vmbus_drv.c 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37
#include <asm/hyperv.h>
38
#include <asm/hypervisor.h>
39
#include <asm/mshyperv.h>
40 41
#include <linux/notifier.h>
#include <linux/ptrace.h>
42
#include <linux/screen_info.h>
43
#include <linux/kdebug.h>
44
#include <linux/efi.h>
45
#include <linux/random.h>
46
#include "hyperv_vmbus.h"
47

48
static struct acpi_device  *hv_acpi_dev;
49

50
static struct completion probe_event;
51

52

53
static void hyperv_report_panic(struct pt_regs *regs)
54
{
55
	static bool panic_reported;
56

57 58 59 60 61 62 63 64
	/*
	 * We prefer to report panic on 'die' chain as we have proper
	 * registers to report, but if we miss it (e.g. on BUG()) we need
	 * to report it on 'panic'.
	 */
	if (panic_reported)
		return;
	panic_reported = true;
65 66 67 68 69 70 71 72 73 74 75

	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);

	/*
	 * Let Hyper-V know there is crash data available
	 */
	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
76 77 78 79 80 81 82 83 84 85
}

static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

	hyperv_report_panic(regs);
86 87 88
	return NOTIFY_DONE;
}

89 90 91 92 93 94 95 96 97 98 99 100 101
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

	hyperv_report_panic(regs);
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
102 103 104 105
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

106 107
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
108 109
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
110

111 112 113 114 115 116 117 118
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

119 120 121 122 123 124 125 126
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static u8 channel_monitor_group(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid / 32;
}

static u8 channel_monitor_offset(struct vmbus_channel *channel)
{
	return (u8)channel->offermsg.monitorid % 32;
}

static u32 channel_pending(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	return monitor_page->trigger_group[monitor_group].pending;
}

144 145 146 147 148 149 150 151
static u32 channel_latency(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->latency[monitor_group][monitor_offset];
}

152 153 154 155 156 157 158 159
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

160 161 162 163 164 165 166 167 168 169 170
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

171 172 173 174 175 176 177 178 179 180 181
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

182 183 184 185 186 187 188 189 190 191 192
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

193 194 195 196 197 198 199 200 201 202 203 204
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

205 206 207 208 209 210 211 212 213 214 215 216
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

217 218 219 220 221 222 223 224 225 226 227
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

502
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
503 504
static struct attribute *vmbus_attrs[] = {
	&dev_attr_id.attr,
505
	&dev_attr_state.attr,
506
	&dev_attr_monitor_id.attr,
507
	&dev_attr_class_id.attr,
508
	&dev_attr_device_id.attr,
509
	&dev_attr_modalias.attr,
510 511
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
512 513
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
514 515
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
516 517 518 519 520 521 522 523 524 525
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
526
	&dev_attr_channel_vp_mapping.attr,
527 528
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
529 530 531 532
	NULL,
};
ATTRIBUTE_GROUPS(vmbus);

533 534 535 536 537 538
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
539 540 541 542
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
543 544 545 546
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
547 548
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
549

550
	print_alias_name(dev, alias_name);
551 552
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
553 554
}

S
stephen hemminger 已提交
555
static const uuid_le null_guid;
556

557
static inline bool is_null_guid(const uuid_le *guid)
558
{
559
	if (uuid_le_cmp(*guid, null_guid))
560 561 562 563
		return false;
	return true;
}

564 565 566 567 568 569
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(
					const struct hv_vmbus_device_id *id,
570
					const uuid_le *guid)
571
{
572
	for (; !is_null_guid(&id->guid); id++)
573
		if (!uuid_le_cmp(id->guid, *guid))
574 575 576 577 578 579
			return id;

	return NULL;
}


580 581 582 583 584 585 586

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
587
	struct hv_device *hv_dev = device_to_hv_device(device);
588

589 590 591 592
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

593
	if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
594
		return 1;
595

596
	return 0;
597 598
}

599 600 601 602 603 604 605 606
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
607
	struct hv_device *dev = device_to_hv_device(child_device);
608
	const struct hv_vmbus_device_id *dev_id;
609

610
	dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
611
	if (drv->probe) {
612
		ret = drv->probe(dev, dev_id);
613
		if (ret != 0)
614 615
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
616 617

