i915_gem.c 138.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static void
44 45 46
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55 56 57 58 59 60 61
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

62 63 64 65
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
66
	spin_lock(&dev_priv->mm.object_stat_lock);
67 68
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
69
	spin_unlock(&dev_priv->mm.object_stat_lock);
70 71 72 73 74
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
75
	spin_lock(&dev_priv->mm.object_stat_lock);
76 77
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
78
	spin_unlock(&dev_priv->mm.object_stat_lock);
79 80
}

81
static int
82
i915_gem_wait_for_error(struct i915_gpu_error *error)
83 84 85
{
	int ret;

86
#define EXIT_COND (!i915_reset_in_progress_or_wedged(error) || \
87
		   i915_terminally_wedged(error))
88
	if (EXIT_COND)
89 90
		return 0;

91 92 93 94 95
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
96 97 98
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
99 100 101 102
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
103
		return ret;
104
	}
105
#undef EXIT_COND
106

107
	return 0;
108 109
}

110
int i915_mutex_lock_interruptible(struct drm_device *dev)
111
{
112
	struct drm_i915_private *dev_priv = dev->dev_private;
113 114
	int ret;

115
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
116 117 118 119 120 121 122
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

123
	WARN_ON(i915_verify_lists(dev));
124 125
	return 0;
}
126

127 128
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
129
			    struct drm_file *file)
130
{
131
	struct drm_i915_private *dev_priv = to_i915(dev);
132
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
133
	struct drm_i915_gem_get_aperture *args = data;
134
	struct i915_vma *vma;
135
	size_t pinned;
136

137
	pinned = 0;
138
	mutex_lock(&dev->struct_mutex);
139
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
140 141
		if (vma->pin_count)
			pinned += vma->node.size;
142
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
143 144
		if (vma->pin_count)
			pinned += vma->node.size;
145
	mutex_unlock(&dev->struct_mutex);
146

147
	args->aper_size = ggtt->base.total;
148
	args->aper_available_size = args->aper_size - pinned;
149

150 151 152
	return 0;
}

153 154
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
155
{
156 157 158 159 160
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

178
		put_page(page);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
196

197 198 199 200 201 202 203 204 205 206 207 208 209
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
210

211 212 213 214 215 216 217 218 219 220 221 222 223
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
224
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
225
		char *vaddr = obj->phys_handle->vaddr;
226 227 228
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
243
				mark_page_accessed(page);
244
			put_page(page);
245 246
			vaddr += PAGE_SIZE;
		}
247
		obj->dirty = 0;
248 249
	}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
273
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
274 275 276 277 278 279 280
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
281 282 283 284 285 286 287
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
288
	int ret;
289 290 291 292 293 294 295 296 297 298 299 300 301 302

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

303 304 305 306
	ret = drop_pages(obj);
	if (ret)
		return ret;

307 308 309 310 311 312
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
313 314 315
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
316 317 318 319 320 321 322 323 324 325
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
326
	int ret = 0;
327 328 329 330 331 332 333

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
334

335
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
336 337 338 339 340 341 342 343 344 345
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
346 347 348 349
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
350 351
	}

352
	drm_clflush_virt_range(vaddr, args->size);
353
	i915_gem_chipset_flush(dev);
354 355

out:
356
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
357
	return ret;
358 359
}

360 361 362
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
363
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
364 365 366 367 368
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
369
	kmem_cache_free(dev_priv->objects, obj);
370 371
}

372 373 374 375 376
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
377
{
378
	struct drm_i915_gem_object *obj;
379 380
	int ret;
	u32 handle;
381

382
	size = roundup(size, PAGE_SIZE);
383 384
	if (size == 0)
		return -EINVAL;
385 386

	/* Allocate the new object */
387
	obj = i915_gem_alloc_object(dev, size);
388 389 390
	if (obj == NULL)
		return -ENOMEM;

391
	ret = drm_gem_handle_create(file, &obj->base, &handle);
392
	/* drop reference from allocate - handle holds it now */
393 394 395
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
396

397
	*handle_p = handle;
398 399 400
	return 0;
}

401 402 403 404 405 406
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
407
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
408 409
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
410
			       args->size, &args->handle);
411 412 413 414 415 416 417 418 419 420
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
421

422
	return i915_gem_create(file, dev,
423
			       args->size, &args->handle);
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

452
static inline int
453 454
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

478 479 480 481 482 483 484 485 486 487 488 489
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

490
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

514 515 516
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
517
static int
518 519 520 521 522 523 524
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

525
	if (unlikely(page_do_bit17_swizzling))
526 527 528 529 530 531 532 533 534 535 536
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

