637

V
Ville Syrjälä 已提交
638
	user_data = to_user_ptr(args->data_ptr);
639 640
	remain = args->size;

641
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642

643
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644 645 646
	if (ret)
		return ret;

647
	offset = args->offset;
648

649 650
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
651
		struct page *page = sg_page_iter_page(&sg_iter);
652 653 654 655

		if (remain <= 0)
			break;

656 657 658 659 660
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
661
		shmem_page_offset = offset_in_page(offset);
662 663 664 665
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

666 667 668
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

669 670 671 672 673
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
674 675 676

		mutex_unlock(&dev->struct_mutex);

677
		if (likely(!i915.prefault_disable) && !prefaulted) {
678
			ret = fault_in_multipages_writeable(user_data, remain);
679 680 681 682 683 684 685
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
686

687 688 689
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
690

691
		mutex_lock(&dev->struct_mutex);
692 693

		if (ret)
694 695
			goto out;

696
next_page:
697
		remain -= page_length;
698
		user_data += page_length;
699 700 701
		offset += page_length;
	}

702
out:
703 704
	i915_gem_object_unpin_pages(obj);

705 706 707
	return ret;
}

708 709 710 711 712 713 714
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715
		     struct drm_file *file)
716 717
{
	struct drm_i915_gem_pread *args = data;
718
	struct drm_i915_gem_object *obj;
719
	int ret = 0;
720

721 722 723 724
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
725
		       to_user_ptr(args->data_ptr),
726 727 728
		       args->size))
		return -EFAULT;

729
	ret = i915_mutex_lock_interruptible(dev);
730
	if (ret)
731
		return ret;
732

733
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734
	if (&obj->base == NULL) {
735 736
		ret = -ENOENT;
		goto unlock;
737
	}
738

739
	/* Bounds check source.  */
740 741
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
742
		ret = -EINVAL;
743
		goto out;
C
Chris Wilson 已提交
744 745
	}

746 747 748 749 750 751 752 753
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
754 755
	trace_i915_gem_object_pread(obj, args->offset, args->size);

756
	ret = i915_gem_shmem_pread(dev, obj, args, file);
757

758
out:
759
	drm_gem_object_unreference(&obj->base);
760
unlock:
761
	mutex_unlock(&dev->struct_mutex);
762
	return ret;
763 764
}

765 766
/* This is the fast write path which cannot handle
 * page faults in the source data
767
 */
768 769 770 771 772 773

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
774
{
775 776
	void __iomem *vaddr_atomic;
	void *vaddr;
777
	unsigned long unwritten;
778

P
Peter Zijlstra 已提交
779
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780 781 782
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
783
						      user_data, length);
P
Peter Zijlstra 已提交
784
	io_mapping_unmap_atomic(vaddr_atomic);
785
	return unwritten;
786 787
}

788 789 790 791
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
792
static int
793 794
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
795
			 struct drm_i915_gem_pwrite *args,
796
			 struct drm_file *file)
797
{
798
	struct drm_i915_private *dev_priv = dev->dev_private;
799
	ssize_t remain;
800
	loff_t offset, page_base;
801
	char __user *user_data;
D
Daniel Vetter 已提交
802 803
	int page_offset, page_length, ret;

804
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
805 806 807 808 809 810 811 812 813 814
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
815

V
Ville Syrjälä 已提交
816
	user_data = to_user_ptr(args->data_ptr);
817 818
	remain = args->size;

819
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820 821 822 823

	while (remain > 0) {
		/* Operation in this page
		 *
824 825 826
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
827
		 */
828 829
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
830 831 832 833 834
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
835 836
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
837
		 */
B
Ben Widawsky 已提交
838
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
839 840 841 842
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
843

844 845 846
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
847 848
	}

D
Daniel Vetter 已提交
849
out_unpin:
B
Ben Widawsky 已提交
850
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
851
out:
852
	return ret;
853 854
}

855 856 857 858
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
859
static int
860 861 862 863 864
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
865
{
866
	char *vaddr;
867
	int ret;
868

869
	if (unlikely(page_do_bit17_swizzling))
870
		return -EINVAL;
871

872 873 874 875
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
876 877
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
878 879 880 881
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
882

883
	return ret ? -EFAULT : 0;
884 885
}

886 887
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
888
static int
889 890 891 892 893
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
894
{
895 896
	char *vaddr;
	int ret;
897

898
	vaddr = kmap(page);
899
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900 901 902
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
903 904
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905 906
						user_data,
						page_length);
907 908 909 910 911
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
912 913 914
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
915
	kunmap(page);
916

917
	return ret ? -EFAULT : 0;
918 919 920
}

static int
921 922 923 924
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
925 926
{
	ssize_t remain;
927 928
	loff_t offset;
	char __user *user_data;
929
	int shmem_page_offset, page_length, ret = 0;
930
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931
	int hit_slowpath = 0;
932 933
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
934
	struct sg_page_iter sg_iter;
935

V
Ville Syrjälä 已提交
936
	user_data = to_user_ptr(args->data_ptr);
937 938
	remain = args->size;

939
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940

941 942 943 944 945
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
946
		needs_clflush_after = cpu_write_needs_clflush(obj);
947 948 949
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
950 951

		i915_gem_object_retire(obj);
952
	}
953 954 955 956 957
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
958

959 960 961 962 963 964
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

965
	offset = args->offset;
966
	obj->dirty = 1;
967

968 969
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
970
		struct page *page = sg_page_iter_page(&sg_iter);
971
		int partial_cacheline_write;
972

973 974 975
		if (remain <= 0)
			break;

976 977 978 979 980
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
981
		shmem_page_offset = offset_in_page(offset);
982 983 984 985 986

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

987 988 989 990 991 992 993
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

994 995 996
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

997 998 999 1000 1001 1002
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1003 1004 1005

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1006 1007 1008 1009
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1010

1011
		mutex_lock(&dev->struct_mutex);
1012 1013

		if (ret)
1014 1015
			goto out;

1016
next_page:
1017
		remain -= page_length;
1018
		user_data += page_length;
1019
		offset += page_length;
1020 1021
	}

1022
out:
1023 1024
	i915_gem_object_unpin_pages(obj);

1025
	if (hit_slowpath) {
1026 1027 1028 1029 1030 1031 1032
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 1034
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1035
		}
1036
	}
1037

1038
	if (needs_clflush_after)
1039
		i915_gem_chipset_flush(dev);
1040

1041
	return ret;
1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051
		      struct drm_file *file)
1052 1053
{
	struct drm_i915_gem_pwrite *args = data;
1054
	struct drm_i915_gem_object *obj;
1055 1056 1057 1058 1059 1060
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1061
		       to_user_ptr(args->data_ptr),
1062 1063 1064
		       args->size))
		return -EFAULT;

1065
	if (likely(!i915.prefault_disable)) {
1066 1067 1068 1069 1070
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1071

1072
	ret = i915_mutex_lock_interruptible(dev);
1073
	if (ret)
1074
		return ret;
1075

1076
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077
	if (&obj->base == NULL) {
1078 1079
		ret = -ENOENT;
		goto unlock;
1080
	}
1081

1082
	/* Bounds check destination. */
1083 1084
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1085
		ret = -EINVAL;
1086
		goto out;
C
Chris Wilson 已提交
1087 1088
	}

1089 1090 1091 1092 1093 1094 1095 1096
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1097 1098
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1099
	ret = -EFAULT;
1100 1101 1102 1103 1104 1105
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1106 1107 1108
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1109
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1110 1111 1112
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1113
	}
1114

1115 1116 1117 1118 1119 1120
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1121

1122
out:
1123
	drm_gem_object_unreference(&obj->base);
1124
unlock:
1125
	mutex_unlock(&dev->struct_mutex);
1126 1127 1128
	return ret;
}

1129
int
1130
i915_gem_check_wedge(struct i915_gpu_error *error,
1131 1132
		     bool interruptible)
{
1133
	if (i915_reset_in_progress(error)) {
1134 1135 1136 1137 1138
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1139 1140
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1141 1142
			return -EIO;

1143 1144 1145 1146 1147 1148 1149
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1150 1151 1152 1153 1154 1155
	}

	return 0;
}

/*
1156
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1157
 */
1158
int
1159
i915_gem_check_olr(struct drm_i915_gem_request *req)
1160 1161 1162
{
	int ret;

1163
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1164 1165

	ret = 0;
1166
	if (req == req->ring->outstanding_lazy_request)
1167
		ret = i915_add_request(req->ring);
1168 1169 1170 1171

	return ret;
}

1172 1173 1174 1175 1176 1177
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1178
		       struct intel_engine_cs *ring)
1179 1180 1181 1182
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1183 1184 1185 1186 1187 1188 1189 1190
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1191
/**
1192 1193 1194
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1195 1196 1197
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1198 1199 1200 1201 1202 1203 1204
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1205
 * Returns 0 if the request was found within the alloted time. Else returns the
1206 1207
 * errno with remaining time filled in timeout argument.
 */
1208
int __i915_wait_request(struct drm_i915_gem_request *req,
1209
			unsigned reset_counter,
1210
			bool interruptible,
1211
			s64 *timeout,
1212
			struct drm_i915_file_private *file_priv)
1213
{
1214
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1215
	struct drm_device *dev = ring->dev;
1216
	struct drm_i915_private *dev_priv = dev->dev_private;
1217 1218
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1219
	DEFINE_WAIT(wait);
1220
	unsigned long timeout_expire;
1221
	s64 before, now;
1222 1223
	int ret;

