intel_pm.c 213.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_irq.h"
44
#include "i915_trace.h"
45
#include "intel_pm.h"
46
#include "intel_sideband.h"
47
#include "../../../platform/x86/intel_ips.h"
48

49
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
50
{
51 52 53
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
54
		 * Display WA #0390: skl,kbl
55 56 57 58 59 60 61 62 63
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

64
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
65 66 67
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71

72 73
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77

78
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79 80
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82 83 84 85 86

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
87 88
}

89
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
90
{
91
	gen9_init_clock_gating(dev_priv);
92

93 94 95 96
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

97 98
	/*
	 * FIXME:
99
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
100 101
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
108 109
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
110 111 112 113 114 115 116 117

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184
{
	u16 ddrpll, csipll;

185 186
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

276 277
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

300 301 302 303
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

304
	vlv_punit_get(dev_priv);
305 306 307 308 309 310 311 312 313 314 315 316 317 318

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

319
	vlv_punit_put(dev_priv);
320 321
}

322 323 324 325
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

326
	vlv_punit_get(dev_priv);
327

328
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
329 330 331 332
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
333
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
334

335
	vlv_punit_put(dev_priv);
336 337
}

338 339 340
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

341
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
342
{
343
	bool was_enabled;
344
	u32 val;
345

346
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
348
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
349
		POSTING_READ(FW_BLC_SELF_VLV);
350
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
351
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
352
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
353
		POSTING_READ(FW_BLC_SELF);
354
	} else if (IS_PINEVIEW(dev_priv)) {
355 356 357 358 359 360
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
361
		I915_WRITE(DSPFW3, val);
362
		POSTING_READ(DSPFW3);
363
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
364
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
365 366 367
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
368
		POSTING_READ(FW_BLC_SELF);
369
	} else if (IS_I915GM(dev_priv)) {
370 371 372 373 374
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
375
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
376 377 378
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
379
		POSTING_READ(INSTPM);
380
	} else {
381
		return false;
382
	}
383

384 385
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

386 387 388 389 390
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
391 392
}

V
Ville Syrjälä 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
430
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
431
{
432 433
	bool ret;

434
	mutex_lock(&dev_priv->wm.wm_mutex);
435
	ret = _intel_set_memory_cxsr(dev_priv, enable);
436 437 438 439
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
440
	mutex_unlock(&dev_priv->wm.wm_mutex);
441 442

	return ret;
443
}
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
459
static const int pessimal_latency_ns = 5000;
460

461 462 463
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

464
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
465
{
466
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
467
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
468
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
469 470
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
471

472
	switch (pipe) {
473
		u32 dsparb, dsparb2, dsparb3;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
493 494
		MISSING_CASE(pipe);
		return;
495 496
	}

497 498 499 500
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
501 502
}

503 504
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
505
{
506
	u32 dsparb = I915_READ(DSPARB);
507 508 509
	int size;

	size = dsparb & 0x7f;
510
	if (i9xx_plane == PLANE_B)
511 512
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

513 514
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
515 516 517 518

	return size;
}

519 520
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
521
{
522
	u32 dsparb = I915_READ(DSPARB);
523 524 525
	int size;

	size = dsparb & 0x1ff;
526
	if (i9xx_plane == PLANE_B)
527 528 529
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

530 531
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
532 533 534 535

	return size;
}

536 537
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
538
{
539
	u32 dsparb = I915_READ(DSPARB);
540 541 542 543 544
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

545 546
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
547 548 549 550 551

	return size;
}

/* Pineview has different values for various configs */
552
static const struct intel_watermark_params pnv_display_wm = {
553 554 555 556 557
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
558
};
559 560

static const struct intel_watermark_params pnv_display_hplloff_wm = {
561 562 563 564 565
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566
};
567 568

static const struct intel_watermark_params pnv_cursor_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574
};
575 576

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582
};
583

584
static const struct intel_watermark_params i965_cursor_wm_info = {
585 586 587 588 589
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
590
};
591

592
static const struct intel_watermark_params i945_wm_info = {
593 594 595 596 597
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
598
};
599

600
static const struct intel_watermark_params i915_wm_info = {
601 602 603 604 605
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
606
};
607

608
static const struct intel_watermark_params i830_a_wm_info = {
609 610 611 612 613
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
614
};
615

616 617 618 619 620 621 622
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
623

624
static const struct intel_watermark_params i845_wm_info = {
625 626 627 628 629
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
630 631
};

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
669
	u64 ret;
670

671
	ret = mul_u32_u32(pixel_rate, cpp * latency);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

728 729
/**
 * intel_calculate_wm - calculate watermark level
730
 * @pixel_rate: pixel clock
731
 * @wm: chip FIFO params
732
 * @fifo_size: size of the FIFO buffer
733
 * @cpp: bytes per pixel
734 735 736 737 738 739 740 741 742 743 744 745 746
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
747 748 749 750
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
751
{
752
	int entries, wm_size;
753 754 755 756 757 758 759

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
760 761 762 763 764
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
765

766 767
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
768 769

	/* Don't promote wm_size to unsigned... */
770
	if (wm_size > wm->max_wm)
771 772 773
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
774 775 776 777 778 779 780 781 782 783 784

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

785 786 787
	return wm_size;
}

788 789 790 791 792 793 794 795 796 797
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

798 799 800 801 802
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

803 804 805
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
806
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
807 808

	/* FIXME check the 'enable' instead */
809
	if (!crtc_state->hw.active)
810 811 812 813 814 815 816 817 818 819 820
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
821
		return plane_state->hw.fb != NULL;
822
	else
823
		return plane_state->uapi.visible;
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

845
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
846
{
847
	struct intel_crtc *crtc, *enabled = NULL;
848

849
	for_each_intel_crtc(&dev_priv->drm, crtc) {
850
		if (intel_crtc_active(crtc)) {
851 852 853 854 855 856 857 858 859
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

860
static void pnv_update_wm(struct intel_crtc *unused_crtc)
861
{
862
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
863
	struct intel_crtc *crtc;
864 865
	const struct cxsr_latency *latency;
	u32 reg;
866
	unsigned int wm;
867

868
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
869 870 871
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
872 873
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
874
		intel_set_memory_cxsr(dev_priv, false);
875 876 877
		return;
	}

878
	crtc = single_enabled_crtc(dev_priv);
879
	if (crtc) {
880
		const struct drm_display_mode *adjusted_mode =
881
			&crtc->config->hw.adjusted_mode;
882 883
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
884
		int cpp = fb->format->cpp[0];
885
		int clock = adjusted_mode->crtc_clock;
886 887

		/* Display SR */
888 889
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
890
					cpp, latency->display_sr);
891 892
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
893
		reg |= FW_WM(wm, SR);
894 895 896 897
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
898 899
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
900
					4, latency->cursor_sr);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
903
		reg |= FW_WM(wm, CURSOR_SR);
904 905 906
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
907 908
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
909
					cpp, latency->display_hpll_disable);
910 911
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
912
		reg |= FW_WM(wm, HPLL_SR);
913 914 915
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
916 917
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
918
					4, latency->cursor_hpll_disable);
919 920
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
921
		reg |= FW_WM(wm, HPLL_CURSOR);
922 923 924
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

925
		intel_set_memory_cxsr(dev_priv, true);
926
	} else {
927
		intel_set_memory_cxsr(dev_priv, false);
928 929 930
	}
}

931 932 933 934 935 936 937 938 939 940
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
941
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
942 943 944 945 946 947
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

948 949
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
950
{
951 952 953 954 955
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
973

974
	POSTING_READ(DSPFW1);
975 976
}

977 978 979
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

980
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
981 982
				const struct vlv_wm_values *wm)
{
983 984 985
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
986 987
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

988 989 990 991 992 993
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

1006
	I915_WRITE(DSPFW1,
1007
		   FW_WM(wm->sr.plane, SR) |
1008 1009 1010
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1011
	I915_WRITE(DSPFW2,
1012 1013 1014
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1015
	I915_WRITE(DSPFW3,
1016
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1017 1018 1019

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1020 1021
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1022
		I915_WRITE(DSPFW8_CHV,
1023 1024
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1025
		I915_WRITE(DSPFW9_CHV,
1026 1027
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1028
		I915_WRITE(DSPHOWM,
1029
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1030 1031 1032 1033 1034 1035 1036 1037 1038
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1039 1040
	} else {
		I915_WRITE(DSPFW7,
1041 1042
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1043
		I915_WRITE(DSPHOWM,
1044
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1045 1046 1047 1048 1049 1050
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1051 1052 1053
	}

	POSTING_READ(DSPFW1);
1054 1055
}

1056 1057
#undef FW_WM_VLV

1058 1059 1060 1061 1062
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1063
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1064

1065
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1110 1111 1112
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1113
{
1114
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1115 1116
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1117
		&crtc_state->hw.adjusted_mode;
1118 1119
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1120 1121 1122 1123 1124 1125 1126

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1127
	cpp = plane_state->hw.fb->format->cpp[0];
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1142
		cpp = max(cpp, 4u);
1143 1144 1145 1146

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1147
	width = drm_rect_width(&plane_state->uapi.dst);
1148 1149 1150 1151 1152 1153 1154

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1155
		unsigned int small, large;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1168
	return min_t(unsigned int, wm, USHRT_MAX);
1169 1170 1171 1172 1173
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1174
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1190
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1206 1207
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1208
			      u32 pri_val);
1209 1210 1211 1212

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1213
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1292
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1330
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1331
	struct intel_atomic_state *state =
1332
		to_intel_atomic_state(crtc_state->uapi.state);
1333
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1334 1335
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1336
	const struct g4x_pipe_wm *raw;
1337 1338
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1339 1340 1341 1342 1343
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1344 1345 1346
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1347 1348
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1349 1350
			continue;

1351
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1417
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1418
{
1419
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1420 1421 1422
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1423
		to_intel_atomic_state(new_crtc_state->uapi.state);
1424 1425 1426
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1427 1428
	enum plane_id plane_id;

1429
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1430 1431 1432 1433 1434 1435 1436
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1437
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1438
		!new_crtc_state->disable_cxsr;
1439
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1440
		!new_crtc_state->disable_cxsr;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1482
out:
1483 1484 1485 1486 1487
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1488
		new_crtc_state->wm.need_postvbl_update = true;
1489 1490 1491 1492 1493 1494 1495 1496

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1497
	int num_active_pipes = 0;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1516
		num_active_pipes++;
1517 1518
	}

1519
	if (num_active_pipes != 1) {
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1559
				   struct intel_crtc *crtc)
1560
{
1561 1562 1563
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1564 1565 1566 1567 1568 1569 1570 1571

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1572
				    struct intel_crtc *crtc)
1573
{
1574 1575 1576
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1577 1578 1579 1580 1581

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1582
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1583 1584 1585 1586
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1587 1588
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1589 1590
				   unsigned int htotal,
				   unsigned int width,
1591
				   unsigned int cpp,
1592 1593 1594 1595
				   unsigned int latency)
{
	unsigned int ret;