	} else {
618 619
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
620
		ret = -ENODEV;
621 622 623 624
	}
	return ret;
}

625 626 627 628 629
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
630
	struct hv_driver *drv;
631
	struct hv_device *dev = device_to_hv_device(child_device);
632

633 634 635 636 637
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
638 639 640 641

	return 0;
}

642 643 644 645 646 647 648

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
649
	struct hv_device *dev = device_to_hv_device(child_device);
650 651 652 653 654 655 656 657


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

658 659
	if (drv->shutdown)
		drv->shutdown(dev);
660 661 662 663

	return;
}

664 665 666 667 668 669

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
670
	struct hv_device *hv_dev = device_to_hv_device(device);
671
	struct vmbus_channel *channel = hv_dev->channel;
672

673 674
	hv_process_channel_removal(channel,
				   channel->offermsg.child_relid);
675
	kfree(hv_dev);
676 677 678

}

679
/* The one and only one */
680 681 682 683 684 685 686
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
687
	.dev_groups =		vmbus_groups,
688 689
};

690 691 692 693 694 695 696 697 698
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

699 700 701 702
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

703 704 705 706 707 708
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

709
static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
710 711 712 713 714 715
{
	struct clock_event_device *dev = hv_context.clk_evt[cpu];

	if (dev->event_handler)
		dev->event_handler(dev);

716
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
717 718
}

719
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
720 721 722 723 724
{
	int cpu = smp_processor_id();
	void *page_addr = hv_context.synic_message_page[cpu];
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
725 726
	struct vmbus_channel_message_header *hdr;
	struct vmbus_channel_message_table_entry *entry;
727
	struct onmessage_work_context *ctx;
728
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
729

730
	if (message_type == HVMSG_NONE)
731 732
		/* no msg */
		return;
733

734
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
735

736 737 738 739
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
740

741 742 743 744 745
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
746

747 748
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
749

750 751 752
		queue_work(vmbus_connection.work_queue, &ctx->work);
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
753

754
msg_handled:
755
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
756 757
}

758
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
759 760 761 762 763
{
	int cpu = smp_processor_id();
	void *page_addr;
	struct hv_message *msg;
	union hv_synic_event_flags *event;
764
	bool handled = false;
G
Greg Kroah-Hartman 已提交
765

766 767
	page_addr = hv_context.synic_event_page[cpu];
	if (page_addr == NULL)
768
		return;
769 770 771

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
772 773 774 775 776
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
777

778 779
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
780

781 782 783 784 785 786 787 788 789 790 791 792
		/* Since we are a child, we only need to check bit 0 */
		if (sync_test_and_clear_bit(0,
			(unsigned long *) &event->flags32[0])) {
			handled = true;
		}
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
793 794
		handled = true;
	}
795

796
	if (handled)
797
		tasklet_schedule(hv_context.event_dpc[cpu]);
798 799


800 801 802 803
	page_addr = hv_context.synic_message_page[cpu];
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
804 805 806 807
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
			hv_process_timer_expiration(msg, cpu);
		else
808
			tasklet_schedule(hv_context.msg_dpc[cpu]);
809
	}
810 811

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
812 813
}

814

815
/*
816 817 818
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
819 820 821
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
822
 */
823
static int vmbus_bus_init(void)
824
{
825
	int ret;
826

827 828
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
829
	if (ret != 0) {
830
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
831
		return ret;
832 833
	}

834
	ret = bus_register(&hv_bus);
835
	if (ret)
836
		goto err_cleanup;
837

838
	hv_setup_vmbus_irq(vmbus_isr);
839

840 841 842
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
843
	/*
844
	 * Initialize the per-cpu interrupt state and
845 846
	 * connect to the host.
	 */
847
	on_each_cpu(hv_synic_init, NULL, 1);
848
	ret = vmbus_connect();
849
	if (ret)
850
		goto err_connect;
851

852 853
	if (vmbus_proto_version > VERSION_WIN7)
		cpu_hotplug_disable();
854 855 856 857

	/*
	 * Only register if the crash MSRs are available
	 */
858
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
859
		register_die_notifier(&hyperv_die_block);
860 861 862 863
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