1224
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1225

1226 1227
	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      i915_gem_request_get_seqno(req)))
1228 1229
		return 0;

1230
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1231

1232
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1233 1234 1235 1236 1237 1238 1239
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1240
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1241 1242
		return -ENODEV;

1243
	/* Record current time in case interrupted by signal, or wedged */
1244 1245
	trace_i915_gem_request_wait_begin(i915_gem_request_get_ring(req),
					  i915_gem_request_get_seqno(req));
1246
	before = ktime_get_raw_ns();
1247 1248
	for (;;) {
		struct timer_list timer;
1249

1250 1251
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252

1253 1254
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1255 1256 1257 1258 1259 1260 1261 1262
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1263

1264 1265
		if (i915_seqno_passed(ring->get_seqno(ring, false),
				      i915_gem_request_get_seqno(req))) {
1266 1267 1268
			ret = 0;
			break;
		}
1269

1270 1271 1272 1273 1274
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1275
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1276 1277 1278 1279 1280 1281
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1282 1283
			unsigned long expire;

1284
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1285
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1286 1287 1288
			mod_timer(&timer, expire);
		}

1289
		io_schedule();
1290 1291 1292 1293 1294 1295

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1296
	now = ktime_get_raw_ns();
1297 1298
	trace_i915_gem_request_wait_end(i915_gem_request_get_ring(req),
					i915_gem_request_get_seqno(req));
1299

1300 1301
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1302 1303

	finish_wait(&ring->irq_queue, &wait);
1304 1305

	if (timeout) {
1306 1307 1308
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1309 1310
	}

1311
	return ret;
1312 1313 1314
}

/**
1315
 * Waits for a request to be signaled, and cleans up the
1316 1317 1318
 * request and object lists appropriately for that event.
 */
int
1319
i915_wait_request(struct drm_i915_gem_request *req)
1320
{
1321 1322 1323
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1324
	unsigned reset_counter;
1325 1326
	int ret;

1327 1328 1329 1330 1331 1332
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1333 1334
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1335
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1336 1337 1338
	if (ret)
		return ret;

1339
	ret = i915_gem_check_olr(req);
1340 1341 1342
	if (ret)
		return ret;

1343
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1344
	i915_gem_request_reference(req);
1345 1346
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1347 1348
	i915_gem_request_unreference(req);
	return ret;
1349 1350
}

1351
static int
1352
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1353
{
1354 1355
	if (!obj->active)
		return 0;
1356 1357 1358 1359

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1360 1361
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1362 1363
	 * we know we have passed the last write.
	 */
1364
	i915_gem_request_assign(&obj->last_write_req, NULL);
1365 1366 1367 1368

	return 0;
}

1369 1370 1371 1372 1373 1374 1375 1376
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1377
	struct drm_i915_gem_request *req;
1378 1379
	int ret;

1380 1381
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1382 1383
		return 0;

1384
	ret = i915_wait_request(req);
1385 1386 1387
	if (ret)
		return ret;

1388
	return i915_gem_object_wait_rendering__tail(obj);
1389 1390
}

1391 1392 1393 1394 1395
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1396
					    struct drm_i915_file_private *file_priv,
1397 1398
					    bool readonly)
{
1399
	struct drm_i915_gem_request *req;
1400 1401
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1402
	unsigned reset_counter;
1403 1404 1405 1406 1407
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1408 1409
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1410 1411
		return 0;

1412
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1413 1414 1415
	if (ret)
		return ret;

1416
	ret = i915_gem_check_olr(req);
1417 1418 1419
	if (ret)
		return ret;

1420
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1421
	i915_gem_request_reference(req);
1422
	mutex_unlock(&dev->struct_mutex);
1423
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1424
	mutex_lock(&dev->struct_mutex);
1425
	i915_gem_request_unreference(req);
1426 1427
	if (ret)
		return ret;
1428

1429
	return i915_gem_object_wait_rendering__tail(obj);
1430 1431
}

1432
/**
1433 1434
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1435 1436 1437
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1438
			  struct drm_file *file)
1439 1440
{
	struct drm_i915_gem_set_domain *args = data;
1441
	struct drm_i915_gem_object *obj;
1442 1443
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1444 1445
	int ret;

1446
	/* Only handle setting domains to types used by the CPU. */
1447
	if (write_domain & I915_GEM_GPU_DOMAINS)
1448 1449
		return -EINVAL;

1450
	if (read_domains & I915_GEM_GPU_DOMAINS)
1451 1452 1453 1454 1455 1456 1457 1458
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1459
	ret = i915_mutex_lock_interruptible(dev);
1460
	if (ret)
1461
		return ret;
1462

1463
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1464
	if (&obj->base == NULL) {
1465 1466
		ret = -ENOENT;
		goto unlock;
1467
	}
1468

1469 1470 1471 1472
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1473 1474 1475
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1476 1477 1478
	if (ret)
		goto unref;

1479 1480
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1481 1482 1483 1484 1485 1486 1487

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1488
	} else {
1489
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1490 1491
	}

1492
unref:
1493
	drm_gem_object_unreference(&obj->base);
1494
unlock:
1495 1496 1497 1498 1499 1500 1501 1502 1503
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504
			 struct drm_file *file)
1505 1506
{
	struct drm_i915_gem_sw_finish *args = data;
1507
	struct drm_i915_gem_object *obj;
1508 1509
	int ret = 0;

1510
	ret = i915_mutex_lock_interruptible(dev);
1511
	if (ret)
1512
		return ret;
1513

1514
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515
	if (&obj->base == NULL) {
1516 1517
		ret = -ENOENT;
		goto unlock;
1518 1519 1520
	}

	/* Pinned buffers may be scanout, so flush the cache */
1521 1522
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1523

1524
	drm_gem_object_unreference(&obj->base);
1525
unlock:
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1546 1547 1548
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549
		    struct drm_file *file)
1550 1551 1552 1553 1554
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1555
	obj = drm_gem_object_lookup(dev, file, args->handle);
1556
	if (obj == NULL)
1557
		return -ENOENT;
1558

1559 1560 1561 1562 1563 1564 1565 1566
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1567
	addr = vm_mmap(obj->filp, 0, args->size,
1568 1569
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1570
	drm_gem_object_unreference_unlocked(obj);
1571 1572 1573 1574 1575 1576 1577 1578
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1597 1598
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1599
	struct drm_i915_private *dev_priv = dev->dev_private;
1600 1601 1602
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1603
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1604

1605 1606
	intel_runtime_pm_get(dev_priv);

1607 1608 1609 1610
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1611 1612 1613
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1614

C
Chris Wilson 已提交
1615 1616
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1617 1618 1619 1620 1621 1622 1623 1624 1625
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1626 1627
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1628
		ret = -EFAULT;
1629 1630 1631
		goto unlock;
	}

1632
	/* Now bind it into the GTT if needed */
1633
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1634 1635
	if (ret)
		goto unlock;
1636

1637 1638 1639
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1640

1641
	ret = i915_gem_object_get_fence(obj);
1642
	if (ret)
1643
		goto unpin;
1644

1645
	/* Finally, remap it using the new GTT offset */
1646 1647
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1648

1649
	if (!obj->fault_mappable) {
1650 1651 1652
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1653 1654
		int i;

1655
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1668
unpin:
B
Ben Widawsky 已提交
1669
	i915_gem_object_ggtt_unpin(obj);
1670
unlock:
1671
	mutex_unlock(&dev->struct_mutex);
1672
out:
1673
	switch (ret) {
1674
	case -EIO:
1675 1676 1677 1678 1679 1680 1681
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1682 1683 1684
			ret = VM_FAULT_SIGBUS;
			break;
		}
1685
	case -EAGAIN:
D
Daniel Vetter 已提交
1686 1687 1688 1689
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1690
		 */
1691 1692
	case 0:
	case -ERESTARTSYS:
1693
	case -EINTR:
1694 1695 1696 1697 1698
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1699 1700
		ret = VM_FAULT_NOPAGE;
		break;
1701
	case -ENOMEM:
1702 1703
		ret = VM_FAULT_OOM;
		break;
1704
	case -ENOSPC:
1705
	case -EFAULT:
1706 1707
		ret = VM_FAULT_SIGBUS;
		break;
1708
	default:
1709
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1710 1711
		ret = VM_FAULT_SIGBUS;
		break;
1712
	}
1713 1714 1715

	intel_runtime_pm_put(dev_priv);
	return ret;
1716 1717
}

1718 1719 1720 1721
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1722
 * Preserve the reservation of the mmapping with the DRM core code, but
1723 1724 1725 1726 1727 1728 1729 1730 1731
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1732
void
1733
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1734
{
1735 1736
	if (!obj->fault_mappable)
		return;
1737