1596 1597
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1598 1599 1600 1601 1602
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1603
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1604 1605 1606 1607
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1608 1609
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1610 1611 1612
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1613 1614

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1615 1616 1617
	}
}

1618 1619 1620
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1621
{
1622
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1623
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1624
	const struct drm_display_mode *adjusted_mode =
1625
		&crtc_state->hw.adjusted_mode;
1626
	unsigned int clock, htotal, cpp, width, wm;
1627 1628 1629 1630

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1631
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1632 1633
		return 0;

1634
	cpp = plane_state->hw.fb->format->cpp[0];
1635 1636 1637
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1638

1639
	if (plane->id == PLANE_CURSOR) {
1640 1641 1642 1643 1644 1645 1646 1647
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1648
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1649 1650 1651
				    dev_priv->wm.pri_latency[level] * 10);
	}

1652
	return min_t(unsigned int, wm, USHRT_MAX);
1653 1654
}

1655 1656 1657 1658 1659 1660
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1661
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1662
{
1663
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1664
	const struct g4x_pipe_wm *raw =
1665
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1666
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1667
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1668
	int num_active_planes = hweight8(active_planes);
1669
	const int fifo_size = 511;
1670
	int fifo_extra, fifo_left = fifo_size;
1671
	int sprite0_fifo_extra = 0;
1672 1673
	unsigned int total_rate;
	enum plane_id plane_id;
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1686 1687
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1688 1689
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1690

1691 1692
	if (total_rate > fifo_size)
		return -EINVAL;
1693

1694 1695
	if (total_rate == 0)
		total_rate = 1;
1696

1697
	for_each_plane_id_on_crtc(crtc, plane_id) {
1698 1699
		unsigned int rate;

1700 1701
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1702 1703 1704
			continue;
		}

1705 1706 1707
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1708 1709
	}

1710 1711 1712
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1713 1714 1715
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1716 1717

	/* spread the remainder evenly */
1718
	for_each_plane_id_on_crtc(crtc, plane_id) {
1719 1720 1721 1722 1723
		int plane_extra;

		if (fifo_left == 0)
			break;

1724
		if ((active_planes & BIT(plane_id)) == 0)
1725 1726 1727
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1728
		fifo_state->plane[plane_id] += plane_extra;
1729 1730 1731
		fifo_left -= plane_extra;
	}

1732 1733 1734 1735 1736 1737 1738 1739 1740
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1741 1742
}

1743 1744 1745 1746 1747 1748
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1749
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1760 1761 1762 1763 1764 1765 1766 1767
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1768 1769 1770 1771
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1772
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1773
				 int level, enum plane_id plane_id, u16 value)
1774
{
1775
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1776
	int num_levels = intel_wm_num_levels(dev_priv);
1777
	bool dirty = false;
1778

1779
	for (; level < num_levels; level++) {
1780
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1781

1782
		dirty |= raw->plane[plane_id] != value;
1783
		raw->plane[plane_id] = value;
1784
	}
1785 1786

	return dirty;
1787 1788
}

1789 1790
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1791
{
1792
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1793
	enum plane_id plane_id = plane->id;
1794
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1795
	int level;
1796
	bool dirty = false;
1797

1798
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1799 1800
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1801
	}
1802

1803
	for (level = 0; level < num_levels; level++) {
1804
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1805 1806
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1807

1808 1809
		if (wm > max_wm)
			break;
1810

1811
		dirty |= raw->plane[plane_id] != wm;
1812 1813
		raw->plane[plane_id] = wm;
	}
1814

1815
	/* mark all higher levels as invalid */
1816
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1817

1818 1819
out:
	if (dirty)
1820
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1821 1822 1823 1824 1825 1826
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1827
}
1828

1829 1830
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1831
{
1832
	const struct g4x_pipe_wm *raw =
1833 1834 1835
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1836

1837 1838
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1839

1840
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1841
{
1842 1843 1844 1845
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1846 1847 1848 1849
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1850
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1851 1852
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1853
		to_intel_atomic_state(crtc_state->uapi.state);
1854 1855 1856
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1857 1858
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1859
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1860 1861
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1862 1863 1864
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1865
	unsigned int dirty = 0;
1866

1867 1868 1869
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1870 1871
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1872
			continue;
1873

1874
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1893
			intel_atomic_get_old_crtc_state(state, crtc);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1905
	}
1906

1907
	/* initially allow all levels */
1908
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1909 1910 1911 1912 1913
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1914
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1915

1916
	for (level = 0; level < wm_state->num_levels; level++) {
1917
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1918
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1919

1920
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1921
			break;
1922

1923 1924 1925 1926 1927 1928 1929 1930
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1931
						 raw->plane[PLANE_SPRITE0],
1932 1933
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1934

1935 1936 1937
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1938 1939
	}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1950 1951
}

1952 1953 1954
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1955
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1956
				   struct intel_crtc *crtc)
1957
{
1958
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1959
	struct intel_uncore *uncore = &dev_priv->uncore;
1960 1961
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1962 1963
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1964
	int sprite0_start, sprite1_start, fifo_size;
1965

1966 1967 1968
	if (!crtc_state->fifo_changed)
		return;

1969 1970 1971
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1972

1973 1974
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1975

1976 1977
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1978 1979 1980 1981 1982 1983 1984 1985 1986
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1987
	spin_lock(&uncore->lock);
1988

1989
	switch (crtc->pipe) {
1990
		u32 dsparb, dsparb2, dsparb3;
1991
	case PIPE_A:
1992 1993
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2005 2006
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2007 2008
		break;
	case PIPE_B:
2009 2010
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2022 2023
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2024 2025
		break;
	case PIPE_C:
2026 2027
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2039 2040
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2041 2042 2043 2044
		break;
	default:
		break;
	}
2045

2046
	intel_uncore_posting_read_fw(uncore, DSPARB);
2047

2048
	spin_unlock(&uncore->lock);
2049 2050 2051 2052
}

#undef VLV_FIFO

2053
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2054
{
2055
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2056 2057 2058
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2059
		to_intel_atomic_state(new_crtc_state->uapi.state);
2060 2061 2062
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2063 2064
	int level;

2065
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2066 2067 2068 2069 2070 2071
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2072
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2073
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2074
		!new_crtc_state->disable_cxsr;
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2093
out:
2094 2095 2096 2097
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2098
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2099
		new_crtc_state->wm.need_postvbl_update = true;
2100 2101 2102 2103

	return 0;
}

2104
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2105 2106 2107
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2108
	int num_active_pipes = 0;
2109

2110
	wm->level = dev_priv->wm.max_level;
2111 2112
	wm->cxsr = true;

2113
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2114
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2115 2116 2117 2118 2119 2120 2121

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2122
		num_active_pipes++;
2123 2124 2125
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2126
	if (num_active_pipes != 1)
2127 2128
		wm->cxsr = false;

2129
	if (num_active_pipes > 1)
2130 2131
		wm->level = VLV_WM_LEVEL_PM2;

2132
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2133
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2134 2135 2136
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2137
		if (crtc->active && wm->cxsr)
2138 2139
			wm->sr = wm_state->sr[wm->level];

2140 2141 2142 2143
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2144 2145 2146
	}
}

2147
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2148
{
2149 2150
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2151

2152
	vlv_merge_wm(dev_priv, &new_wm);
2153

2154
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2155 2156
		return;

2157
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2158 2159
		chv_set_memory_dvfs(dev_priv, false);

2160
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2161 2162
		chv_set_memory_pm5(dev_priv, false);

2163
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2164
		_intel_set_memory_cxsr(dev_priv, false);
2165

2166
	vlv_write_wm_values(dev_priv, &new_wm);
2167

2168
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2169
		_intel_set_memory_cxsr(dev_priv, true);
2170

2171
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2172 2173
		chv_set_memory_pm5(dev_priv, true);

2174
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2175 2176
		chv_set_memory_dvfs(dev_priv, true);

2177
	*old_wm = new_wm;
2178 2179
}

2180
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2181
				   struct intel_crtc *crtc)
2182
{
2183 2184 2185
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2186 2187

	mutex_lock(&dev_priv->wm.wm_mutex);
2188 2189 2190 2191 2192 2193
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2194
				    struct intel_crtc *crtc)
2195
{
2196 2197 2198
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2199 2200 2201 2202 2203

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2204
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2205 2206 2207 2208
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2209
static void i965_update_wm(struct intel_crtc *unused_crtc)
2210
{
2211
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2212
	struct intel_crtc *crtc;
2213 2214
	int srwm = 1;
	int cursor_sr = 16;
2215
	bool cxsr_enabled;
2216 2217

	/* Calc sr entries for one plane configs */
2218
	crtc = single_enabled_crtc(dev_priv);
2219 2220 2221
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2222
		const struct drm_display_mode *adjusted_mode =
2223
			&crtc->config->hw.adjusted_mode;
2224 2225
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2226
		int clock = adjusted_mode->crtc_clock;
2227
		int htotal = adjusted_mode->crtc_htotal;
2228
		int hdisplay = crtc->config->pipe_src_w;
2229
		int cpp = fb->format->cpp[0];
2230 2231
		int entries;

2232 2233
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2234 2235 2236 2237 2238 2239 2240 2241
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2242 2243 2244
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2245
		entries = DIV_ROUND_UP(entries,
2246 2247
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2248

2249
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2250 2251 2252 2253 2254 2255
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2256
		cxsr_enabled = true;
2257
	} else {
2258
		cxsr_enabled = false;
2259
		/* Turn off self refresh if both pipes are enabled */
2260
		intel_set_memory_cxsr(dev_priv, false);
2261 2262 2263 2264 2265 2266
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2267 2268 2269 2270 2271 2272
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2273
	/* update cursor SR watermark */
2274
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2275 2276 2277

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2278 2279
}

2280 2281
#undef FW_WM

2282
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2283
{
2284
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2285
	const struct intel_watermark_params *wm_info;
2286 2287
	u32 fwater_lo;
	u32 fwater_hi;
2288 2289 2290
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2291
	struct intel_crtc *crtc, *enabled = NULL;
2292

2293
	if (IS_I945GM(dev_priv))
2294
		wm_info = &i945_wm_info;
2295
	else if (!IS_GEN(dev_priv, 2))
2296 2297
		wm_info = &i915_wm_info;
	else
2298
		wm_info = &i830_a_wm_info;
2299

2300 2301
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2302 2303
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2304
			&crtc->config->hw.adjusted_mode;
2305 2306 2307 2308
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2309
		if (IS_GEN(dev_priv, 2))
2310
			cpp = 4;
2311
		else
2312
			cpp = fb->format->cpp[0];
2313

2314
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2315
					       wm_info, fifo_size, cpp,
2316
					       pessimal_latency_ns);
2317
		enabled = crtc;
2318
	} else {
2319
		planea_wm = fifo_size - wm_info->guard_size;
2320 2321 2322 2323
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2324
	if (IS_GEN(dev_priv, 2))
2325
		wm_info = &i830_bc_wm_info;
2326