537
	return ret ? -EFAULT : 0;
538 539
}

540 541 542 543
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
544
	if (unlikely(swizzled)) {
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

562 563 564 565 566 567 568 569 570 571 572 573
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
574 575 576
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
577 578 579 580 581 582 583 584 585 586 587

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

588
	return ret ? - EFAULT : 0;
589 590
}

591
static int
592 593 594 595
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
596
{
597
	char __user *user_data;
598
	ssize_t remain;
599
	loff_t offset;
600
	int shmem_page_offset, page_length, ret = 0;
601
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
602
	int prefaulted = 0;
603
	int needs_clflush = 0;
604
	struct sg_page_iter sg_iter;
605

V
Ville Syrjälä 已提交
606
	user_data = to_user_ptr(args->data_ptr);
607 608
	remain = args->size;

609
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
610

611
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
612 613 614
	if (ret)
		return ret;

615
	offset = args->offset;
616

617 618
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
619
		struct page *page = sg_page_iter_page(&sg_iter);
620 621 622 623

		if (remain <= 0)
			break;

624 625 626 627 628
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
629
		shmem_page_offset = offset_in_page(offset);
630 631 632 633
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

634 635 636
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

637 638 639 640 641
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
642 643 644

		mutex_unlock(&dev->struct_mutex);

645
		if (likely(!i915.prefault_disable) && !prefaulted) {
646
			ret = fault_in_multipages_writeable(user_data, remain);
647 648 649 650 651 652 653
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
654

655 656 657
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
658

659
		mutex_lock(&dev->struct_mutex);
660 661

		if (ret)
662 663
			goto out;

664
next_page:
665
		remain -= page_length;
666
		user_data += page_length;
667 668 669
		offset += page_length;
	}

670
out:
671 672
	i915_gem_object_unpin_pages(obj);

673 674 675
	return ret;
}

676 677 678 679 680 681 682
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
683
		     struct drm_file *file)
684 685
{
	struct drm_i915_gem_pread *args = data;
686
	struct drm_i915_gem_object *obj;
687
	int ret = 0;
688

689 690 691 692
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
693
		       to_user_ptr(args->data_ptr),
694 695 696
		       args->size))
		return -EFAULT;

697
	ret = i915_mutex_lock_interruptible(dev);
698
	if (ret)
699
		return ret;
700

701
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
702
	if (&obj->base == NULL) {
703 704
		ret = -ENOENT;
		goto unlock;
705
	}
706

707
	/* Bounds check source.  */
708 709
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
710
		ret = -EINVAL;
711
		goto out;
C
Chris Wilson 已提交
712 713
	}

714 715 716 717 718 719 720 721
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
722 723
	trace_i915_gem_object_pread(obj, args->offset, args->size);

724
	ret = i915_gem_shmem_pread(dev, obj, args, file);
725

726
out:
727
	drm_gem_object_unreference(&obj->base);
728
unlock:
729
	mutex_unlock(&dev->struct_mutex);
730
	return ret;
731 732
}

733 734
/* This is the fast write path which cannot handle
 * page faults in the source data
735
 */
736 737 738 739 740 741

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
742
{
743 744
	void __iomem *vaddr_atomic;
	void *vaddr;
745
	unsigned long unwritten;
746

P
Peter Zijlstra 已提交
747
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
748 749 750
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
751
						      user_data, length);
P
Peter Zijlstra 已提交
752
	io_mapping_unmap_atomic(vaddr_atomic);
753
	return unwritten;
754 755
}

756 757 758 759
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
760
static int
761 762
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
763
			 struct drm_i915_gem_pwrite *args,
764
			 struct drm_file *file)
765
{
766 767
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
768
	ssize_t remain;
769
	loff_t offset, page_base;
770
	char __user *user_data;
D
Daniel Vetter 已提交
771 772
	int page_offset, page_length, ret;

773
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
774 775 776 777 778 779 780 781 782 783
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
784

V
Ville Syrjälä 已提交
785
	user_data = to_user_ptr(args->data_ptr);
786 787
	remain = args->size;

788
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
789

790
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
791

792 793 794
	while (remain > 0) {
		/* Operation in this page
		 *
795 796 797
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
798
		 */
799 800
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
801 802 803 804 805
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
806 807
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
808
		 */
809
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
810 811
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
812
			goto out_flush;
D
Daniel Vetter 已提交
813
		}
814

815 816 817
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
818 819
	}

820
out_flush:
821
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
822
out_unpin:
B
Ben Widawsky 已提交
823
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
824
out:
825
	return ret;
826 827
}

828 829 830 831
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
832
static int
833 834 835 836 837
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
838
{
839
	char *vaddr;
840
	int ret;
841