864
	vmbus_request_offers();
865

866
	return 0;
867

868 869
err_connect:
	on_each_cpu(hv_synic_cleanup, NULL, 1);
870 871
err_alloc:
	hv_synic_free();
872
	hv_remove_vmbus_irq();
873 874 875 876

	bus_unregister(&hv_bus);

err_cleanup:
877
	hv_cleanup(false);
878 879

	return ret;
880 881
}

882
/**
883 884
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
885 886
 * @owner: owner module of the drv
 * @mod_name: module name string
887 888
 *
 * Registers the given driver with Linux through the 'driver_register()' call
889
 * and sets up the hyper-v vmbus handling for this driver.
890 891
 * It will return the state of the 'driver_register()' call.
 *
892
 */
893
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
894
{
895
	int ret;
896

897
	pr_info("registering driver %s\n", hv_driver->name);
898

899 900 901 902
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

903 904 905 906
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
907

908
	ret = driver_register(&hv_driver->driver);
909

910
	return ret;
911
}
912
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
913

914
/**
915
 * vmbus_driver_unregister() - Unregister a vmbus's driver
916 917
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
918
 *
919 920
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
921
 */
922
void vmbus_driver_unregister(struct hv_driver *hv_driver)
923
{
924
	pr_info("unregistering driver %s\n", hv_driver->name);
925

926
	if (!vmbus_exists())
927
		driver_unregister(&hv_driver->driver);
928
}
929
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
930

931
/*
932
 * vmbus_device_create - Creates and registers a new child device
933
 * on the vmbus.
934
 */
S
stephen hemminger 已提交
935 936 937
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
938
{
939
	struct hv_device *child_device_obj;
940

941 942
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
943
		pr_err("Unable to allocate device object for child device\n");
944 945 946
		return NULL;
	}

947
	child_device_obj->channel = channel;
948
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
949
	memcpy(&child_device_obj->dev_instance, instance,
950
	       sizeof(uuid_le));
951
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
952 953 954 955 956


	return child_device_obj;
}

957
/*
958
 * vmbus_device_register - Register the child device
959
 */
960
int vmbus_device_register(struct hv_device *child_device_obj)
961
{
962
	int ret = 0;
963

964 965
	dev_set_name(&child_device_obj->device, "vmbus_%d",
		     child_device_obj->channel->id);
966

967
	child_device_obj->device.bus = &hv_bus;
968
	child_device_obj->device.parent = &hv_acpi_dev->dev;
969
	child_device_obj->device.release = vmbus_device_release;
970

971 972 973 974
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
975
	ret = device_register(&child_device_obj->device);
976 977

	if (ret)
978
		pr_err("Unable to register child device\n");
979
	else
980
		pr_debug("child device %s registered\n",
981
			dev_name(&child_device_obj->device));
982 983 984 985

	return ret;
}

986
/*
987
 * vmbus_device_unregister - Remove the specified child device
988
 * from the vmbus.
989
 */
990
void vmbus_device_unregister(struct hv_device *device_obj)
991
{
992 993 994
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

995 996 997 998
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
999
	device_unregister(&device_obj->device);
1000 1001 1002
}


1003
/*
1004
 * VMBUS is an acpi enumerated device. Get the information we
1005
 * need from DSDT.
1006
 */
1007
#define VTPM_BASE_ADDRESS 0xfed40000
1008
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1009
{
1010 1011 1012 1013 1014 1015
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1016
	switch (res->type) {
1017 1018 1019 1020 1021 1022 1023 1024 1025

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1026
		break;
1027

1028
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1029 1030
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1031
		break;
1032 1033 1034 1035 1036

	default:
		/* Unused resource type */
		return AE_OK;

1037
	}
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1058 1059 1060
	/*
	 * If two ranges are adjacent, merge them.
	 */
1061 1062 1063 1064 1065 1066
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1079
		if ((*old_res)->start > new_res->end) {
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1091 1092 1093 1094

	return AE_OK;
}

1095 1096 1097 1098 1099 1100
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1101 1102 1103 1104 1105 1106
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1107 1108 1109 1110 1111 1112 1113 1114 1115
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1168
	struct resource *iter, *shadow;
1169
	resource_size_t range_min, range_max, start;
1170
	const char *dev_n = dev_name(&device_obj->device);
1171
	int retval;
1172 1173 1174

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1196 1197 1198 1199 1200 1201
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1214 1215
			}