1738 1739
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1740
	obj->fault_mappable = false;
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1752
uint32_t
1753
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1754
{
1755
	uint32_t gtt_size;
1756 1757

	if (INTEL_INFO(dev)->gen >= 4 ||
1758 1759
	    tiling_mode == I915_TILING_NONE)
		return size;
1760 1761 1762

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1763
		gtt_size = 1024*1024;
1764
	else
1765
		gtt_size = 512*1024;
1766

1767 1768
	while (gtt_size < size)
		gtt_size <<= 1;
1769

1770
	return gtt_size;
1771 1772
}

1773 1774 1775 1776 1777
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1778
 * potential fence register mapping.
1779
 */
1780 1781 1782
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1783 1784 1785 1786 1787
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1788
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1789
	    tiling_mode == I915_TILING_NONE)
1790 1791
		return 4096;

1792 1793 1794 1795
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1796
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1797 1798
}

1799 1800 1801 1802 1803
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1804
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1805 1806
		return 0;

1807 1808
	dev_priv->mm.shrinker_no_lock_stealing = true;

1809 1810
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1811
		goto out;
1812 1813 1814 1815 1816 1817 1818 1819

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1820 1821 1822 1823 1824
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1825 1826
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1827
		goto out;
1828 1829

	i915_gem_shrink_all(dev_priv);
1830 1831 1832 1833 1834
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1835 1836 1837 1838 1839 1840 1841
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1842
static int
1843 1844
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1845
		  uint32_t handle, bool dumb,
1846
		  uint64_t *offset)
1847
{
1848
	struct drm_i915_private *dev_priv = dev->dev_private;
1849
	struct drm_i915_gem_object *obj;
1850 1851
	int ret;

1852
	ret = i915_mutex_lock_interruptible(dev);
1853
	if (ret)
1854
		return ret;
1855

1856
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1857
	if (&obj->base == NULL) {
1858 1859 1860
		ret = -ENOENT;
		goto unlock;
	}
1861

1862 1863 1864 1865 1866 1867 1868
	/*
	 * We don't allow dumb mmaps on objects created using another
	 * interface.
	 */
	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
		  "Illegal dumb map of accelerated buffer.\n");

B
Ben Widawsky 已提交
1869
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1870
		ret = -E2BIG;
1871
		goto out;
1872 1873
	}

1874
	if (obj->madv != I915_MADV_WILLNEED) {
1875
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1876
		ret = -EFAULT;
1877
		goto out;
1878 1879
	}

1880 1881 1882
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1883

1884
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1885

1886
out:
1887
	drm_gem_object_unreference(&obj->base);
1888
unlock:
1889
	mutex_unlock(&dev->struct_mutex);
1890
	return ret;
1891 1892
}

1893 1894 1895 1896 1897 1898 1899 1900 1901
int
i915_gem_dumb_map_offset(struct drm_file *file,
			 struct drm_device *dev,
			 uint32_t handle,
			 uint64_t *offset)
{
	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1923
	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1924 1925
}

1926 1927 1928 1929 1930 1931
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1932 1933 1934
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1935
{
1936
	i915_gem_object_free_mmap_offset(obj);
1937

1938 1939
	if (obj->base.filp == NULL)
		return;
1940

D
Daniel Vetter 已提交
1941 1942 1943 1944 1945
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1946
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1947 1948
	obj->madv = __I915_MADV_PURGED;
}
1949

1950 1951 1952
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1953
{
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1968 1969
}

1970
static void
1971
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1972
{
1973 1974
	struct sg_page_iter sg_iter;
	int ret;
1975

1976
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1977

C
Chris Wilson 已提交
1978 1979 1980 1981 1982 1983
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1984
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1985 1986 1987
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1988
	if (i915_gem_object_needs_bit17_swizzle(obj))
1989 1990
		i915_gem_object_save_bit_17_swizzle(obj);

1991 1992
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1993

1994
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1995
		struct page *page = sg_page_iter_page(&sg_iter);
1996

1997
		if (obj->dirty)
1998
			set_page_dirty(page);
1999

2000
		if (obj->madv == I915_MADV_WILLNEED)
2001
			mark_page_accessed(page);
2002

2003
		page_cache_release(page);
2004
	}
2005
	obj->dirty = 0;
2006

2007 2008
	sg_free_table(obj->pages);
	kfree(obj->pages);
2009
}
C
Chris Wilson 已提交
2010

2011
int
2012 2013 2014 2015
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2016
	if (obj->pages == NULL)
2017 2018
		return 0;

2019 2020 2021
	if (obj->pages_pin_count)
		return -EBUSY;

2022
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2023

2024 2025 2026
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2027
	list_del(&obj->global_list);
2028

2029
	ops->put_pages(obj);
2030
	obj->pages = NULL;
2031

2032
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2033 2034 2035 2036

	return 0;
}

2037 2038 2039
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2040
{
2041 2042 2043 2044 2045 2046 2047 2048
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2049
	unsigned long count = 0;
C
Chris Wilson 已提交
2050

2051
	/*
2052
	 * As we may completely rewrite the (un)bound list whilst unbinding
2053 2054 2055
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2069
	 */
2070
	for (phase = phases; phase->list; phase++) {
2071
		struct list_head still_in_list;
2072

2073 2074
		if ((flags & phase->bit) == 0)
			continue;
2075

2076
		INIT_LIST_HEAD(&still_in_list);
2077
		while (count < target && !list_empty(phase->list)) {
2078 2079
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2080

2081
			obj = list_first_entry(phase->list,
2082 2083
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2084

2085 2086
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2087
				continue;
2088

2089
			drm_gem_object_reference(&obj->base);
2090

2091 2092 2093
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2094 2095
				if (i915_vma_unbind(vma))
					break;
2096

2097 2098 2099 2100 2101
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2102
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2103 2104 2105 2106 2107
	}

	return count;
}

2108
static unsigned long
C
Chris Wilson 已提交
2109 2110 2111
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2112 2113
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2114 2115
}

2116
static int
C
Chris Wilson 已提交
2117
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2118
{
C
Chris Wilson 已提交
2119
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2120 2121
	int page_count, i;
	struct address_space *mapping;
2122 2123
	struct sg_table *st;
	struct scatterlist *sg;
2124
	struct sg_page_iter sg_iter;
2125
	struct page *page;
2126
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2127
	gfp_t gfp;
2128

C
Chris Wilson 已提交
2129 2130 2131 2132 2133 2134 2135
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2136 2137 2138 2139
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2140
	page_count = obj->base.size / PAGE_SIZE;
2141 2142
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2143
		return -ENOMEM;
2144
	}
2145

2146 2147 2148 2149 2150
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2151
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2152
	gfp = mapping_gfp_mask(mapping);
2153
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2154
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2155 2156 2157
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2158 2159
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2160 2161 2162 2163 2164
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2165 2166 2167 2168 2169 2170 2171 2172
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2173
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2174 2175 2176
			if (IS_ERR(page))
				goto err_pages;
		}
2177 2178 2179 2180 2181 2182 2183 2184
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2185 2186 2187 2188 2189 2190 2191 2192 2193
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2194 2195 2196

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2197
	}
2198 2199 2200 2201
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2202 2203
	obj->pages = st;

2204
	if (i915_gem_object_needs_bit17_swizzle(obj))
2205 2206
		i915_gem_object_do_bit_17_swizzle(obj);

2207 2208 2209 2210
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2211 2212 2213
	return 0;

err_pages:
2214 2215
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2216
		page_cache_release(sg_page_iter_page(&sg_iter));
2217 2218
	sg_free_table(st);
	kfree(st);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2248
	if (obj->pages)
2249 2250
		return 0;

2251
	if (obj->madv != I915_MADV_WILLNEED) {
2252
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2253
		return -EFAULT;
2254 2255
	}

2256 2257
	BUG_ON(obj->pages_pin_count);

2258 2259 2260 2261
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2262
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2263
	return 0;
2264 2265
}

B
Ben Widawsky 已提交
2266
static void
2267
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2268
			       struct intel_engine_cs *ring)
2269
{
2270
	struct drm_i915_gem_request *req = intel_ring_get_request(ring);
2271

2272
	BUG_ON(ring == NULL);
2273 2274 2275
	if (obj->ring != ring && obj->last_write_req) {
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2276
	}
2277
	obj->ring = ring;
2278 2279

	/* Add a reference if we're newly entering the active list. */
2280 2281 2282
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2283
	}
2284