2327 2328
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2329 2330
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2331
			&crtc->config->hw.adjusted_mode;
2332 2333 2334 2335
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2336
		if (IS_GEN(dev_priv, 2))
2337
			cpp = 4;
2338
		else
2339
			cpp = fb->format->cpp[0];
2340

2341
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2342
					       wm_info, fifo_size, cpp,
2343
					       pessimal_latency_ns);
2344 2345 2346 2347
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2348
	} else {
2349
		planeb_wm = fifo_size - wm_info->guard_size;
2350 2351 2352
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2353 2354 2355

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2356
	if (IS_I915GM(dev_priv) && enabled) {
2357
		struct drm_i915_gem_object *obj;
2358

2359
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2360 2361

		/* self-refresh seems busted with untiled */
2362
		if (!i915_gem_object_is_tiled(obj))
2363 2364 2365
			enabled = NULL;
	}

2366 2367 2368 2369 2370 2371
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2372
	intel_set_memory_cxsr(dev_priv, false);
2373 2374

	/* Calc sr entries for one plane configs */
2375
	if (HAS_FW_BLC(dev_priv) && enabled) {
2376 2377
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2378
		const struct drm_display_mode *adjusted_mode =
2379
			&enabled->config->hw.adjusted_mode;
2380 2381
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2382
		int clock = adjusted_mode->crtc_clock;
2383
		int htotal = adjusted_mode->crtc_htotal;
2384 2385
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2386 2387
		int entries;

2388
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2389
			cpp = 4;
2390
		else
2391
			cpp = fb->format->cpp[0];
2392

2393 2394
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2395 2396 2397 2398 2399 2400
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2401
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2402 2403
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2404
		else
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2421 2422
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2423 2424
}

2425
static void i845_update_wm(struct intel_crtc *unused_crtc)
2426
{
2427
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2428
	struct intel_crtc *crtc;
2429
	const struct drm_display_mode *adjusted_mode;
2430
	u32 fwater_lo;
2431 2432
	int planea_wm;

2433
	crtc = single_enabled_crtc(dev_priv);
2434 2435 2436
	if (crtc == NULL)
		return;

2437
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2438
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2439
				       &i845_wm_info,
2440
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2441
				       4, pessimal_latency_ns);
2442 2443 2444 2445 2446 2447 2448 2449
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2450
/* latency must be in 0.1us units. */
2451 2452 2453
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2454
{
2455
	unsigned int ret;
2456

2457 2458
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2459 2460 2461 2462

	return ret;
}

2463
/* latency must be in 0.1us units. */
2464 2465 2466 2467 2468
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2469
{
2470
	unsigned int ret;
2471

2472 2473
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2474
	ret = DIV_ROUND_UP(ret, 64) + 2;
2475

2476 2477 2478
	return ret;
}

2479
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2480
{
2481 2482 2483 2484 2485 2486
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2487
	if (WARN_ON(!cpp))
2488 2489 2490 2491
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2492
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2493 2494
}

2495
struct ilk_wm_maximums {
2496 2497 2498 2499
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2500 2501
};

2502 2503 2504 2505
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2506 2507
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2508
			      u32 mem_value, bool is_lp)
2509
{
2510
	u32 method1, method2;
2511
	int cpp;
2512

2513 2514 2515
	if (mem_value == 0)
		return U32_MAX;

2516
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2517 2518
		return 0;

2519
	cpp = plane_state->hw.fb->format->cpp[0];
2520

2521
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2522 2523 2524 2525

	if (!is_lp)
		return method1;

2526
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2527
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2528
				 drm_rect_width(&plane_state->uapi.dst),
2529
				 cpp, mem_value);
2530 2531

	return min(method1, method2);
2532 2533
}

2534 2535 2536 2537
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2538 2539
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2540
			      u32 mem_value)
2541
{
2542
	u32 method1, method2;
2543
	int cpp;
2544

2545 2546 2547
	if (mem_value == 0)
		return U32_MAX;

2548
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2549 2550
		return 0;

2551
	cpp = plane_state->hw.fb->format->cpp[0];
2552

2553 2554
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2555
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2556
				 drm_rect_width(&plane_state->uapi.dst),
2557
				 cpp, mem_value);
2558 2559 2560
	return min(method1, method2);
}

2561 2562 2563 2564
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2565 2566
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2567
			      u32 mem_value)
2568
{
2569 2570
	int cpp;

2571 2572 2573
	if (mem_value == 0)
		return U32_MAX;

2574
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2575 2576
		return 0;

2577
	cpp = plane_state->hw.fb->format->cpp[0];
2578

2579
	return ilk_wm_method2(crtc_state->pixel_rate,
2580
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2581
			      drm_rect_width(&plane_state->uapi.dst),
2582
			      cpp, mem_value);
2583 2584
}

2585
/* Only for WM_LP. */
2586 2587
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2588
			      u32 pri_val)
2589
{
2590
	int cpp;
2591

2592
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2593 2594
		return 0;

2595
	cpp = plane_state->hw.fb->format->cpp[0];
2596

2597 2598
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2599 2600
}

2601 2602
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2603
{
2604
	if (INTEL_GEN(dev_priv) >= 8)
2605
		return 3072;
2606
	else if (INTEL_GEN(dev_priv) >= 7)
2607 2608 2609 2610 2611
		return 768;
	else
		return 512;
}

2612 2613 2614
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2615
{
2616
	if (INTEL_GEN(dev_priv) >= 8)
2617 2618
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2619
	else if (INTEL_GEN(dev_priv) >= 7)
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2630 2631
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2632
{
2633
	if (INTEL_GEN(dev_priv) >= 7)
2634 2635 2636 2637 2638
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2639
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2640
{
2641
	if (INTEL_GEN(dev_priv) >= 8)
2642 2643 2644 2645 2646
		return 31;
	else
		return 15;
}

2647
/* Calculate the maximum primary/sprite plane watermark */
2648
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2649
				     int level,
2650
				     const struct intel_wm_config *config,
2651 2652 2653
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2654
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2655 2656

	/* if sprites aren't enabled, sprites get nothing */
2657
	if (is_sprite && !config->sprites_enabled)
2658 2659 2660
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2661
	if (level == 0 || config->num_pipes_active > 1) {
2662
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2663 2664 2665 2666 2667 2668

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2669
		if (INTEL_GEN(dev_priv) <= 6)
2670 2671 2672
			fifo_size /= 2;
	}

2673
	if (config->sprites_enabled) {
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2685
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2686 2687 2688
}

/* Calculate the maximum cursor plane watermark */
2689
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2690 2691
				      int level,
				      const struct intel_wm_config *config)
2692 2693
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2694
	if (level > 0 && config->num_pipes_active > 1)
2695 2696 2697
		return 64;

	/* otherwise just report max that registers can hold */
2698
	return ilk_cursor_wm_reg_max(dev_priv, level);
2699 2700
}

2701
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2702 2703 2704
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2705
				    struct ilk_wm_maximums *max)
2706
{
2707 2708 2709 2710
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2711 2712
}

2713
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2714 2715 2716
					int level,
					struct ilk_wm_maximums *max)
{
2717 2718 2719 2720
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2721 2722
}

2723
static bool ilk_validate_wm_level(int level,
2724
				  const struct ilk_wm_maximums *max,
2725
				  struct intel_wm_level *result)
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2755 2756 2757
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2758 2759 2760 2761 2762 2763
		result->enable = true;
	}

	return ret;
}

2764
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2765
				 const struct intel_crtc *intel_crtc,
2766
				 int level,
2767
				 struct intel_crtc_state *crtc_state,
2768 2769 2770
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2771
				 struct intel_wm_level *result)
2772
{
2773 2774 2775
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2776 2777 2778 2779 2780 2781 2782 2783

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2784
	if (pristate) {
2785
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2786
						     pri_latency, level);
2787
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2788 2789 2790
	}

	if (sprstate)
2791
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2792 2793

	if (curstate)
2794
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2795

2796 2797 2798
	result->enable = true;
}

2799
static u32
2800
hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2801
{
2802
	const struct intel_atomic_state *intel_state =
2803
		to_intel_atomic_state(crtc_state->uapi.state);
2804
	const struct drm_display_mode *adjusted_mode =
2805
		&crtc_state->hw.adjusted_mode;
2806
	u32 linetime, ips_linetime;
2807

2808
	if (!crtc_state->hw.active)
2809 2810 2811
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2812
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2813
		return 0;
2814

2815 2816 2817
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2818 2819 2820
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2821
					 intel_state->cdclk.logical.cdclk);
2822

2823 2824
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2825 2826
}

2827
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2828
				  u16 wm[8])
2829
{
2830 2831
	struct intel_uncore *uncore = &dev_priv->uncore;

2832
	if (INTEL_GEN(dev_priv) >= 9) {
2833
		u32 val;
2834
		int ret, i;
2835
		int level, max_level = ilk_wm_max_level(dev_priv);
2836 2837 2838 2839 2840

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2841
					     &val, NULL);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2860
					     &val, NULL);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2887
		/*
2888
		 * WaWmMemoryReadLatency:skl+,glk
2889
		 *
2890
		 * punit doesn't take into account the read latency so we need
2891 2892
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2893
		 */
2894 2895 2896 2897 2898
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2899
				wm[level] += 2;
2900
			}
2901 2902
		}

2903 2904 2905 2906 2907 2908
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2909
		if (dev_priv->dram_info.is_16gb_dimm)
2910 2911
			wm[0] += 1;

2912
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2913
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2914 2915 2916 2917

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2918 2919 2920 2921
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2922
	} else if (INTEL_GEN(dev_priv) >= 6) {
2923
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2924 2925 2926 2927 2928

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2929
	} else if (INTEL_GEN(dev_priv) >= 5) {
2930
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2931 2932 2933 2934 2935

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2936 2937
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2938 2939 2940
	}
}

2941
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2942
				       u16 wm[5])
2943 2944
{
	/* ILK sprite LP0 latency is 1300 ns */
2945
	if (IS_GEN(dev_priv, 5))
2946 2947 2948
		wm[0] = 13;
}

2949
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2950
				       u16 wm[5])
2951 2952
{
	/* ILK cursor LP0 latency is 1300 ns */
2953
	if (IS_GEN(dev_priv, 5))
2954 2955 2956
		wm[0] = 13;
}

2957
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2958 2959
{
	/* how many WM levels are we expecting */
2960
	if (INTEL_GEN(dev_priv) >= 9)
2961
		return 7;
2962
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2963
		return 4;
2964
	else if (INTEL_GEN(dev_priv) >= 6)
2965
		return 3;
2966
	else
2967 2968
		return 2;
}
2969

2970
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2971
				   const char *name,
2972
				   const u16 wm[8])
2973
{
2974
	int level, max_level = ilk_wm_max_level(dev_priv);
2975 2976 2977 2978 2979

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2980 2981
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2982 2983 2984
			continue;
		}

2985 2986 2987 2988
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2989
		if (INTEL_GEN(dev_priv) >= 9)
2990 2991
			latency *= 10;
		else if (level > 0)
2992 2993 2994 2995 2996 2997 2998 2999
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