1216
			__release_region(iter, start, size);
1217 1218 1219
		}
	}

1220 1221 1222
exit:
	up(&hyperv_mmio_lock);
	return retval;
1223 1224 1225
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1236 1237 1238 1239 1240 1241 1242 1243 1244
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1245
	release_mem_region(start, size);
1246
	up(&hyperv_mmio_lock);
1247 1248 1249 1250

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/**
 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
 * @cpu_number: CPU number in Linux terms
 *
 * This function returns the mapping between the Linux processor
 * number and the hypervisor's virtual processor number, useful
 * in making hypercalls and such that talk about specific
 * processors.
 *
 * Return: Virtual processor number in Hyper-V terms
 */
int vmbus_cpu_number_to_vp_number(int cpu_number)
{
	return hv_context.vp_index[cpu_number];
}
EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);

1268 1269 1270
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1271
	int ret_val = -ENODEV;
1272
	struct acpi_device *ancestor;
1273

1274 1275
	hv_acpi_dev = device;

1276
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1277
					vmbus_walk_resources, NULL);
1278

1279 1280 1281
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1282 1283
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1284
	 */
1285 1286 1287
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1288 1289

		if (ACPI_FAILURE(result))
1290
			continue;
1291 1292
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1293
			break;
1294
		}
1295
	}
1296 1297 1298
	ret_val = 0;

acpi_walk_err:
1299
	complete(&probe_event);
1300 1301
	if (ret_val)
		vmbus_acpi_remove(device);
1302
	return ret_val;
1303 1304 1305 1306
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1307
	{"VMBus", 0},
1308 1309 1310 1311 1312 1313 1314 1315 1316
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1317
		.remove = vmbus_acpi_remove,
1318 1319 1320
	},
};

1321 1322 1323 1324 1325
static void hv_kexec_handler(void)
{
	int cpu;

	hv_synic_clockevents_cleanup();
1326
	vmbus_initiate_unload(false);
1327 1328
	for_each_online_cpu(cpu)
		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1329
	hv_cleanup(false);
1330 1331
};

1332 1333
static void hv_crash_handler(struct pt_regs *regs)
{
1334
	vmbus_initiate_unload(true);
1335 1336 1337 1338 1339 1340
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
	hv_synic_cleanup(NULL);
1341
	hv_cleanup(true);
1342 1343
};

1344
static int __init hv_acpi_init(void)
1345
{
1346
	int ret, t;
1347

1348
	if (x86_hyper != &x86_hyper_ms_hyperv)
1349 1350
		return -ENODEV;

1351 1352 1353
	init_completion(&probe_event);

	/*
1354
	 * Get ACPI resources first.
1355
	 */
1356 1357
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1358 1359 1360
	if (ret)
		return ret;

1361 1362 1363 1364 1365
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1366

1367
	ret = vmbus_bus_init();
1368
	if (ret)
1369 1370
		goto cleanup;

1371
	hv_setup_kexec_handler(hv_kexec_handler);
1372
	hv_setup_crash_handler(hv_crash_handler);
1373

1374 1375 1376 1377
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1378
	hv_acpi_dev = NULL;
1379
	return ret;
1380 1381
}

1382 1383
static void __exit vmbus_exit(void)
{
1384 1385
	int cpu;

1386
	hv_remove_kexec_handler();
1387
	hv_remove_crash_handler();
1388
	vmbus_connection.conn_state = DISCONNECTED;
1389
	hv_synic_clockevents_cleanup();
1390
	vmbus_disconnect();
1391
	hv_remove_vmbus_irq();
1392 1393
	for_each_online_cpu(cpu)
		tasklet_kill(hv_context.msg_dpc[cpu]);
1394
	vmbus_free_channels();
1395
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1396
		unregister_die_notifier(&hyperv_die_block);
1397 1398 1399
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1400
	bus_unregister(&hv_bus);
1401
	hv_cleanup(false);
1402 1403
	for_each_online_cpu(cpu) {
		tasklet_kill(hv_context.event_dpc[cpu]);
1404
		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1405
	}
1406
	hv_synic_free();
1407
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1408 1409
	if (vmbus_proto_version > VERSION_WIN7)
		cpu_hotplug_enable();
1410 1411
}

1412

1413
MODULE_LICENSE("GPL");
1414

1415
subsys_initcall(hv_acpi_init);
1416
module_exit(vmbus_exit);