2285
	list_move_tail(&obj->ring_list, &ring->active_list);
2286

2287
	i915_gem_request_assign(&obj->last_read_req, req);
2288 2289
}

B
Ben Widawsky 已提交
2290
void i915_vma_move_to_active(struct i915_vma *vma,
2291
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2292 2293 2294 2295 2296
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2297 2298
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2299
{
B
Ben Widawsky 已提交
2300
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2301 2302
	struct i915_address_space *vm;
	struct i915_vma *vma;
2303

2304
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2305
	BUG_ON(!obj->active);
2306

2307 2308 2309 2310 2311
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2312

2313 2314
	intel_fb_obj_flush(obj, true);

2315
	list_del_init(&obj->ring_list);
2316 2317
	obj->ring = NULL;

2318 2319
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2320 2321
	obj->base.write_domain = 0;

2322
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2323 2324 2325 2326 2327

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2328
}
2329

2330 2331 2332
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2333
	struct intel_engine_cs *ring = obj->ring;
2334 2335 2336 2337 2338

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
2339
			      i915_gem_request_get_seqno(obj->last_read_req)))
2340 2341 2342
		i915_gem_object_move_to_inactive(obj);
}

2343
static int
2344
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2345
{
2346
	struct drm_i915_private *dev_priv = dev->dev_private;
2347
	struct intel_engine_cs *ring;
2348
	int ret, i, j;
2349

2350
	/* Carefully retire all requests without writing to the rings */
2351
	for_each_ring(ring, dev_priv, i) {
2352 2353 2354
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2355 2356
	}
	i915_gem_retire_requests(dev);
2357 2358

	/* Finally reset hw state */
2359
	for_each_ring(ring, dev_priv, i) {
2360
		intel_ring_init_seqno(ring, seqno);
2361

2362 2363
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2364
	}
2365

2366
	return 0;
2367 2368
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2395 2396
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2397
{
2398 2399 2400 2401
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2402
		int ret = i915_gem_init_seqno(dev, 0);
2403 2404
		if (ret)
			return ret;
2405

2406 2407
		dev_priv->next_seqno = 1;
	}
2408

2409
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2410
	return 0;
2411 2412
}

2413
int __i915_add_request(struct intel_engine_cs *ring,
2414
		       struct drm_file *file,
2415
		       struct drm_i915_gem_object *obj)
2416
{
2417
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2418
	struct drm_i915_gem_request *request;
2419
	struct intel_ringbuffer *ringbuf;
2420
	u32 request_ring_position, request_start;
2421 2422
	int ret;

2423
	request = ring->outstanding_lazy_request;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2434 2435 2436 2437 2438 2439 2440
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2441 2442 2443 2444 2445 2446 2447 2448 2449
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2450

2451 2452 2453 2454 2455
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2456
	request_ring_position = intel_ring_get_tail(ringbuf);
2457

2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2467

2468
	request->ring = ring;
2469
	request->head = request_start;
2470
	request->tail = request_ring_position;
2471 2472 2473 2474 2475 2476 2477

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2478
	request->batch_obj = obj;
2479

2480 2481 2482 2483 2484 2485 2486 2487
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2488

2489
	request->emitted_jiffies = jiffies;
2490
	list_add_tail(&request->list, &ring->request_list);
2491
	request->file_priv = NULL;
2492

C
Chris Wilson 已提交
2493 2494 2495
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2496
		spin_lock(&file_priv->mm.lock);
2497
		request->file_priv = file_priv;
2498
		list_add_tail(&request->client_list,
2499
			      &file_priv->mm.request_list);
2500
		spin_unlock(&file_priv->mm.lock);
2501
	}
2502

2503
	trace_i915_gem_request_add(ring, request->seqno);
2504
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2505

2506
	i915_queue_hangcheck(ring->dev);
2507

2508 2509 2510 2511 2512
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2513

2514
	return 0;
2515 2516
}

2517 2518
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2519
{
2520
	struct drm_i915_file_private *file_priv = request->file_priv;
2521

2522 2523
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2524

2525
	spin_lock(&file_priv->mm.lock);
2526 2527
	list_del(&request->client_list);
	request->file_priv = NULL;
2528
	spin_unlock(&file_priv->mm.lock);
2529 2530
}

2531
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2532
				   const struct intel_context *ctx)
2533
{
2534
	unsigned long elapsed;
2535

2536 2537 2538
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2539 2540 2541
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2542
		if (!i915_gem_context_is_default(ctx)) {
2543
			DRM_DEBUG("context hanging too fast, banning!\n");
2544
			return true;
2545 2546 2547
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2548
			return true;
2549
		}
2550 2551 2552 2553 2554
	}

	return false;
}

2555
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2556
				  struct intel_context *ctx,
2557
				  const bool guilty)
2558
{
2559 2560 2561 2562
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2563

2564 2565 2566
	hs = &ctx->hang_stats;

	if (guilty) {
2567
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2568 2569 2570 2571
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2572 2573 2574
	}
}

2575 2576 2577 2578 2579
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2580 2581 2582 2583 2584 2585 2586 2587 2588
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2589 2590
	if (ctx) {
		if (i915.enable_execlists) {
2591
			struct intel_engine_cs *ring = req->ring;
2592

2593 2594 2595
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2596

2597 2598
		i915_gem_context_unreference(ctx);
	}
2599 2600

	kfree(req);
2601 2602
}

2603
struct drm_i915_gem_request *
2604
i915_gem_find_active_request(struct intel_engine_cs *ring)
2605
{
2606
	struct drm_i915_gem_request *request;
2607 2608 2609
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2610 2611 2612 2613

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2614

2615
		return request;
2616
	}
2617 2618 2619 2620 2621

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2622
				       struct intel_engine_cs *ring)
2623 2624 2625 2626
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2627
	request = i915_gem_find_active_request(ring);
2628 2629 2630 2631 2632 2633

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2634
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2635 2636

	list_for_each_entry_continue(request, &ring->request_list, list)
2637
		i915_set_reset_status(dev_priv, request->ctx, false);
2638
}
2639

2640
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2641
					struct intel_engine_cs *ring)
2642
{
2643
	while (!list_empty(&ring->active_list)) {
2644
		struct drm_i915_gem_object *obj;
2645

2646 2647 2648
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2649

2650
		i915_gem_object_move_to_inactive(obj);
2651
	}
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2686

2687 2688
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2689 2690
}

2691
void i915_gem_restore_fences(struct drm_device *dev)
2692 2693 2694 2695
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2696
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2697
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2698

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2709 2710 2711
	}
}

2712
void i915_gem_reset(struct drm_device *dev)
2713
{
2714
	struct drm_i915_private *dev_priv = dev->dev_private;
2715
	struct intel_engine_cs *ring;
2716
	int i;
2717

2718 2719 2720 2721 2722 2723 2724 2725
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2726
	for_each_ring(ring, dev_priv, i)
2727
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2728

2729 2730
	i915_gem_context_reset(dev);

2731
	i915_gem_restore_fences(dev);
2732 2733 2734 2735 2736
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2737
void
2738
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2739 2740 2741
{
	uint32_t seqno;

C
Chris Wilson 已提交
2742
	if (list_empty(&ring->request_list))
2743 2744
		return;

C
Chris Wilson 已提交
2745
	WARN_ON(i915_verify_lists(ring->dev));
2746

2747
	seqno = ring->get_seqno(ring, true);
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2760 2761
		if (!i915_seqno_passed(seqno,
			     i915_gem_request_get_seqno(obj->last_read_req)))
2762 2763 2764 2765 2766 2767
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2768
	while (!list_empty(&ring->request_list)) {
2769
		struct drm_i915_gem_request *request;
2770
		struct intel_ringbuffer *ringbuf;
2771

2772
		request = list_first_entry(&ring->request_list,
2773 2774 2775
					   struct drm_i915_gem_request,
					   list);

2776
		if (!i915_seqno_passed(seqno, request->seqno))
2777 2778
			break;

C
Chris Wilson 已提交
2779
		trace_i915_gem_request_retire(ring, request->seqno);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2792 2793 2794 2795 2796
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2797
		ringbuf->last_retired_head = request->tail;
2798

2799
		i915_gem_free_request(request);
2800
	}
2801

C
Chris Wilson 已提交
2802 2803
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2804
		ring->irq_put(ring);
C
Chris Wilson 已提交
2805
		ring->trace_irq_seqno = 0;
2806
	}
2807

C
Chris Wilson 已提交
2808
	WARN_ON(i915_verify_lists(ring->dev));
2809 2810
}

2811
bool
2812 2813
i915_gem_retire_requests(struct drm_device *dev)
{
2814
	struct drm_i915_private *dev_priv = dev->dev_private;
2815
	struct intel_engine_cs *ring;
2816
	bool idle = true;
2817
	int i;
2818

2819
	for_each_ring(ring, dev_priv, i) {
2820
		i915_gem_retire_requests_ring(ring);
2821
		idle &= list_empty(&ring->request_list);
2822 2823 2824 2825 2826 2827 2828 2829 2830
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2831 2832 2833 2834 2835 2836 2837 2838
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2839 2840
}