3000
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3001
				    u16 wm[5], u16 min)
3002
{
3003
	int level, max_level = ilk_wm_max_level(dev_priv);
3004 3005 3006 3007 3008 3009

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3010
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3011 3012 3013 3014

	return true;
}

3015
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3031 3032 3033
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3064
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3065
{
3066
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3067 3068 3069 3070 3071 3072

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3073
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3074
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3075

3076 3077 3078
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3079

3080
	if (IS_GEN(dev_priv, 6)) {
3081
		snb_wm_latency_quirk(dev_priv);
3082 3083
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3084 3085
}

3086
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3087
{
3088
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3089
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3090 3091
}

3092
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3104
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3115
/* Compute new watermarks for the pipe */
3116
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3117
{
3118 3119
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
3120
	struct intel_pipe_wm *pipe_wm;
3121 3122
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3123 3124 3125
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3126
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3127
	struct ilk_wm_maximums max;
3128

3129
	pipe_wm = &crtc_state->wm.ilk.optimal;
3130

3131 3132 3133 3134 3135 3136 3137
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3138 3139
	}

3140
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3141
	if (sprstate) {
3142 3143 3144 3145
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3146 3147
	}

3148 3149
	usable_level = max_level;

3150
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3151
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3152
		usable_level = 1;
3153 3154

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3155
	if (pipe_wm->sprites_scaled)
3156
		usable_level = 0;
3157

3158
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3159
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3160
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3161

3162
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3163
		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3164

3165
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3166
		return -EINVAL;
3167

3168
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3169

3170 3171
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3172

3173
		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3174
				     pristate, sprstate, curstate, wm);
3175 3176 3177 3178 3179 3180

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3181 3182 3183 3184
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3185 3186
	}

3187
	return 0;
3188 3189
}

3190 3191 3192 3193 3194
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3195
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3196
{
3197
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3198
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3199
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3200
	struct intel_atomic_state *intel_state =
3201
		to_intel_atomic_state(newstate->uapi.state);
3202 3203 3204
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3205
	int level, max_level = ilk_wm_max_level(dev_priv);
3206 3207 3208 3209 3210 3211

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3212
	*a = newstate->wm.ilk.optimal;
3213
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3214
	    intel_state->skip_intermediate_wm)
3215 3216
		return 0;

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3238
	if (!ilk_validate_pipe_wm(dev_priv, a))
3239 3240 3241 3242 3243 3244
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3245 3246
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3247 3248 3249 3250

	return 0;
}

3251 3252 3253
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3254
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3255 3256 3257 3258 3259
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3260 3261
	ret_wm->enable = true;

3262
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3263
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3264 3265 3266 3267
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3268

3269 3270 3271 3272 3273
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3274
		if (!wm->enable)
3275
			ret_wm->enable = false;
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3287
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3288
			 const struct intel_wm_config *config,
3289
			 const struct ilk_wm_maximums *max,
3290 3291
			 struct intel_pipe_wm *merged)
{
3292
	int level, max_level = ilk_wm_max_level(dev_priv);
3293
	int last_enabled_level = max_level;
3294

3295
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3296
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3297
	    config->num_pipes_active > 1)
3298
		last_enabled_level = 0;
3299

3300
	/* ILK: FBC WM must be disabled always */
3301
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3302 3303 3304 3305 3306

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3307
		ilk_merge_wm_level(dev_priv, level, wm);
3308

3309 3310 3311 3312 3313
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3314 3315 3316 3317 3318 3319

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3320 3321
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3322 3323 3324
			wm->fbc_val = 0;
		}
	}
3325 3326 3327 3328 3329 3330 3331

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3332
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3333
	    intel_fbc_is_active(dev_priv)) {
3334 3335 3336 3337 3338 3339
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3340 3341
}

3342 3343 3344 3345 3346 3347
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3348
/* The value we need to program into the WM_LPx latency field */
3349 3350
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3351
{
3352
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3353 3354 3355 3356 3357
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3358
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3359
				   const struct intel_pipe_wm *merged,
3360
				   enum intel_ddb_partitioning partitioning,
3361
				   struct ilk_wm_values *results)
3362
{
3363 3364
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3365

3366
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3367
	results->partitioning = partitioning;
3368

3369
	/* LP1+ register values */
3370
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3371
		const struct intel_wm_level *r;
3372

3373
		level = ilk_wm_lp_to_level(wm_lp, merged);
3374

3375
		r = &merged->wm[level];
3376

3377 3378 3379 3380 3381
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3382
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3383 3384 3385
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3386 3387 3388
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3389
		if (INTEL_GEN(dev_priv) >= 8)
3390 3391 3392 3393 3394 3395
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3396 3397 3398 3399
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3400
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3401 3402 3403 3404
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3405
	}
3406

3407
	/* LP0 register values */
3408
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3409
		enum pipe pipe = intel_crtc->pipe;
3410 3411
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3412 3413 3414 3415

		if (WARN_ON(!r->enable))
			continue;

3416
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3417

3418 3419 3420 3421
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3422 3423 3424
	}
}

3425 3426
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3427 3428 3429 3430
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3431
{
3432
	int level, max_level = ilk_wm_max_level(dev_priv);
3433
	int level1 = 0, level2 = 0;
3434

3435 3436 3437 3438 3439
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3440 3441
	}

3442 3443
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3444 3445 3446
			return r2;
		else
			return r1;
3447
	} else if (level1 > level2) {
3448 3449 3450 3451 3452 3453
		return r1;
	} else {
		return r2;
	}
}

3454 3455 3456 3457 3458 3459 3460 3461
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3462
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3463 3464
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3465 3466 3467 3468 3469
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3470
	for_each_pipe(dev_priv, pipe) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3514 3515
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3516
{
3517
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3518
	bool changed = false;
3519

3520 3521 3522
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3523
		changed = true;
3524 3525 3526 3527
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3528
		changed = true;
3529 3530 3531 3532
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3533
		changed = true;
3534
	}
3535

3536 3537 3538 3539
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3540

3541 3542 3543 3544 3545 3546 3547
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3548 3549
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3550
{
3551
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3552
	unsigned int dirty;
3553
	u32 val;
3554

3555
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3556 3557 3558 3559 3560
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3561
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3562
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3563
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3564
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3565
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3566 3567
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3568
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3569
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3570
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3571
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3572
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3573 3574
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3575
	if (dirty & WM_DIRTY_DDB) {
3576
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3591 3592
	}

3593
	if (dirty & WM_DIRTY_FBC) {
3594 3595 3596 3597 3598 3599 3600 3601
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3602 3603 3604 3605
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3606
	if (INTEL_GEN(dev_priv) >= 7) {
3607 3608 3609 3610 3611
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3612

3613
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3614
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3615
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3616
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3617
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3618
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3619 3620

	dev_priv->wm.hw = *results;
3621 3622
}

3623
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3624 3625 3626 3627
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3639 3640 3641 3642 3643 3644
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3645 3646 3647 3648 3649
		enabled_slices++;

	return enabled_slices;
}

3650 3651 3652 3653
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3654
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3655
{
3656
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3657 3658
}

3659 3660 3661
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3662 3663 3664 3665
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3666 3667
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3668 3669
}

3670 3671 3672
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

		DRM_DEBUG_DRIVER("Couldn't read SAGV block time!\n");
	} else if (IS_GEN(dev_priv, 11)) {
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3715
intel_enable_sagv(struct drm_i915_private *dev_priv)
3716 3717 3718
{
	int ret;

3719 3720 3721 3722
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3723 3724
		return 0;

3725
	DRM_DEBUG_KMS("Enabling SAGV\n");
3726 3727 3728
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3729
	/* We don't need to wait for SAGV when enabling */
3730 3731 3732

	/*
	 * Some skl systems, pre-release machines in particular,
3733
	 * don't actually have SAGV.
3734
	 */
3735
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3736
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3737
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3738 3739
		return 0;
	} else if (ret < 0) {
3740
		DRM_ERROR("Failed to enable SAGV\n");
3741 3742 3743
		return ret;
	}

3744
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3745 3746 3747 3748
	return 0;
}

int
3749
intel_disable_sagv(struct drm_i915_private *dev_priv)
3750
{
3751
	int ret;
3752

3753 3754 3755 3756
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3757 3758
		return 0;

3759
	DRM_DEBUG_KMS("Disabling SAGV\n");
3760
	/* bspec says to keep retrying for at least 1 ms */
3761 3762 3763 3764
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3765 3766
	/*
	 * Some skl systems, pre-release machines in particular,
3767
	 * don't actually have SAGV.
3768
	 */
3769
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3770
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3771
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3772
		return 0;
3773
	} else if (ret < 0) {
3774
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3775
		return ret;
3776 3777
	}

3778
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3779 3780 3781
	return 0;
}

3782
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3783
{
3784
	struct drm_device *dev = state->base.dev;
3785
	struct drm_i915_private *dev_priv = to_i915(dev);
3786 3787
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3788
	struct intel_crtc_state *crtc_state;
3789
	enum pipe pipe;
3790
	int level, latency;
3791

3792 3793 3794
	if (!intel_has_sagv(dev_priv))
		return false;

3795 3796 3797
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3798
	if (hweight8(state->active_pipes) == 0)
3799
		return true;
3800 3801 3802 3803 3804

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3805
	if (hweight8(state->active_pipes) > 1)
3806 3807 3808
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3809
	pipe = ffs(state->active_pipes) - 1;
3810
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3811
	crtc_state = to_intel_crtc_state(crtc->base.state);
3812

3813
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3814 3815
		return false;

3816
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3817
		struct skl_plane_wm *wm =
3818
			&crtc_state->wm.skl.optimal.planes[plane->id];
3819

3820
		/* Skip this plane if it's not enabled */
3821
		if (!wm->wm[0].plane_en)
3822 3823 3824
			continue;

		/* Find the highest enabled wm level for this plane */
3825
		for (level = ilk_wm_max_level(dev_priv);
3826
		     !wm->wm[level].plane_en; --level)
3827 3828
		     { }

3829 3830
		latency = dev_priv->wm.skl_latency[level];

3831
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3832
		    plane->base.state->fb->modifier ==
3833 3834 3835
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3836
		/*
3837 3838
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3839
		 * can't enable SAGV.
3840
		 */
3841
		if (latency < dev_priv->sagv_block_time_us)
3842 3843 3844 3845 3846 3847
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3848
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3849
			      const struct intel_crtc_state *crtc_state,
3850
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3851 3852
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

3863
	adjusted_mode = &crtc_state->hw.adjusted_mode;
3864
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3865 3866 3867

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3868 3869 3870 3871 3872
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3873
	 */
3874
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3875 3876 3877 3878 3879 3880 3881 3882 3883
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3884
static void
3885
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3886
				   const struct intel_crtc_state *crtc_state,
3887
				   const u64 total_data_rate,
3888
				   struct skl_ddb_allocation *ddb,
3889 3890
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3891
{
3892
	struct drm_atomic_state *state = crtc_state->uapi.state;
3893
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3894
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3895
	const struct intel_crtc *crtc;
3896 3897 3898 3899
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3900