842
	if (unlikely(page_do_bit17_swizzling))
843
		return -EINVAL;
844

845 846 847 848
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
849 850
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
851 852 853 854
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
855

856
	return ret ? -EFAULT : 0;
857 858
}

859 860
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
861
static int
862 863 864 865 866
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
867
{
868 869
	char *vaddr;
	int ret;
870

871
	vaddr = kmap(page);
872
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
873 874 875
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
876 877
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
878 879
						user_data,
						page_length);
880 881 882 883 884
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
885 886 887
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
888
	kunmap(page);
889

890
	return ret ? -EFAULT : 0;
891 892 893
}

static int
894 895 896 897
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
898 899
{
	ssize_t remain;
900 901
	loff_t offset;
	char __user *user_data;
902
	int shmem_page_offset, page_length, ret = 0;
903
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
904
	int hit_slowpath = 0;
905 906
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
907
	struct sg_page_iter sg_iter;
908

V
Ville Syrjälä 已提交
909
	user_data = to_user_ptr(args->data_ptr);
910 911
	remain = args->size;

912
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
913

914 915 916 917 918
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
919
		needs_clflush_after = cpu_write_needs_clflush(obj);
920 921 922
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
923
	}
924 925 926 927 928
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
929

930 931 932 933
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

934
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
935

936 937
	i915_gem_object_pin_pages(obj);

938
	offset = args->offset;
939
	obj->dirty = 1;
940

941 942
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
943
		struct page *page = sg_page_iter_page(&sg_iter);
944
		int partial_cacheline_write;
945

946 947 948
		if (remain <= 0)
			break;

949 950 951 952 953
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
954
		shmem_page_offset = offset_in_page(offset);
955 956 957 958 959

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

960 961 962 963 964 965 966
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

967 968 969
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

970 971 972 973 974 975
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
976 977 978

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
979 980 981 982
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
983

984
		mutex_lock(&dev->struct_mutex);
985 986

		if (ret)
987 988
			goto out;

989
next_page:
990
		remain -= page_length;
991
		user_data += page_length;
992
		offset += page_length;
993 994
	}

995
out:
996 997
	i915_gem_object_unpin_pages(obj);

998
	if (hit_slowpath) {
999 1000 1001 1002 1003 1004 1005
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1006
			if (i915_gem_clflush_object(obj, obj->pin_display))
1007
				needs_clflush_after = true;
1008
		}
1009
	}
1010

1011
	if (needs_clflush_after)
1012
		i915_gem_chipset_flush(dev);
1013 1014
	else
		obj->cache_dirty = true;
1015

1016
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1017
	return ret;
1018 1019 1020 1021 1022 1023 1024 1025 1026
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1027
		      struct drm_file *file)
1028
{
1029
	struct drm_i915_private *dev_priv = dev->dev_private;
1030
	struct drm_i915_gem_pwrite *args = data;
1031
	struct drm_i915_gem_object *obj;
1032 1033 1034 1035 1036 1037
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1038
		       to_user_ptr(args->data_ptr),
1039 1040 1041
		       args->size))
		return -EFAULT;

1042
	if (likely(!i915.prefault_disable)) {
1043 1044 1045 1046 1047
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1048

1049 1050
	intel_runtime_pm_get(dev_priv);

1051
	ret = i915_mutex_lock_interruptible(dev);
1052
	if (ret)
1053
		goto put_rpm;
1054

1055
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1056
	if (&obj->base == NULL) {
1057 1058
		ret = -ENOENT;
		goto unlock;
1059
	}
1060

1061
	/* Bounds check destination. */
1062 1063
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1064
		ret = -EINVAL;
1065
		goto out;
C
Chris Wilson 已提交
1066 1067
	}

1068 1069 1070 1071 1072 1073 1074 1075
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1076 1077
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1078
	ret = -EFAULT;
1079 1080 1081 1082 1083 1084
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1085 1086 1087
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1088
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1089 1090 1091
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1092
	}
1093

1094 1095 1096 1097 1098 1099
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1100

1101
out:
1102
	drm_gem_object_unreference(&obj->base);
1103
unlock:
1104
	mutex_unlock(&dev->struct_mutex);
1105 1106 1107
put_rpm:
	intel_runtime_pm_put(dev_priv);

1108 1109 1110
	return ret;
}

1111
int
1112
i915_gem_check_wedge(struct i915_gpu_error *error,
1113 1114
		     bool interruptible)
{
1115
	if (i915_reset_in_progress_or_wedged(error)) {
1116 1117 1118 1119 1120
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1121 1122
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1123 1124
			return -EIO;