2841
static void
2842 2843
i915_gem_retire_work_handler(struct work_struct *work)
{
2844 2845 2846
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2847
	bool idle;
2848

2849
	/* Come back later if the device is busy... */
2850 2851 2852 2853
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2854
	}
2855
	if (!idle)
2856 2857
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2858
}
2859

2860 2861 2862 2863 2864 2865 2866
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2867 2868
}

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2880
		ret = i915_gem_check_olr(obj->last_read_req);
2881 2882 2883 2884 2885 2886 2887 2888 2889
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2915
	struct drm_i915_private *dev_priv = dev->dev_private;
2916 2917
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2918
	struct drm_i915_gem_request *req;
2919
	unsigned reset_counter;
2920 2921
	int ret = 0;

2922 2923 2924
	if (args->flags != 0)
		return -EINVAL;

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2935 2936
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2937 2938 2939
	if (ret)
		goto out;

2940 2941
	if (!obj->active || !obj->last_read_req)
		goto out;
2942

2943
	req = obj->last_read_req;
2944 2945

	/* Do this after OLR check to make sure we make forward progress polling
2946
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2947
	 */
2948
	if (args->timeout_ns <= 0) {
2949 2950 2951 2952 2953
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2954
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2955
	i915_gem_request_reference(req);
2956 2957
	mutex_unlock(&dev->struct_mutex);

2958 2959
	ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
				  file->driver_priv);
2960 2961 2962 2963
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2964 2965 2966 2967 2968 2969 2970

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2983 2984
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2985
		     struct intel_engine_cs *to)
2986
{
2987
	struct intel_engine_cs *from = obj->ring;
2988 2989 2990 2991 2992 2993
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2994
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2995
		return i915_gem_object_wait_rendering(obj, false);
2996 2997 2998

	idx = intel_ring_sync_index(from, to);

2999
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
3000 3001
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
3002
	if (seqno <= from->semaphore.sync_seqno[idx])
3003 3004
		return 0;

3005
	ret = i915_gem_check_olr(obj->last_read_req);
3006 3007
	if (ret)
		return ret;
3008

3009
	trace_i915_gem_ring_sync_to(from, to, seqno);
3010
	ret = to->semaphore.sync_to(to, from, seqno);
3011
	if (!ret)
3012
		/* We use last_read_req because sync_to()
3013 3014 3015
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3016 3017
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3018

3019
	return ret;
3020 3021
}

3022 3023 3024 3025 3026 3027 3028
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3029 3030 3031
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3032 3033 3034
	/* Wait for any direct GTT access to complete */
	mb();

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3046
int i915_vma_unbind(struct i915_vma *vma)
3047
{
3048
	struct drm_i915_gem_object *obj = vma->obj;
3049
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3050
	int ret;
3051

3052
	if (list_empty(&vma->vma_link))
3053 3054
		return 0;

3055 3056 3057 3058
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3059

B
Ben Widawsky 已提交
3060
	if (vma->pin_count)
3061
		return -EBUSY;
3062

3063 3064
	BUG_ON(obj->pages == NULL);

3065
	ret = i915_gem_object_finish_gpu(obj);
3066
	if (ret)
3067 3068 3069 3070 3071 3072
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3073 3074 3075
	/* Throw away the active reference before moving to the unbound list */
	i915_gem_object_retire(obj);

3076 3077
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
3078

3079 3080 3081 3082 3083
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3084

3085
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3086

3087 3088
	vma->unbind_vma(vma);

3089
	list_del_init(&vma->mm_list);
3090
	if (i915_is_ggtt(vma->vm))
3091
		obj->map_and_fenceable = false;
3092

B
Ben Widawsky 已提交
3093 3094 3095 3096
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3097
	 * no more VMAs exist. */
3098 3099
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3100
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3101
	}
3102

3103 3104 3105 3106 3107 3108
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3109
	return 0;
3110 3111
}

3112
int i915_gpu_idle(struct drm_device *dev)
3113
{
3114
	struct drm_i915_private *dev_priv = dev->dev_private;
3115
	struct intel_engine_cs *ring;
3116
	int ret, i;
3117 3118

	/* Flush everything onto the inactive list. */
3119
	for_each_ring(ring, dev_priv, i) {
3120 3121 3122 3123 3124
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3125

3126
		ret = intel_ring_idle(ring);
3127 3128 3129
		if (ret)
			return ret;
	}
3130

3131
	return 0;
3132 3133
}

3134 3135
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3136
{
3137
	struct drm_i915_private *dev_priv = dev->dev_private;
3138 3139
	int fence_reg;
	int fence_pitch_shift;
3140

3141 3142 3143 3144 3145 3146 3147 3148
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3163
	if (obj) {
3164
		u32 size = i915_gem_obj_ggtt_size(obj);
3165
		uint64_t val;
3166

3167
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3168
				 0xfffff000) << 32;
3169
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3170
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3171 3172 3173
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3184 3185
}

3186 3187
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3188
{
3189
	struct drm_i915_private *dev_priv = dev->dev_private;
3190
	u32 val;
3191

3192
	if (obj) {
3193
		u32 size = i915_gem_obj_ggtt_size(obj);
3194 3195
		int pitch_val;
		int tile_width;
3196

3197
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3198
		     (size & -size) != size ||
3199 3200 3201
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3212
		val = i915_gem_obj_ggtt_offset(obj);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3228 3229
}

3230 3231
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3232
{
3233
	struct drm_i915_private *dev_priv = dev->dev_private;
3234 3235
	uint32_t val;

3236
	if (obj) {
3237
		u32 size = i915_gem_obj_ggtt_size(obj);
3238
		uint32_t pitch_val;
3239

3240
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3241
		     (size & -size) != size ||
3242 3243 3244
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3245

3246 3247
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3248

3249
		val = i915_gem_obj_ggtt_offset(obj);
3250 3251 3252 3253 3254 3255 3256
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3257

3258 3259 3260 3261
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3262 3263 3264 3265 3266
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3267 3268 3269
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3270 3271 3272 3273 3274 3275 3276 3277
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3278 3279 3280 3281
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3282
	switch (INTEL_INFO(dev)->gen) {
3283
	case 9:
3284
	case 8:
3285
	case 7:
3286
	case 6:
3287 3288 3289 3290
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3291
	default: BUG();
3292
	}
3293 3294 3295 3296 3297 3298

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3299 3300
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3311
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3312 3313 3314
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3315 3316

	if (enable) {
3317
		obj->fence_reg = reg;
3318 3319 3320 3321 3322 3323 3324
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3325
	obj->fence_dirty = false;
3326 3327
}

3328
static int
3329
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3330
{
3331
	if (obj->last_fenced_req) {
3332
		int ret = i915_wait_request(obj->last_fenced_req);
3333 3334
		if (ret)
			return ret;
3335

3336
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3337 3338 3339 3340 3341 3342 3343 3344
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3345
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3346
	struct drm_i915_fence_reg *fence;
3347 3348
	int ret;

3349
	ret = i915_gem_object_wait_fence(obj);
3350 3351 3352
	if (ret)
		return ret;

3353 3354
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3355

3356 3357
	fence = &dev_priv->fence_regs[obj->fence_reg];

3358 3359 3360
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3361
	i915_gem_object_fence_lost(obj);
3362
	i915_gem_object_update_fence(obj, fence, false);
3363 3364 3365 3366 3367

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3368
i915_find_fence_reg(struct drm_device *dev)
3369 3370
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3371
	struct drm_i915_fence_reg *reg, *avail;
3372
	int i;
3373 3374

	/* First try to find a free reg */
3375
	avail = NULL;
3376 3377 3378
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3379
			return reg;
3380

3381
		if (!reg->pin_count)
3382
			avail = reg;
3383 3384
	}

3385
	if (avail == NULL)
3386
		goto deadlock;
3387 3388

	/* None available, try to steal one or wait for a user to finish */
3389
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3390
		if (reg->pin_count)
3391 3392
			continue;

C
Chris Wilson 已提交
3393
		return reg;
3394 3395
	}

3396 3397 3398 3399 3400 3401
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3402 3403
}

3404
/**
3405
 * i915_gem_object_get_fence - set up fencing for an object
3406 3407 3408 3409 3410 3411 3412 3413 3414
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3415 3416
 *
 * For an untiled surface, this removes any existing fence.
3417
 */
3418
int
3419
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3420
{
3421
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3422
	struct drm_i915_private *dev_priv = dev->dev_private;
3423
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3424
	struct drm_i915_fence_reg *reg;
3425
	int ret;
3426

3427 3428 3429
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3430
	if (obj->fence_dirty) {
3431
		ret = i915_gem_object_wait_fence(obj);
3432 3433 3434
		if (ret)
			return ret;
	}
3435

3436
	/* Just update our place in the LRU if our fence is getting reused. */
3437 3438
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3439
		if (!obj->fence_dirty) {
3440 3441 3442 3443 3444
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3445 3446 3447
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3448
		reg = i915_find_fence_reg(dev);
3449 3450
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3451