3901
	if (WARN_ON(!state) || !crtc_state->hw.active) {
3902 3903
		alloc->start = 0;
		alloc->end = 0;
3904
		*num_active = hweight8(dev_priv->active_pipes);
3905 3906 3907
		return;
	}

3908
	if (intel_state->active_pipe_changes)
3909
		*num_active = hweight8(intel_state->active_pipes);
3910
	else
3911
		*num_active = hweight8(dev_priv->active_pipes);
3912

3913
	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3914
				      *num_active, ddb);
3915

3916
	/*
3917 3918 3919 3920 3921 3922
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3923
	 */
3924
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3925 3926 3927 3928 3929
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3930
		return;
3931
	}
3932

3933 3934 3935 3936 3937
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3938 3939
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
3940
			&crtc_state->hw.adjusted_mode;
3941
		enum pipe pipe = crtc->pipe;
3942 3943
		int hdisplay, vdisplay;

3944
		if (!crtc_state->hw.enable)
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3958 3959
}

3960 3961 3962 3963 3964
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3965
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3966 3967 3968 3969 3970 3971 3972 3973
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3974
{
3975
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3989
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3990 3991 3992 3993 3994
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3995

3996
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3997 3998
}

3999 4000
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4001
{
4002

4003 4004
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4005

4006 4007
	if (entry->end)
		entry->end += 1;
4008 4009
}

4010 4011 4012 4013
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4014 4015
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4016
{
4017 4018
	u32 val, val2;
	u32 fourcc = 0;
4019 4020 4021 4022

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4023
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4024 4025 4026 4027 4028 4029
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4030 4031 4032 4033
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4034

4035 4036 4037 4038 4039
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4040
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4041

4042 4043
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4044 4045 4046 4047
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4048 4049 4050
	}
}

4051 4052 4053
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4054
{
4055 4056 4057
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4058
	intel_wakeref_t wakeref;
4059
	enum plane_id plane_id;
4060

4061
	power_domain = POWER_DOMAIN_PIPE(pipe);
4062 4063
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4064
		return;
4065

4066 4067 4068 4069 4070
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4071

4072
	intel_display_power_put(dev_priv, power_domain, wakeref);
4073
}
4074

4075 4076 4077 4078
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4079 4080
}

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4097
static uint_fixed_16_16_t
4098 4099
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4100
{
4101
	u32 src_w, src_h, dst_w, dst_h;
4102 4103
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4104

4105
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4106
		return u32_to_fixed16(0);
4107

4108 4109 4110 4111 4112 4113 4114
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4115 4116 4117 4118
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4119

4120 4121 4122 4123
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4124

4125
	return mul_fixed16(downscale_w, downscale_h);
4126 4127
}

4128
static u64
4129 4130
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4131
			     int color_plane)
4132
{
4133
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4134
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4135 4136
	u32 data_rate;
	u32 width = 0, height = 0;
4137
	uint_fixed_16_16_t down_scale_amount;
4138
	u64 rate;
4139

4140
	if (!plane_state->uapi.visible)
4141
		return 0;
4142

4143
	if (plane->id == PLANE_CURSOR)
4144
		return 0;
4145 4146

	if (color_plane == 1 &&
4147
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4148
		return 0;
4149

4150 4151 4152 4153 4154
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4155 4156
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4157

4158
	/* UV plane does 1/2 pixel sub-sampling */
4159
	if (color_plane == 1) {
4160 4161
		width /= 2;
		height /= 2;
4162 4163
	}

4164
	data_rate = width * height;
4165

4166
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4167

4168 4169
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4170
	rate *= fb->format->cpp[color_plane];
4171
	return rate;
4172 4173
}

4174
static u64
4175
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4176 4177
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4178
{
4179
	struct drm_atomic_state *state = crtc_state->uapi.state;
4180 4181
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4182
	u64 total_data_rate = 0;
4183 4184 4185

	if (WARN_ON(!state))
		return 0;
4186

4187
	/* Calculate and cache data rate for each plane */
4188 4189
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4190
		u64 rate;
4191

4192
		/* packed/y */
4193
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4194
		plane_data_rate[plane_id] = rate;
4195
		total_data_rate += rate;
4196

4197
		/* uv-plane */
4198
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4199
		uv_plane_data_rate[plane_id] = rate;
4200
		total_data_rate += rate;
4201 4202 4203 4204 4205
	}

	return total_data_rate;
}

4206
static u64
4207
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4208 4209
				 u64 *plane_data_rate)
{
4210 4211
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4212 4213
	u64 total_data_rate = 0;

4214
	if (WARN_ON(!crtc_state->uapi.state))
4215 4216 4217
		return 0;

	/* Calculate and cache data rate for each plane */
4218 4219
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4220 4221
		u64 rate;

4222
		if (!plane_state->planar_linked_plane) {
4223
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4224 4225 4226 4227 4228 4229 4230
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4231
			 * intel_atomic_crtc_state_for_each_plane_state(),
4232 4233 4234 4235
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4236
			if (plane_state->planar_slave)
4237 4238 4239
				continue;

			/* Y plane rate is calculated on the slave */
4240
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4241
			y_plane_id = plane_state->planar_linked_plane->id;
4242 4243 4244
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4245
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4246 4247 4248 4249 4250 4251 4252 4253
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4254
static int
4255
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4256 4257
		      struct skl_ddb_allocation *ddb /* out */)
{
4258 4259
	struct drm_atomic_state *state = crtc_state->uapi.state;
	struct drm_crtc *crtc = crtc_state->uapi.crtc;
4260
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4261
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4262
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4263 4264 4265
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4266
	u64 total_data_rate;
4267
	enum plane_id plane_id;
4268
	int num_active;
4269 4270
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4271
	u32 blocks;
4272
	int level;
4273

4274
	/* Clear the partitioning for disabled planes. */
4275 4276
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4277

4278 4279 4280
	if (WARN_ON(!state))
		return 0;

4281
	if (!crtc_state->hw.active) {
4282
		alloc->start = alloc->end = 0;
4283 4284 4285
		return 0;
	}

4286 4287
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4288
			icl_get_total_relative_data_rate(crtc_state,
4289 4290
							 plane_data_rate);
	else
4291
		total_data_rate =
4292
			skl_get_total_relative_data_rate(crtc_state,
4293 4294
							 plane_data_rate,
							 uv_plane_data_rate);
4295

4296

4297
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4298
					   ddb, alloc, &num_active);
4299
	alloc_size = skl_ddb_entry_size(alloc);
4300
	if (alloc_size == 0)
4301
		return 0;
4302

4303
	/* Allocate fixed number of blocks for cursor. */
4304
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4305
	alloc_size -= total[PLANE_CURSOR];
4306
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4307
		alloc->end - total[PLANE_CURSOR];
4308
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4309 4310 4311

	if (total_data_rate == 0)
		return 0;
4312

4313
	/*
4314 4315
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4316
	 */
4317
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4318
		blocks = 0;
4319
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4320
			const struct skl_plane_wm *wm =
4321
				&crtc_state->wm.skl.optimal.planes[plane_id];
4322 4323

			if (plane_id == PLANE_CURSOR) {
4324 4325
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
					WARN_ON(wm->wm[level].min_ddb_alloc != U16_MAX);
4326 4327 4328
					blocks = U32_MAX;
					break;
				}
4329
				continue;
4330
			}
4331

4332 4333
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4334 4335
		}

4336
		if (blocks <= alloc_size) {
4337 4338 4339
			alloc_size -= blocks;
			break;
		}
4340 4341
	}

4342
	if (level < 0) {
4343
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4344 4345
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4346 4347 4348
		return -EINVAL;
	}

4349
	/*
4350 4351 4352
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4353
	 */
4354
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4355
		const struct skl_plane_wm *wm =
4356
			&crtc_state->wm.skl.optimal.planes[plane_id];
4357 4358
		u64 rate;
		u16 extra;
4359

4360
		if (plane_id == PLANE_CURSOR)
4361 4362
			continue;

4363
		/*
4364 4365
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4366
		 */
4367 4368
		if (total_data_rate == 0)
			break;
4369

4370 4371 4372 4373
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4374
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4375 4376
		alloc_size -= extra;
		total_data_rate -= rate;
4377

4378 4379
		if (total_data_rate == 0)
			break;
4380

4381 4382 4383 4384
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4385
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4386 4387 4388 4389 4390 4391 4392 4393
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4394
		struct skl_ddb_entry *plane_alloc =
4395
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4396
		struct skl_ddb_entry *uv_plane_alloc =
4397
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4398 4399 4400 4401

		if (plane_id == PLANE_CURSOR)
			continue;

4402
		/* Gen11+ uses a separate plane for UV watermarks */
4403 4404 4405 4406 4407 4408 4409 4410
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4411

4412 4413 4414 4415
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4416
		}
4417
	}
4418

4419 4420 4421 4422 4423 4424 4425 4426
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4427
			struct skl_plane_wm *wm =
4428
				&crtc_state->wm.skl.optimal.planes[plane_id];
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4445

4446
			/*
4447
			 * Wa_1408961008:icl, ehl
4448 4449
			 * Underruns with WM1+ disabled
			 */
4450
			if (IS_GEN(dev_priv, 11) &&
4451 4452
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4453 4454
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4455
			}
4456 4457 4458 4459 4460 4461 4462 4463
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4464
		struct skl_plane_wm *wm =
4465
			&crtc_state->wm.skl.optimal.planes[plane_id];
4466

4467
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4468
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4469 4470
	}

4471
	return 0;
4472 4473
}

4474 4475
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4476
 * for the read latency) and cpp should always be <= 8, so that
4477 4478 4479
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4480
static uint_fixed_16_16_t
4481 4482
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4483
{
4484
	u32 wm_intermediate_val;
4485
	uint_fixed_16_16_t ret;
4486 4487

	if (latency == 0)
4488
		return FP_16_16_MAX;
4489

4490
	wm_intermediate_val = latency * pixel_rate * cpp;
4491
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4492 4493 4494 4495

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4496 4497 4498
	return ret;
}

4499 4500 4501
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4502
{
4503
	u32 wm_intermediate_val;
4504
	uint_fixed_16_16_t ret;
4505 4506

	if (latency == 0)
4507
		return FP_16_16_MAX;
4508 4509

	wm_intermediate_val = latency * pixel_rate;
4510 4511
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4512
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4513 4514 4515
	return ret;
}

4516
static uint_fixed_16_16_t
4517
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4518
{
4519 4520
	u32 pixel_rate;
	u32 crtc_htotal;
4521 4522
	uint_fixed_16_16_t linetime_us;

4523
	if (!crtc_state->hw.active)
4524
		return u32_to_fixed16(0);
4525

4526
	pixel_rate = crtc_state->pixel_rate;
4527 4528

	if (WARN_ON(pixel_rate == 0))
4529
		return u32_to_fixed16(0);
4530

4531
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4532
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4533 4534 4535 4536

	return linetime_us;
}

4537
static u32
4538 4539
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4540
{
4541
	u64 adjusted_pixel_rate;
4542
	uint_fixed_16_16_t downscale_amount;
4543 4544