3452 3453 3454
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3455
			ret = i915_gem_object_wait_fence(old);
3456 3457 3458
			if (ret)
				return ret;

3459
			i915_gem_object_fence_lost(old);
3460
		}
3461
	} else
3462 3463
		return 0;

3464 3465
	i915_gem_object_update_fence(obj, reg, enable);

3466
	return 0;
3467 3468
}

3469
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3470 3471
				     unsigned long cache_level)
{
3472
	struct drm_mm_node *gtt_space = &vma->node;
3473 3474
	struct drm_mm_node *other;

3475 3476 3477 3478 3479 3480
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3481
	 */
3482
	if (vma->vm->mm.color_adjust == NULL)
3483 3484
		return true;

3485
	if (!drm_mm_node_allocated(gtt_space))
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3502 3503 3504
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3505
static struct i915_vma *
3506 3507 3508
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3509
			   uint64_t flags)
3510
{
3511
	struct drm_device *dev = obj->base.dev;
3512
	struct drm_i915_private *dev_priv = dev->dev_private;
3513
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3514 3515 3516
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3517
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3518
	struct i915_vma *vma;
3519
	int ret;
3520

3521 3522 3523 3524 3525
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3526
						     obj->tiling_mode, true);
3527
	unfenced_alignment =
3528
		i915_gem_get_gtt_alignment(dev,
3529 3530
					   obj->base.size,
					   obj->tiling_mode, false);
3531

3532
	if (alignment == 0)
3533
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3534
						unfenced_alignment;
3535
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3536
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3537
		return ERR_PTR(-EINVAL);
3538 3539
	}

3540
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3541

3542 3543 3544
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3545 3546
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3547
			  obj->base.size,
3548
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3549
			  end);
3550
		return ERR_PTR(-E2BIG);
3551 3552
	}

3553
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3554
	if (ret)
3555
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3556

3557 3558
	i915_gem_object_pin_pages(obj);

3559
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3560
	if (IS_ERR(vma))
3561
		goto err_unpin;
B
Ben Widawsky 已提交
3562

3563
search_free:
3564
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3565
						  size, alignment,
3566 3567
						  obj->cache_level,
						  start, end,
3568 3569
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3570
	if (ret) {
3571
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3572 3573 3574
					       obj->cache_level,
					       start, end,
					       flags);
3575 3576
		if (ret == 0)
			goto search_free;
3577

3578
		goto err_free_vma;
3579
	}
3580
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3581
		ret = -EINVAL;
3582
		goto err_remove_node;
3583 3584
	}

3585
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3586
	if (ret)
3587
		goto err_remove_node;
3588

3589
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3590
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3591

3592
	trace_i915_vma_bind(vma, flags);
3593
	vma->bind_vma(vma, obj->cache_level,
3594
		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3595

3596
	return vma;
B
Ben Widawsky 已提交
3597

3598
err_remove_node:
3599
	drm_mm_remove_node(&vma->node);
3600
err_free_vma:
B
Ben Widawsky 已提交
3601
	i915_gem_vma_destroy(vma);
3602
	vma = ERR_PTR(ret);
3603
err_unpin:
B
Ben Widawsky 已提交
3604
	i915_gem_object_unpin_pages(obj);
3605
	return vma;
3606 3607
}

3608
bool
3609 3610
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3611 3612 3613 3614 3615
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3616
	if (obj->pages == NULL)
3617
		return false;
3618

3619 3620 3621 3622
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3623
	if (obj->stolen || obj->phys_handle)
3624
		return false;
3625

3626 3627 3628 3629 3630 3631 3632 3633
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3634
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3635
		return false;
3636

C
Chris Wilson 已提交
3637
	trace_i915_gem_object_clflush(obj);
3638
	drm_clflush_sg(obj->pages);
3639 3640

	return true;
3641 3642 3643 3644
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3645
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3646
{
C
Chris Wilson 已提交
3647 3648
	uint32_t old_write_domain;

3649
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3650 3651
		return;

3652
	/* No actual flushing is required for the GTT write domain.  Writes
3653 3654
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3655 3656 3657 3658
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3659
	 */
3660 3661
	wmb();

3662 3663
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3664

3665 3666
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3667
	trace_i915_gem_object_change_domain(obj,
3668
					    obj->base.read_domains,
C
Chris Wilson 已提交
3669
					    old_write_domain);
3670 3671 3672 3673
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3674 3675
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3676
{
C
Chris Wilson 已提交
3677
	uint32_t old_write_domain;
3678

3679
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3680 3681
		return;

3682 3683 3684
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3685 3686
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3687

3688 3689
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3690
	trace_i915_gem_object_change_domain(obj,
3691
					    obj->base.read_domains,
C
Chris Wilson 已提交
3692
					    old_write_domain);
3693 3694
}

3695 3696 3697 3698 3699 3700
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3701
int
3702
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3703
{
3704
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3705
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3706
	uint32_t old_write_domain, old_read_domains;
3707
	int ret;
3708

3709
	/* Not valid to be called on unbound objects. */
3710
	if (vma == NULL)
3711 3712
		return -EINVAL;

3713 3714 3715
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3716
	ret = i915_gem_object_wait_rendering(obj, !write);
3717 3718 3719
	if (ret)
		return ret;

3720
	i915_gem_object_retire(obj);
3721
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3722

3723 3724 3725 3726 3727 3728 3729
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3730 3731
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3732

3733 3734 3735
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3736 3737
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3738
	if (write) {
3739 3740 3741
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3742 3743
	}

3744 3745 3746
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3747 3748 3749 3750
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3751
	/* And bump the LRU for this access */
3752 3753 3754
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3755

3756 3757 3758
	return 0;
}

3759 3760 3761
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3762
	struct drm_device *dev = obj->base.dev;
3763
	struct i915_vma *vma, *next;
3764 3765 3766 3767 3768
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3769
	if (i915_gem_obj_is_pinned(obj)) {
3770 3771 3772 3773
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3774
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3775
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3776
			ret = i915_vma_unbind(vma);
3777 3778 3779
			if (ret)
				return ret;
		}
3780 3781
	}

3782
	if (i915_gem_obj_bound_any(obj)) {
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3793
		if (INTEL_INFO(dev)->gen < 6) {
3794 3795 3796 3797 3798
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3799
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3800 3801
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
3802
						vma->bound & GLOBAL_BIND);
3803 3804
	}

3805 3806 3807 3808 3809
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3810 3811 3812 3813 3814 3815 3816 3817
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3818
		i915_gem_object_retire(obj);
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3835 3836
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3837
{
B
Ben Widawsky 已提交
3838
	struct drm_i915_gem_caching *args = data;
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3852 3853 3854 3855 3856 3857
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3858 3859 3860 3861
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3862 3863 3864 3865
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3866 3867 3868 3869 3870 3871 3872

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3873 3874
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3875
{
B
Ben Widawsky 已提交
3876
	struct drm_i915_gem_caching *args = data;
3877 3878 3879 3880
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3881 3882
	switch (args->caching) {
	case I915_CACHING_NONE:
3883 3884
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3885
	case I915_CACHING_CACHED:
3886 3887
		level = I915_CACHE_LLC;
		break;
3888 3889 3890
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3891 3892 3893 3894
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3895 3896 3897 3898
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3913 3914
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3915 3916 3917 3918 3919 3920
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3921
	/* There are 2 sources that pin objects:
3922 3923 3924 3925
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3926
	 * are only called outside of the reservation path.
3927
	 */
D
Daniel Vetter 已提交
3928
	return vma->pin_count;
3929 3930
}

3931
/*
3932 3933 3934
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3935 3936
 */
int
3937 3938
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3939
				     struct intel_engine_cs *pipelined)
3940
{
3941
	u32 old_read_domains, old_write_domain;
3942
	bool was_pin_display;
3943 3944
	int ret;

3945
	if (pipelined != obj->ring) {
3946 3947
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3948 3949 3950
			return ret;
	}

3951 3952 3953
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3954
	was_pin_display = obj->pin_display;
3955 3956
	obj->pin_display = true;

3957 3958 3959 3960 3961 3962 3963 3964 3965
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3966 3967
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3968
	if (ret)
3969
		goto err_unpin_display;
3970

3971 3972 3973 3974
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3975
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3976
	if (ret)
3977
		goto err_unpin_display;
3978

3979
	i915_gem_object_flush_cpu_write_domain(obj, true);
3980

3981
	old_write_domain = obj->base.write_domain;
3982
	old_read_domains = obj->base.read_domains;
3983 3984 3985 3986

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3987
	obj->base.write_domain = 0;
3988
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3989 3990 3991

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3992
					    old_write_domain);
3993 3994

	return 0;
3995 3996

err_unpin_display:
3997 3998
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3999 4000 4001 4002 4003 4004
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4005
	i915_gem_object_ggtt_unpin(obj);
4006
	obj->pin_display = is_pin_display(obj);
4007 4008
}

4009
int
4010
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4011
{
4012 4013
	int ret;

4014
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4015 4016
		return 0;

4017
	ret = i915_gem_object_wait_rendering(obj, false);
4018 4019 4020
	if (ret)
		return ret;

4021 4022
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4023
	return 0;
4024 4025
}

4026 4027 4028 4029 4030 4031
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4032
int
4033
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4034
{
C
Chris Wilson 已提交
4035
	uint32_t old_write_domain, old_read_domains;
4036 4037
	int ret;

4038 4039 4040
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4041
	ret = i915_gem_object_wait_rendering(obj, !write);
4042 4043 4044
	if (ret)
		return ret;

4045
	i915_gem_object_retire(obj);
4046
	i915_gem_object_flush_gtt_write_domain(obj);
4047

4048 4049
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4050

4051
	/* Flush the CPU cache if it's still invalid. */
4052
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4053
		i915_gem_clflush_object(obj, false);
4054

4055
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4056 4057 4058 4059 4060
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4061
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4062 4063 4064 4065 4066

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4067 4068
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4069
	}
4070

4071 4072 4073
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4074 4075 4076 4077
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4078 4079 4080
	return 0;
}

4081 4082 4083
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4084 4085 4086 4087
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4088 4089 4090
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4091
static int
4092
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4093
{
4094 4095
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4096
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4097
	struct drm_i915_gem_request *request, *target = NULL;
4098
	unsigned reset_counter;
4099
	int ret;
4100

4101 4102 4103 4104 4105 4106 4107
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4108

4109
	spin_lock(&file_priv->mm.lock);
4110
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4111 4112
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4113

4114
		target = request;
4115
	}
4116
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4117 4118
	if (target)
		i915_gem_request_reference(target);
4119
	spin_unlock(&file_priv->mm.lock);
4120

4121
	if (target == NULL)
4122
		return 0;
4123

4124
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4125 4126
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4127

4128 4129 4130 4131
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4132 4133 4134
	return ret;
}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4154
int
4155
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4156
		    struct i915_address_space *vm,
4157
		    uint32_t alignment,
4158
		    uint64_t flags)
4159
{
4160
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4161
	struct i915_vma *vma;
4162
	unsigned bound;
4163 4164
	int ret;

4165 4166 4167
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4168
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4169
		return -EINVAL;
4170

4171 4172 4173
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4174 4175
	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4176 4177 4178
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4179
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4180
			WARN(vma->pin_count,
4181
			     "bo is already pinned with incorrect alignment:"
4182
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4183
			     " obj->map_and_fenceable=%d\n",
4184
			     i915_gem_obj_offset(obj, vm), alignment,
4185
			     !!(flags & PIN_MAPPABLE),
4186
			     obj->map_and_fenceable);
4187
			ret = i915_vma_unbind(vma);
4188 4189
			if (ret)
				return ret;
4190 4191

			vma = NULL;
4192 4193 4194
		}
	}

4195
	bound = vma ? vma->bound : 0;
4196
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4197 4198 4199
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4200
	}
J
Jesse Barnes 已提交
4201

4202
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4203
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4204

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4228
	vma->pin_count++;
4229 4230
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4231 4232 4233 4234 4235

	return 0;
}

void
B
Ben Widawsky 已提交
4236
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4237
{
B
Ben Widawsky 已提交
4238
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4239

B
Ben Widawsky 已提交
4240 4241 4242 4243 4244
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4245
		obj->pin_mappable = false;
4246 4247
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4274 4275
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4276
		    struct drm_file *file)
4277 4278
{
	struct drm_i915_gem_busy *args = data;
4279
	struct drm_i915_gem_object *obj;
4280 4281
	int ret;

4282
	ret = i915_mutex_lock_interruptible(dev);
4283
	if (ret)
4284
		return ret;
4285

4286
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4287
	if (&obj->base == NULL) {
4288 4289
		ret = -ENOENT;
		goto unlock;
4290
	}
4291

4292 4293 4294 4295
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4296
	 */
4297
	ret = i915_gem_object_flush_active(obj);
4298

4299
	args->busy = obj->active;
4300 4301 4302 4303
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4304

4305
	drm_gem_object_unreference(&obj->base);
4306
unlock:
4307
	mutex_unlock(&dev->struct_mutex);
4308
	return ret;
4309 4310 4311 4312 4313 4314
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4315
	return i915_gem_ring_throttle(dev, file_priv);
4316 4317
}

4318 4319 4320 4321
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4322
	struct drm_i915_private *dev_priv = dev->dev_private;
4323
	struct drm_i915_gem_madvise *args = data;
4324
	struct drm_i915_gem_object *obj;
4325
	int ret;
4326 4327 4328 4329 4330 4331 4332 4333 4334

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4335 4336 4337 4338
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4339
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4340
	if (&obj->base == NULL) {
4341 4342
		ret = -ENOENT;
		goto unlock;
4343 4344
	}

B
Ben Widawsky 已提交
4345
	if (i915_gem_obj_is_pinned(obj)) {
4346 4347
		ret = -EINVAL;
		goto out;
4348 4349
	}

4350 4351 4352 4353 4354 4355 4356 4357 4358
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4359 4360
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4361

C
Chris Wilson 已提交
4362 4363
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4364 4365
		i915_gem_object_truncate(obj);

4366
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4367

4368
out:
4369
	drm_gem_object_unreference(&obj->base);
4370
unlock:
4371
	mutex_unlock(&dev->struct_mutex);
4372
	return ret;
4373 4374
}

4375 4376
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4377
{
4378
	INIT_LIST_HEAD(&obj->global_list);
4379
	INIT_LIST_HEAD(&obj->ring_list);
4380
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4381
	INIT_LIST_HEAD(&obj->vma_list);
4382

4383 4384
	obj->ops = ops;

4385 4386 4387 4388 4389 4390
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4391 4392 4393 4394 4395
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4396 4397
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4398
{
4399
	struct drm_i915_gem_object *obj;
4400
	struct address_space *mapping;
D
Daniel Vetter 已提交
4401
	gfp_t mask;
4402

4403
	obj = i915_gem_object_alloc(dev);
4404 4405
	if (obj == NULL)
		return NULL;
4406

4407
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4408
		i915_gem_object_free(obj);
4409 4410
		return NULL;
	}
4411

4412 4413 4414 4415 4416 4417 4418
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4419
	mapping = file_inode(obj->base.filp)->i_mapping;
4420
	mapping_set_gfp_mask(mapping, mask);
4421

4422
	i915_gem_object_init(obj, &i915_gem_object_ops);
4423

4424 4425
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4426

4427 4428
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4444 4445
	trace_i915_gem_object_create(obj);

4446
	return obj;
4447 4448
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4473
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4474
{
4475
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4476
	struct drm_device *dev = obj->base.dev;
4477
	struct drm_i915_private *dev_priv = dev->dev_private;
4478
	struct i915_vma *vma, *next;
4479

4480 4481
	intel_runtime_pm_get(dev_priv);

4482 4483
	trace_i915_gem_object_destroy(obj);

4484
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4485 4486 4487 4488
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4489 4490
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4491

4492 4493
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4494

4495
			WARN_ON(i915_vma_unbind(vma));
4496

4497 4498
			dev_priv->mm.interruptible = was_interruptible;
		}
4499 4500
	}

B
Ben Widawsky 已提交
4501 4502 4503 4504 4505
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4506 4507
	WARN_ON(obj->frontbuffer_bits);

4508 4509 4510 4511 4512
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4513 4514
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4515
	if (discard_backing_storage(obj))
4516
		obj->madv = I915_MADV_DONTNEED;
4517
	i915_gem_object_put_pages(obj);
4518
	i915_gem_object_free_mmap_offset(obj);
4519

4520 4521
	BUG_ON(obj->pages);

4522 4523
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4524

4525 4526 4527
	if (obj->ops->release)
		obj->ops->release(obj);

4528 4529
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4530

4531
	kfree(obj->bit_17);
4532
	i915_gem_object_free(obj);
4533 4534

	intel_runtime_pm_put(dev_priv);
4535 4536
}

4537
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4538
				     struct i915_address_space *vm)
4539 4540 4541 4542 4543 4544 4545 4546 4547
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4548 4549
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4550
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4551
	WARN_ON(vma->node.allocated);
4552 4553 4554 4555 4556

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4557 4558
	vm = vma->vm;

4559 4560
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4561

4562
	list_del(&vma->vma_link);
4563

B
Ben Widawsky 已提交
4564 4565 4566
	kfree(vma);
}

4567 4568 4569 4570
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4571
	struct intel_engine_cs *ring;
4572 4573 4574
	int i;

	for_each_ring(ring, dev_priv, i)
4575
		dev_priv->gt.stop_ring(ring);
4576 4577
}