	/* Shouldn't reach here on disabled planes... */
4545
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4546 4547 4548 4549 4550 4551
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4552 4553
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4554

4555 4556
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4557 4558
}

4559
static int
4560 4561 4562 4563 4564
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4565
{
4566
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4567
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4568
	u32 interm_pbpl;
4569

4570
	/* only planar format has two planes */
4571 4572
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4573
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4574 4575 4576
		return -EINVAL;
	}

4577 4578 4579 4580 4581 4582 4583
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4584
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4585

4586
	wp->width = width;
4587
	if (color_plane == 1 && wp->is_planar)
4588 4589
		wp->width /= 2;

4590 4591
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4592

4593
	if (INTEL_GEN(dev_priv) >= 11 &&
4594
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4595 4596 4597 4598
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4599
	if (drm_rotation_90_or_270(rotation)) {
4600
		switch (wp->cpp) {
4601
		case 1:
4602
			wp->y_min_scanlines = 16;
4603 4604
			break;
		case 2:
4605
			wp->y_min_scanlines = 8;
4606 4607
			break;
		case 4:
4608
			wp->y_min_scanlines = 4;
4609
			break;
4610
		default:
4611
			MISSING_CASE(wp->cpp);
4612
			return -EINVAL;
4613 4614
		}
	} else {
4615
		wp->y_min_scanlines = 4;
4616 4617
	}

4618
	if (skl_needs_memory_bw_wa(dev_priv))
4619
		wp->y_min_scanlines *= 2;
4620

4621 4622 4623
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4624 4625
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4626 4627 4628 4629

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4630 4631
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4632
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4633 4634
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4635
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4636
	} else {
4637 4638
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4639
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4640 4641
	}

4642 4643
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4644

4645
	wp->linetime_us = fixed16_to_u32_round_up(
4646
					intel_get_linetime_us(crtc_state));
4647 4648 4649 4650

	return 0;
}

4651 4652 4653 4654 4655
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
4656
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4657 4658
	int width;

4659 4660 4661 4662 4663
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4664
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4665 4666 4667

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
4668
				     plane_state->hw.rotation,
4669 4670 4671 4672
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4673 4674 4675 4676 4677 4678 4679 4680 4681
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4682
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4683 4684 4685 4686
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4687
{
4688
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4689
	u32 latency = dev_priv->wm.skl_latency[level];
4690 4691
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4692
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4693

4694 4695 4696
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4697
		return;
4698
	}
4699

4700 4701 4702 4703
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4704
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4705 4706 4707
	    dev_priv->ipc_enabled)
		latency += 4;

4708
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4709 4710 4711
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4712
				 wp->cpp, latency, wp->dbuf_block_size);
4713
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4714
				 crtc_state->hw.adjusted_mode.crtc_htotal,
4715
				 latency,
4716
				 wp->plane_blocks_per_line);
4717

4718 4719
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4720
	} else {
4721
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
4722
		     wp->dbuf_block_size < 1) &&
4723
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4724
			selected_result = method2;
4725
		} else if (latency >= wp->linetime_us) {
4726
			if (IS_GEN(dev_priv, 9) &&
4727 4728 4729 4730 4731
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4732
			selected_result = method1;
4733
		}
4734
	}
4735

4736
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4737
	res_lines = div_round_up_fixed16(selected_result,
4738
					 wp->plane_blocks_per_line);
4739

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4755

4756 4757 4758 4759 4760 4761 4762 4763 4764
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4765
	}
4766

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4785 4786 4787
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4788 4789 4790
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4791
		return;
4792
	}
4793 4794 4795 4796 4797 4798 4799

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4800 4801
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4802 4803
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4804
	result->plane_en = true;
4805 4806
}

4807
static void
4808
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4809
		      const struct skl_wm_params *wm_params,
4810
		      struct skl_wm_level *levels)
4811
{
4812
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4813
	int level, max_level = ilk_wm_max_level(dev_priv);
4814
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4815

4816
	for (level = 0; level <= max_level; level++) {
4817
		struct skl_wm_level *result = &levels[level];
4818

4819
		skl_compute_plane_wm(crtc_state, level, wm_params,
4820
				     result_prev, result);
4821 4822

		result_prev = result;
4823
	}
4824 4825
}

4826
static u32
4827
skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4828
{
4829
	struct drm_atomic_state *state = crtc_state->uapi.state;
M
Mahesh Kumar 已提交
4830
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4831
	uint_fixed_16_16_t linetime_us;
4832
	u32 linetime_wm;
4833

4834
	linetime_us = intel_get_linetime_us(crtc_state);
4835
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4836

4837 4838
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4839
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4840 4841

	return linetime_wm;
4842 4843
}

4844
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4845
				      const struct skl_wm_params *wp,
4846
				      struct skl_plane_wm *wm)
4847
{
4848
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
4849
	const struct drm_i915_private *dev_priv = to_i915(dev);
4850 4851 4852
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4853 4854 4855

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4856
		return;
4857 4858 4859

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4860
		return;
4861

4862 4863
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4864 4865 4866 4867
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4878
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4879

4880
	if (wp->y_tiled) {
4881 4882
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4883
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4884 4885
				trans_offset_b;
	} else {
4886
		res_blocks = wm0_sel_res_b + trans_offset_b;
4887 4888 4889 4890 4891 4892 4893

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4894 4895 4896 4897 4898 4899 4900
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4901 4902
}

4903
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4904 4905
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4906
{
4907
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4908 4909 4910
	struct skl_wm_params wm_params;
	int ret;

4911
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4912 4913 4914 4915
					  &wm_params, color_plane);
	if (ret)
		return ret;

4916
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4917
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4918 4919 4920 4921

	return 0;
}

4922
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4923 4924
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4925
{
4926
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4927 4928 4929
	struct skl_wm_params wm_params;
	int ret;

4930
	wm->is_planar = true;
4931 4932

	/* uv plane watermarks must also be validated for NV12/Planar */
4933
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4934 4935 4936
					  &wm_params, 1);
	if (ret)
		return ret;
4937

4938
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4939

4940
	return 0;
4941 4942
}

4943
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
4944
			      const struct intel_plane_state *plane_state)
4945
{
4946
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4947
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4948
	enum plane_id plane_id = plane->id;
4949 4950
	int ret;

4951 4952 4953
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4954
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4955
					plane_id, 0);
4956 4957 4958
	if (ret)
		return ret;

4959
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4960
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4961 4962 4963 4964 4965 4966 4967 4968
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4969
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
4970 4971
			      const struct intel_plane_state *plane_state)
{
4972
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
4973 4974 4975
	int ret;

	/* Watermarks calculated in master */
4976
	if (plane_state->planar_slave)
4977 4978
		return 0;

4979
	if (plane_state->planar_linked_plane) {
4980
		const struct drm_framebuffer *fb = plane_state->hw.fb;
4981
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
4982 4983 4984 4985 4986

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

4987
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4988 4989 4990 4991
						y_plane_id, 0);
		if (ret)
			return ret;

4992
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4993 4994 4995 4996
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4997
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4998 4999 5000 5001 5002 5003
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5004 5005
}

5006
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5007
{
5008
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5009
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5010 5011
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5012
	int ret;
5013

L
Lyude 已提交
5014 5015 5016 5017 5018 5019
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5020 5021
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5022

5023
		if (INTEL_GEN(dev_priv) >= 11)
5024
			ret = icl_build_plane_wm(crtc_state, plane_state);
5025
		else
5026
			ret = skl_build_plane_wm(crtc_state, plane_state);
5027 5028
		if (ret)
			return ret;
5029
	}
5030

5031
	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5032

5033
	return 0;
5034 5035
}

5036 5037
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5038 5039 5040
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5041
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5042
	else
5043
		I915_WRITE_FW(reg, 0);
5044 5045
}

5046 5047 5048 5049
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5050
	u32 val = 0;
5051

5052
	if (level->plane_en)
5053
		val |= PLANE_WM_EN;
5054 5055 5056 5057
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5058

5059
	I915_WRITE_FW(reg, val);
5060 5061
}

5062 5063
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5064
{
5065
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5066
	int level, max_level = ilk_wm_max_level(dev_priv);
5067 5068 5069 5070 5071 5072 5073 5074
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5075 5076

	for (level = 0; level <= max_level; level++) {
5077
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5078
				   &wm->wm[level]);
5079
	}
5080
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5081
			   &wm->trans_wm);
5082

5083
	if (INTEL_GEN(dev_priv) >= 11) {
5084
		skl_ddb_entry_write(dev_priv,
5085 5086
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5087
	}
5088 5089 5090 5091 5092 5093 5094 5095

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5096 5097
}

5098 5099
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5100
{
5101
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5102
	int level, max_level = ilk_wm_max_level(dev_priv);
5103 5104 5105 5106 5107 5108
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5109 5110

	for (level = 0; level <= max_level; level++) {
5111 5112
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5113
	}
5114
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5115

5116
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5117 5118
}

5119 5120 5121
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5122
	return l1->plane_en == l2->plane_en &&
5123
		l1->ignore_lines == l2->ignore_lines &&
5124 5125 5126
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5127

5128 5129 5130 5131 5132
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5133

5134 5135 5136 5137 5138 5139 5140
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5141 5142
}

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5160 5161
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5162
{
5163
	return a->start < b->end && b->start < a->end;
5164 5165
}

5166
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5167
				 const struct skl_ddb_entry *entries,
5168
				 int num_entries, int ignore_idx)
5169
{
5170
	int i;
5171

5172 5173 5174
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5175
			return true;
5176
	}
5177

5178
	return false;
5179 5180
}

5181
static int
5182 5183
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5184
{
5185 5186
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5187 5188
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5189

5190 5191 5192
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5193

5194 5195 5196 5197
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5198 5199
			continue;

5200
		plane_state = intel_atomic_get_plane_state(state, plane);
5201 5202
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5203

5204
		new_crtc_state->update_planes |= BIT(plane_id);
5205 5206 5207 5208 5209 5210
	}

	return 0;
}

static int
5211
skl_compute_ddb(struct intel_atomic_state *state)
5212
{
5213 5214
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5215 5216
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5217 5218
	struct intel_crtc *crtc;
	int ret, i;
5219

5220 5221
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5222
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5223 5224
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5225 5226 5227
		if (ret)
			return ret;

5228 5229
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5230 5231
		if (ret)
			return ret;
5232 5233 5234 5235 5236
	}

	return 0;
}

5237 5238 5239 5240 5241
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5242
static void
5243
skl_print_wm_changes(struct intel_atomic_state *state)
5244
{
5245 5246 5247 5248 5249
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5250
	int i;
5251

5252 5253 5254
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5255 5256
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5257 5258 5259 5260 5261
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5262 5263
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5264 5265
			const struct skl_ddb_entry *old, *new;

5266 5267
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5268 5269 5270 5271

			if (skl_ddb_entry_equal(old, new))
				continue;

5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5302 5303
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5304
				      plane->base.base.id, plane->base.name,
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5341
				      plane->base.base.id, plane->base.name,
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5352 5353 5354 5355
		}
	}
}

V
Ville Syrjälä 已提交
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5372
static int
5373
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5374
{
V
Ville Syrjälä 已提交
5375
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5376
	int ret;
5377

5378 5379 5380 5381 5382 5383 5384
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5385
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5386
				       state->base.acquire_ctx);
5387 5388 5389
		if (ret)
			return ret;

5390
		state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5391 5392

		/*
5393
		 * We usually only initialize state->active_pipes if we
5394 5395 5396 5397
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5398
		if (!state->modeset)
5399
			state->active_pipes = dev_priv->active_pipes;
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5415
	if (state->active_pipe_changes || state->modeset) {
5416
		state->wm_results.dirty_pipes = INTEL_INFO(dev_priv)->pipe_mask;
5417

V
Ville Syrjälä 已提交
5418 5419 5420
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5421 5422 5423 5424 5425
	}

	return 0;
}

5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5470
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5486
static int
5487
skl_compute_wm(struct intel_atomic_state *state)
5488
{
5489
	struct intel_crtc *crtc;
5490
	struct intel_crtc_state *new_crtc_state;
5491 5492
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5493 5494
	int ret, i;

5495 5496 5497
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5498 5499
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5500 5501
		return ret;

5502 5503
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5504
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5505 5506 5507
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5508
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5509 5510
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5511 5512 5513
		if (ret)
			return ret;

5514
		ret = skl_wm_add_affected_planes(state, crtc);
5515 5516 5517
		if (ret)
			return ret;

5518 5519 5520
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5521
			results->dirty_pipes |= BIT(crtc->pipe);
5522 5523
	}

5524 5525 5526 5527
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5528
	skl_print_wm_changes(state);
5529

5530 5531 5532
	return 0;
}

5533
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5534
				      struct intel_crtc *crtc)
5535
{
5536 5537 5538 5539
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5540
	enum pipe pipe = crtc->pipe;
5541

5542
	if ((state->wm_results.dirty_pipes & BIT(crtc->pipe)) == 0)
5543
		return;
5544 5545 5546 5547

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5548
static void skl_initial_wm(struct intel_atomic_state *state,
5549
			   struct intel_crtc *crtc)
5550
{
5551
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5552 5553
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5554
	struct skl_ddb_values *results = &state->wm_results;
5555

5556
	if ((results->dirty_pipes & BIT(crtc->pipe)) == 0)
5557 5558
		return;

5559
	mutex_lock(&dev_priv->wm.wm_mutex);
5560

5561
	if (crtc_state->uapi.active_changed)
5562
		skl_atomic_update_crtc_wm(state, crtc);
5563

5564
	mutex_unlock(&dev_priv->wm.wm_mutex);
5565 5566
}

5567
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5568 5569 5570 5571 5572
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5573
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5585
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5586
{
5587
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5588
	struct ilk_wm_maximums max;
5589
	struct intel_wm_config config = {};
5590
	struct ilk_wm_values results = {};
5591
	enum intel_ddb_partitioning partitioning;
5592

5593
	ilk_compute_wm_config(dev_priv, &config);
5594

5595 5596
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5597 5598

	/* 5/6 split only in single pipe config on IVB+ */
5599
	if (INTEL_GEN(dev_priv) >= 7 &&
5600
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5601 5602
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5603

5604
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5605
	} else {
5606
		best_lp_wm = &lp_wm_1_2;
5607 5608
	}

5609
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5610
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5611

5612
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5613

5614
	ilk_write_wm_values(dev_priv, &results);
5615 5616
}

5617
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5618
				   struct intel_crtc *crtc)
5619
{
5620 5621 5622
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5623

5624
	mutex_lock(&dev_priv->wm.wm_mutex);
5625
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5626 5627 5628
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5629

5630
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5631
				    struct intel_crtc *crtc)
5632
{
5633 5634 5635
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5636 5637 5638

	if (!crtc_state->wm.need_postvbl_update)
		return;
5639

5640
	mutex_lock(&dev_priv->wm.wm_mutex);
5641 5642
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5643
	mutex_unlock(&dev_priv->wm.wm_mutex);
5644 5645
}

5646
static inline void skl_wm_level_from_reg_val(u32 val,
5647
					     struct skl_wm_level *level)
5648
{
5649
	level->plane_en = val & PLANE_WM_EN;
5650
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5651 5652 5653
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5654 5655
}

5656
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5657
			      struct skl_pipe_wm *out)
5658
{
5659 5660
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5661 5662
	int level, max_level;
	enum plane_id plane_id;
5663
	u32 val;
5664

5665
	max_level = ilk_wm_max_level(dev_priv);
5666

5667
	for_each_plane_id_on_crtc(crtc, plane_id) {
5668
		struct skl_plane_wm *wm = &out->planes[plane_id];
5669

5670
		for (level = 0; level <= max_level; level++) {
5671 5672
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5673 5674
			else
				val = I915_READ(CUR_WM(pipe, level));
5675

5676
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5677 5678
		}

5679 5680
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5681 5682 5683 5684
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5685 5686
	}

5687
	if (!crtc->active)
5688
		return;
5689

5690
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5691 5692
}

5693
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5694
{
5695
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5696
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5697
	struct intel_crtc *crtc;
5698
	struct intel_crtc_state *crtc_state;
5699

5700
	skl_ddb_get_hw_state(dev_priv, ddb);
5701
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5702
		crtc_state = to_intel_crtc_state(crtc->base.state);
5703

5704
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5705

5706
		if (crtc->active)
5707
			hw->dirty_pipes |= BIT(crtc->pipe);
5708
	}
5709

5710
	if (dev_priv->active_pipes) {
5711 5712 5713
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5714 5715
}

5716
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5717
{
5718
	struct drm_device *dev = crtc->base.dev;
5719
	struct drm_i915_private *dev_priv = to_i915(dev);
5720
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5721 5722
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5723
	enum pipe pipe = crtc->pipe;
5724
	static const i915_reg_t wm0_pipe_reg[] = {
5725 5726 5727 5728 5729 5730
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5731
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5732
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5733

5734 5735
	memset(active, 0, sizeof(*active));

5736
	active->pipe_enabled = crtc->active;
5737 5738

	if (active->pipe_enabled) {
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5753
		int level, max_level = ilk_wm_max_level(dev_priv);
5754 5755 5756 5757 5758 5759 5760 5761 5762

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5763

5764
	crtc->wm.active.ilk = *active;
5765 5766
}

5767 5768 5769 5770 5771
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5772 5773 5774
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5775
	u32 tmp;
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5798 5799 5800 5801
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5802
	u32 tmp;
5803 5804 5805 5806

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5807
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5808
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5809
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5810
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5811
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5812
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5813
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5814 5815 5816 5817 5818
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5819 5820 5821
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5822 5823

	tmp = I915_READ(DSPFW2);
5824 5825 5826
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5827 5828 5829 5830 5831 5832

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5833 5834
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5835 5836

		tmp = I915_READ(DSPFW8_CHV);
5837 5838
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5839 5840

		tmp = I915_READ(DSPFW9_CHV);
5841 5842
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5843 5844 5845

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5846 5847 5848 5849 5850 5851 5852 5853 5854
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5855 5856
	} else {
		tmp = I915_READ(DSPFW7);
5857 5858
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5859 5860 5861

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5862 5863 5864 5865 5866 5867
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5868 5869 5870 5871 5872 5873
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5874
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5875 5876 5877 5878 5879 5880 5881 5882
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5883
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

5976
		if (plane_state->uapi.visible)
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6014
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6015 6016
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6017
	struct intel_crtc *crtc;
6018 6019 6020 6021 6022 6023 6024 6025
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6026
		vlv_punit_get(dev_priv);
6027

6028
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6029 6030 6031
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6032 6033 6034 6035 6036 6037 6038 6039 6040
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6041
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6055

6056
		vlv_punit_put(dev_priv);
6057 6058
	}

6059
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6075
			struct g4x_pipe_wm *raw =
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6097
		crtc_state->wm.vlv.intermediate = *active;
6098

6099
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6100 6101 6102 6103 6104
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6105
	}
6106 6107 6108 6109 6110

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6131
		if (plane_state->uapi.visible)
6132 6133 6134
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6135
			struct g4x_pipe_wm *raw =
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6176
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6177
{
6178
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6179
	struct intel_crtc *crtc;
6180

6181 6182
	ilk_init_lp_watermarks(dev_priv);

6183
	for_each_intel_crtc(&dev_priv->drm, crtc)
6184 6185 6186 6187 6188 6189 6190
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6191
	if (INTEL_GEN(dev_priv) >= 7) {
6192 6193 6194
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6195

6196
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6197 6198
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6199
	else if (IS_IVYBRIDGE(dev_priv))
6200 6201
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6202 6203 6204 6205 6206

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6207 6208
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6209
 * @crtc: the #intel_crtc on which to compute the WM
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6240
void intel_update_watermarks(struct intel_crtc *crtc)
6241
{
6242
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6243 6244

	if (dev_priv->display.update_wm)
6245
		dev_priv->display.update_wm(crtc);
6246 6247
}

6248 6249 6250 6251
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6252 6253 6254
	if (!HAS_IPC(dev_priv))
		return;

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6278 6279 6280 6281 6282
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6283
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6284

6285 6286 6287
	intel_enable_ipc(dev_priv);
}

6288 6289 6290 6291 6292 6293 6294 6295 6296
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6297

6298
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6299
{
6300
	enum pipe pipe;
6301

6302 6303 6304 6305
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6306

6307 6308
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6309 6310 6311
	}
}

6312
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6313
{
6314
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6315

6316 6317 6318 6319 6320 6321 6322
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6323

6324 6325 6326 6327 6328
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6344 6345

	/*
6346 6347 6348 6349 6350
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6351
	 */
6352 6353 6354 6355 6356 6357 6358 6359 6360
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6361

6362
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6363

6364 6365 6366 6367 6368 6369
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6370

6371 6372 6373
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6374

6375 6376
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6377

6378
	g4x_disable_trickle_feed(dev_priv);
6379

6380
	ibx_init_clock_gating(dev_priv);
6381 6382
}

6383
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6384
{
6385 6386
	enum pipe pipe;
	u32 val;
6387

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6416 6417
}

6418
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6419
{
6420
	u32 tmp;
6421

6422 6423 6424 6425
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6426 6427
}

6428
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6429
{
6430
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6431

6432
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6433

6434 6435 6436
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6437

6438 6439 6440
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6441

6442 6443
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6444

6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6455

6456 6457
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6458

6459 6460 6461 6462
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6463

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6476
	 */
6477 6478 6479
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6480

6481 6482 6483
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6484

6485 6486 6487 6488 6489 6490 6491
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6492

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6514

6515
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6516

6517
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6518

6519
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6520 6521
}

6522
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6523
{
6524
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6525

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6536

6537
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6538 6539
}

6540
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6541
{
6542 6543 6544
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6545
	 */
6546
	if (HAS_PCH_LPT_LP(dev_priv))
6547 6548 6549
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6550 6551