4578
int
4579
i915_gem_suspend(struct drm_device *dev)
4580
{
4581
	struct drm_i915_private *dev_priv = dev->dev_private;
4582
	int ret = 0;
4583

4584
	mutex_lock(&dev->struct_mutex);
4585
	ret = i915_gpu_idle(dev);
4586
	if (ret)
4587
		goto err;
4588

4589
	i915_gem_retire_requests(dev);
4590

4591
	/* Under UMS, be paranoid and evict. */
4592
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4593
		i915_gem_evict_everything(dev);
4594

4595
	i915_gem_stop_ringbuffers(dev);
4596 4597 4598
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4599
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4600
	flush_delayed_work(&dev_priv->mm.idle_work);
4601

4602 4603 4604 4605 4606
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4607
	return 0;
4608 4609 4610 4611

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4612 4613
}

4614
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4615
{
4616
	struct drm_device *dev = ring->dev;
4617
	struct drm_i915_private *dev_priv = dev->dev_private;
4618 4619
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4620
	int i, ret;
B
Ben Widawsky 已提交
4621

4622
	if (!HAS_L3_DPF(dev) || !remap_info)
4623
		return 0;
B
Ben Widawsky 已提交
4624

4625 4626 4627
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4628

4629 4630 4631 4632 4633
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4634
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4635 4636 4637
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4638 4639
	}

4640
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4641

4642
	return ret;
B
Ben Widawsky 已提交
4643 4644
}

4645 4646
void i915_gem_init_swizzling(struct drm_device *dev)
{
4647
	struct drm_i915_private *dev_priv = dev->dev_private;
4648

4649
	if (INTEL_INFO(dev)->gen < 5 ||
4650 4651 4652 4653 4654 4655
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4656 4657 4658
	if (IS_GEN5(dev))
		return;

4659 4660
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4661
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4662
	else if (IS_GEN7(dev))
4663
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4664 4665
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4666 4667
	else
		BUG();
4668
}
D
Daniel Vetter 已提交
4669

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4713
int i915_gem_init_rings(struct drm_device *dev)
4714
{
4715
	struct drm_i915_private *dev_priv = dev->dev_private;
4716
	int ret;
4717

4718 4719 4720 4721 4722 4723 4724 4725
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4726
	ret = intel_init_render_ring_buffer(dev);
4727
	if (ret)
4728
		return ret;
4729 4730

	if (HAS_BSD(dev)) {
4731
		ret = intel_init_bsd_ring_buffer(dev);
4732 4733
		if (ret)
			goto cleanup_render_ring;
4734
	}
4735

4736
	if (intel_enable_blt(dev)) {
4737 4738 4739 4740 4741
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4742 4743 4744 4745 4746 4747
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4748 4749 4750 4751 4752
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4753

4754
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4755
	if (ret)
4756
		goto cleanup_bsd2_ring;
4757 4758 4759

	return 0;

4760 4761
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4762 4763
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4777
	struct drm_i915_private *dev_priv = dev->dev_private;
4778
	int ret, i;
4779 4780 4781 4782

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4783
	if (dev_priv->ellc_size)
4784
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4785

4786 4787 4788
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4789

4790
	if (HAS_PCH_NOP(dev)) {
4791 4792 4793 4794 4795 4796 4797 4798 4799
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4800 4801
	}

4802 4803
	i915_gem_init_swizzling(dev);

4804
	ret = dev_priv->gt.init_rings(dev);
4805 4806 4807
	if (ret)
		return ret;

4808 4809 4810
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4811
	/*
4812 4813 4814 4815 4816
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4817
	 */
4818
	ret = i915_gem_context_enable(dev_priv);
4819
	if (ret && ret != -EIO) {
4820
		DRM_ERROR("Context enable failed %d\n", ret);
4821
		i915_gem_cleanup_ringbuffer(dev);
4822 4823 4824 4825 4826 4827 4828 4829

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4830
	}
D
Daniel Vetter 已提交
4831

4832
	return ret;
4833 4834
}

4835 4836 4837 4838 4839
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4840 4841 4842
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4843
	mutex_lock(&dev->struct_mutex);
4844 4845 4846

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4847 4848 4849
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4850 4851 4852
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4853 4854 4855 4856 4857
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4858 4859 4860 4861 4862
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4863 4864
	}

4865 4866 4867 4868 4869 4870
	ret = i915_gem_init_userptr(dev);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

4871
	i915_gem_init_global_gtt(dev);
4872

4873
	ret = i915_gem_context_init(dev);
4874 4875
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4876
		return ret;
4877
	}
4878

4879
	ret = i915_gem_init_hw(dev);
4880 4881 4882 4883 4884 4885 4886 4887
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4888
	}
4889
	mutex_unlock(&dev->struct_mutex);
4890

4891
	return ret;
4892 4893
}

4894 4895 4896
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4897
	struct drm_i915_private *dev_priv = dev->dev_private;
4898
	struct intel_engine_cs *ring;
4899
	int i;
4900

4901
	for_each_ring(ring, dev_priv, i)
4902
		dev_priv->gt.cleanup_ring(ring);
4903 4904
}

4905
static void
4906
init_ring_lists(struct intel_engine_cs *ring)
4907 4908 4909 4910 4911
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4912 4913
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4914
{
4915 4916
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4917 4918 4919 4920
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4921
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4922 4923
}

4924 4925 4926
void
i915_gem_load(struct drm_device *dev)
{
4927
	struct drm_i915_private *dev_priv = dev->dev_private;
4928 4929 4930 4931 4932 4933 4934
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4935

B
Ben Widawsky 已提交
4936 4937 4938
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4939
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4940 4941
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4942
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4943 4944
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4945
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4946
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4947 4948
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4949 4950
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4951
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4952

4953
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4954
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4955 4956
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4957 4958
	}

4959 4960
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4961
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4962 4963
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4964

4965 4966 4967
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4968 4969 4970 4971
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4972
	/* Initialize fence registers to zero */
4973 4974
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4975

4976
	i915_gem_detect_bit_6_swizzle(dev);
4977
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4978

4979 4980
	dev_priv->mm.interruptible = true;

4981 4982 4983 4984
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4985 4986 4987

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4988 4989

	mutex_init(&dev_priv->fb_tracking.lock);
4990
}
4991

4992
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4993
{
4994
	struct drm_i915_file_private *file_priv = file->driver_priv;
4995

4996 4997
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

4998 4999 5000 5001
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5002
	spin_lock(&file_priv->mm.lock);
5003 5004 5005 5006 5007 5008 5009 5010 5011
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5012
	spin_unlock(&file_priv->mm.lock);
5013
}
5014

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5027
	int ret;
5028 5029 5030 5031 5032 5033 5034 5035 5036

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5037
	file_priv->file = file;
5038 5039 5040 5041 5042 5043

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5044 5045 5046
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5047

5048
	return ret;
5049 5050
}

5051 5052 5053 5054 5055 5056 5057 5058 5059
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5118
static unsigned long
5119
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5120
{
5121
	struct drm_i915_private *dev_priv =
5122
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5123
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5124
	struct drm_i915_gem_object *obj;
5125
	unsigned long count;
5126
	bool unlock;
5127

5128 5129
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5130

5131
	count = 0;
5132
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5133
		if (obj->pages_pin_count == 0)
5134
			count += obj->base.size >> PAGE_SHIFT;
5135 5136

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5137 5138
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5139
			count += obj->base.size >> PAGE_SHIFT;
5140
	}
5141

5142 5143
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5144

5145
	return count;
5146
}
5147 5148 5149 5150 5151 5152 5153 5154

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5155
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5156 5157 5158 5159 5160 5161

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5162 5163
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5164 5165 5166 5167 5168 5169 5170 5171 5172
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5173
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5174 5175 5176 5177 5178 5179 5180
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5181
	struct i915_vma *vma;
5182

5183 5184
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5196
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5207
static unsigned long
5208
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5209 5210
{
	struct drm_i915_private *dev_priv =
5211
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5212 5213
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5214
	bool unlock;
5215

5216 5217
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5218

5219 5220 5221 5222 5223
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5224
	if (freed < sc->nr_to_scan)
5225 5226 5227 5228
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5229 5230
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5231

5232 5233
	return freed;
}
5234

5235 5236 5237 5238 5239 5240 5241 5242
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5243
	unsigned long pinned, bound, unbound, freed_pages;
5244 5245 5246
	bool was_interruptible;
	bool unlock;

5247
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5248
		schedule_timeout_killable(1);
5249 5250 5251
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5252 5253 5254 5255 5256 5257 5258 5259
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5260
	freed_pages = i915_gem_shrink_all(dev_priv);
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5291 5292 5293
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5294 5295 5296 5297 5298
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5299
	*(unsigned long *)ptr += freed_pages;
5300 5301 5302
	return NOTIFY_DONE;
}

5303 5304 5305 5306 5307
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5308
	if (vma->vm != i915_obj_to_ggtt(obj))
5309 5310 5311 5312
		return NULL;

	return vma;
}