	/* WADPOClockGatingDisable:hsw */
6552 6553
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6554
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6555 6556
}

6557
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6558
{
6559
	if (HAS_PCH_LPT_LP(dev_priv)) {
6560
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6561 6562 6563 6564 6565 6566

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6567 6568 6569 6570 6571
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6572
	u32 val;
6573 6574 6575 6576 6577

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6578 6579 6580 6581 6582
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6593 6594 6595 6596 6597
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6598 6599 6600 6601

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
6602 6603 6604 6605 6606 6607 6608 6609

	/*
	 * Wa_1408615072:icl,ehl  (vsunit)
	 * Wa_1407596294:icl,ehl  (hsunit)
	 */
	intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE,
			 0, VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);

M
Matt Roper 已提交
6610 6611 6612
	/* Wa_1407352427:icl,ehl */
	intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE2,
			 0, PSDUNIT_CLKGATE_DIS);
O
Oscar Mateo 已提交
6613 6614
}

6615 6616 6617 6618 6619
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

6620 6621 6622 6623
	/* Wa_1408615072:tgl */
	intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE2,
			 0, VSUNIT_CLKGATE_DIS_TGL);

6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
}

6635 6636 6637 6638 6639
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6640
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6641 6642
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6643 6644
}

6645
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6646
{
6647
	u32 val;
6648 6649
	cnp_init_clock_gating(dev_priv);

6650 6651 6652 6653
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6654 6655 6656 6657 6658 6659 6660 6661
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6662 6663 6664
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
6665 6666
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6667 6668
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6669

R
Rodrigo Vivi 已提交
6670 6671 6672 6673 6674
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6675
	/* WaDisableVFclkgate:cnl */
6676
	/* WaVFUnitClockGatingDisable:cnl */
6677 6678 6679
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6680 6681
}

6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

6692
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6693
{
6694
	gen9_init_clock_gating(dev_priv);
6695 6696 6697 6698 6699

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6700 6701 6702 6703 6704

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6705

6706
	/* WaFbcNukeOnHostModify:kbl */
6707 6708
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6709 6710
}

6711
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6712
{
6713
	gen9_init_clock_gating(dev_priv);
6714 6715 6716 6717

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
6718 6719 6720 6721

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6722 6723
}

6724
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
6725
{
6726
	enum pipe pipe;
B
Ben Widawsky 已提交
6727

6728
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6729
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6730

6731
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6732 6733 6734
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6735
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6736
	for_each_pipe(dev_priv, pipe) {
6737
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6738
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6739
			   BDW_DPRS_MASK_VBLANK_SRD);
6740
	}
6741

6742 6743 6744 6745 6746
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6747

6748 6749
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6750 6751 6752 6753

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6754

6755 6756
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6757

6758 6759 6760 6761
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

6762
	lpt_init_clock_gating(dev_priv);
6763 6764 6765 6766 6767 6768 6769 6770

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
6771 6772
}

6773
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6774
{
6775 6776 6777 6778 6779
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6780
	/* This is required by WaCatErrorRejectionIssue:hsw */
6781 6782 6783 6784
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6785 6786 6787
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6788

6789 6790 6791
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6792 6793 6794 6795
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6796
	/* WaDisable4x2SubspanOptimization:hsw */
6797 6798
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6799

6800 6801 6802
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6803 6804 6805 6806
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6807 6808
	 */
	I915_WRITE(GEN7_GT_MODE,
6809
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6810

6811 6812 6813 6814
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6815
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6816 6817
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6818
	lpt_init_clock_gating(dev_priv);
6819 6820
}

6821
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
6822
{
6823
	u32 snpcr;
6824

6825
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6826

6827
	/* WaDisableEarlyCull:ivb */
6828 6829 6830
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6831
	/* WaDisableBackToBackFlipFix:ivb */
6832 6833 6834 6835
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6836
	/* WaDisablePSDDualDispatchEnable:ivb */
6837
	if (IS_IVB_GT1(dev_priv))
6838 6839 6840
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6841 6842 6843
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6844
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6845 6846 6847
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6848
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6849 6850 6851
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6852
		   GEN7_WA_L3_CHICKEN_MODE);
6853
	if (IS_IVB_GT1(dev_priv))
6854 6855
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6856 6857 6858 6859
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6860 6861
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6862
	}
6863

6864
	/* WaForceL3Serialization:ivb */
6865 6866 6867
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6868
	/*
6869
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6870
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6871 6872
	 */
	I915_WRITE(GEN6_UCGCTL2,
6873
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6874

6875
	/* This is required by WaCatErrorRejectionIssue:ivb */
6876 6877 6878 6879
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6880
	g4x_disable_trickle_feed(dev_priv);
6881 6882

	gen7_setup_fixed_func_scheduler(dev_priv);
6883

6884 6885 6886 6887 6888
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6889

6890
	/* WaDisable4x2SubspanOptimization:ivb */
6891 6892
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6893

6894 6895 6896
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6897 6898 6899 6900
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6901 6902
	 */
	I915_WRITE(GEN7_GT_MODE,
6903
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6904

6905 6906 6907 6908
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6909

6910
	if (!HAS_PCH_NOP(dev_priv))
6911
		cpt_init_clock_gating(dev_priv);
6912

6913
	gen6_check_mch_setup(dev_priv);
6914 6915
}

6916
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
6917
{
6918
	/* WaDisableEarlyCull:vlv */
6919 6920 6921
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6922
	/* WaDisableBackToBackFlipFix:vlv */
6923 6924 6925 6926
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6927
	/* WaPsdDispatchEnable:vlv */
6928
	/* WaDisablePSDDualDispatchEnable:vlv */
6929
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6930 6931
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6932

6933 6934 6935
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6936
	/* WaForceL3Serialization:vlv */
6937 6938 6939
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6940
	/* WaDisableDopClockGating:vlv */
6941 6942 6943
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6944
	/* This is required by WaCatErrorRejectionIssue:vlv */
6945 6946 6947 6948
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6949 6950
	gen7_setup_fixed_func_scheduler(dev_priv);

6951
	/*
6952
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6953
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6954 6955
	 */
	I915_WRITE(GEN6_UCGCTL2,
6956
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6957

6958 6959 6960 6961 6962
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6963

6964 6965 6966 6967
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6968 6969
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6970

6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6982 6983 6984 6985 6986 6987
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6988
	/*
6989
	 * WaDisableVLVClockGating_VBIIssue:vlv
6990 6991 6992
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6993
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6994 6995
}

6996
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
6997
{
6998 6999 7000 7001 7002
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7003 7004 7005 7006

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7007 7008 7009 7010

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7011 7012 7013 7014

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7015

7016 7017 7018 7019 7020 7021
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7022 7023
}

7024
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7025
{
7026
	u32 dspclk_gate;
7027 7028 7029 7030 7031 7032 7033 7034 7035

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7036
	if (IS_GM45(dev_priv))
7037 7038
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7039 7040 7041 7042

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7043

7044 7045 7046
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7047
	g4x_disable_trickle_feed(dev_priv);
7048 7049
}

7050
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7051
{
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7062 7063

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7064 7065 7066
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7067 7068
}

7069
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7070 7071 7072 7073 7074 7075 7076
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7077 7078
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7079 7080 7081

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7082 7083
}

7084
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7085 7086 7087 7088 7089 7090
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7091

7092
	if (IS_PINEVIEW(dev_priv))
7093
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7094 7095 7096

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7097 7098

	/* interrupts should cause a wake up from C3 */
7099
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7100 7101 7102

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7103 7104 7105

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7106 7107
}

7108
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7109 7110
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7111 7112 7113 7114

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7115 7116 7117

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7118 7119
}

7120
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7121
{
7122 7123 7124
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7125 7126
}

7127
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7128
{
7129
	dev_priv->display.init_clock_gating(dev_priv);
7130 7131
}

7132
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7133
{
7134 7135
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7136 7137
}

7138
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7154
	if (IS_GEN(dev_priv, 12))
7155
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7156
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7157
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7158
	else if (IS_CANNONLAKE(dev_priv))
7159
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7160 7161
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7162
	else if (IS_SKYLAKE(dev_priv))
7163
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7164
	else if (IS_KABYLAKE(dev_priv))
7165
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7166
	else if (IS_BROXTON(dev_priv))
7167
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7168 7169
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7170
	else if (IS_BROADWELL(dev_priv))
7171
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7172
	else if (IS_CHERRYVIEW(dev_priv))
7173
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7174
	else if (IS_HASWELL(dev_priv))
7175
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7176
	else if (IS_IVYBRIDGE(dev_priv))
7177
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7178
	else if (IS_VALLEYVIEW(dev_priv))
7179
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7180
	else if (IS_GEN(dev_priv, 6))
7181
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7182
	else if (IS_GEN(dev_priv, 5))
7183
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7184 7185
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7186
	else if (IS_I965GM(dev_priv))
7187
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7188
	else if (IS_I965G(dev_priv))
7189
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7190
	else if (IS_GEN(dev_priv, 3))
7191 7192 7193
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7194
	else if (IS_GEN(dev_priv, 2))
7195 7196 7197 7198 7199 7200 7201
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7202
/* Set up chip specific power management-related functions */
7203
void intel_init_pm(struct drm_i915_private *dev_priv)
7204
{
7205
	/* For cxsr */
7206
	if (IS_PINEVIEW(dev_priv))
7207
		pnv_get_mem_freq(dev_priv);
7208
	else if (IS_GEN(dev_priv, 5))
7209
		ilk_get_mem_freq(dev_priv);
7210

7211 7212 7213
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7214
	/* For FIFO watermark updates */
7215
	if (INTEL_GEN(dev_priv) >= 9) {
7216
		skl_setup_wm_latency(dev_priv);
7217
		dev_priv->display.initial_watermarks = skl_initial_wm;
7218
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7219
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7220
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7221
		ilk_setup_wm_latency(dev_priv);
7222

7223
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7224
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7225
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7226
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7227
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7228 7229 7230 7231 7232 7233
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7234 7235 7236 7237
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7238
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7239
		vlv_setup_wm_latency(dev_priv);
7240
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7241
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7242
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7243
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7244
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7245 7246 7247 7248 7249 7250
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7251
	} else if (IS_PINEVIEW(dev_priv)) {
7252
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7253 7254 7255 7256 7257 7258 7259 7260 7261
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7262
			intel_set_memory_cxsr(dev_priv, false);
7263 7264
			dev_priv->display.update_wm = NULL;
		} else
7265
			dev_priv->display.update_wm = pnv_update_wm;
7266
	} else if (IS_GEN(dev_priv, 4)) {
7267
		dev_priv->display.update_wm = i965_update_wm;
7268
	} else if (IS_GEN(dev_priv, 3)) {
7269 7270
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7271
	} else if (IS_GEN(dev_priv, 2)) {
7272
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7273
			dev_priv->display.update_wm = i845_update_wm;
7274
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7275 7276
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7277
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7278 7279 7280
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7281 7282 7283
	}
}

7284
void intel_pm_setup(struct drm_i915_private *dev_priv)
7285
{
7286 7287
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7288
}