1125 1126 1127 1128 1129 1130 1131
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1132 1133 1134 1135 1136
	}

	return 0;
}

1137 1138 1139 1140 1141 1142
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1143
		       struct intel_engine_cs *engine)
1144
{
1145
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1180
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1181
{
1182
	unsigned long timeout;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1194

1195
	if (req->engine->irq_refcount)
1196 1197
		return -EBUSY;

1198 1199 1200 1201
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1202
	timeout = local_clock_us(&cpu) + 5;
1203
	while (!need_resched()) {
D
Daniel Vetter 已提交
1204
		if (i915_gem_request_completed(req, true))
1205 1206
			return 0;

1207 1208 1209
		if (signal_pending_state(state, current))
			break;

1210
		if (busywait_stop(timeout, cpu))
1211
			break;
1212

1213 1214
		cpu_relax_lowlatency();
	}
1215

D
Daniel Vetter 已提交
1216
	if (i915_gem_request_completed(req, false))
1217 1218 1219
		return 0;

	return -EAGAIN;
1220 1221
}

1222
/**
1223 1224 1225
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1226 1227 1228
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1229 1230 1231 1232 1233 1234 1235
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1236
 * Returns 0 if the request was found within the alloted time. Else returns the
1237 1238
 * errno with remaining time filled in timeout argument.
 */
1239
int __i915_wait_request(struct drm_i915_gem_request *req,
1240
			unsigned reset_counter,
1241
			bool interruptible,
1242
			s64 *timeout,
1243
			struct intel_rps_client *rps)
1244
{
1245
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1246
	struct drm_device *dev = engine->dev;
1247
	struct drm_i915_private *dev_priv = dev->dev_private;
1248
	const bool irq_test_in_progress =
1249
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1250
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1251
	DEFINE_WAIT(wait);
1252
	unsigned long timeout_expire;
1253
	s64 before = 0; /* Only to silence a compiler warning. */
1254 1255
	int ret;

1256
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1257

1258 1259 1260
	if (list_empty(&req->list))
		return 0;

1261
	if (i915_gem_request_completed(req, true))
1262 1263
		return 0;

1264 1265 1266 1267 1268 1269 1270 1271 1272
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1273 1274 1275 1276 1277

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1278
	}
1279

1280
	if (INTEL_INFO(dev_priv)->gen >= 6)
1281
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1282

1283
	trace_i915_gem_request_wait_begin(req);
1284 1285

	/* Optimistic spin for the next jiffie before touching IRQs */
1286
	ret = __i915_spin_request(req, state);
1287 1288 1289
	if (ret == 0)
		goto out;

1290
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1291 1292 1293 1294
		ret = -ENODEV;
		goto out;
	}

1295 1296
	for (;;) {
		struct timer_list timer;
1297

1298
		prepare_to_wait(&engine->irq_queue, &wait, state);
1299

1300 1301
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1302
		if (reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1303 1304 1305 1306 1307 1308 1309
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1310

1311
		if (i915_gem_request_completed(req, false)) {
1312 1313 1314
			ret = 0;
			break;
		}
1315

1316
		if (signal_pending_state(state, current)) {
1317 1318 1319 1320
			ret = -ERESTARTSYS;
			break;
		}

1321
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1322 1323 1324 1325 1326
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1327
		if (timeout || missed_irq(dev_priv, engine)) {
1328 1329
			unsigned long expire;

1330
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1331
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1332 1333 1334
			mod_timer(&timer, expire);
		}

1335
		io_schedule();
1336 1337 1338 1339 1340 1341

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1342
	if (!irq_test_in_progress)
1343
		engine->irq_put(engine);
1344

1345
	finish_wait(&engine->irq_queue, &wait);
1346

1347 1348 1349
out:
	trace_i915_gem_request_wait_end(req);

1350
	if (timeout) {
1351
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1352 1353

		*timeout = tres < 0 ? 0 : tres;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1364 1365
	}

1366
	return ret;
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1406 1407 1408

	put_pid(request->pid);
	request->pid = NULL;
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1434
	struct intel_engine_cs *engine = req->engine;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1452
/**
1453
 * Waits for a request to be signaled, and cleans up the
1454 1455 1456
 * request and object lists appropriately for that event.
 */
int
1457
i915_wait_request(struct drm_i915_gem_request *req)
1458
{
1459 1460 1461
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1462 1463
	int ret;

1464 1465
	BUG_ON(req == NULL);

1466
	dev = req->engine->dev;
1467 1468 1469
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1470 1471
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1472
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1473 1474 1475
	if (ret)
		return ret;

1476
	ret = __i915_wait_request(req,
1477
				  i915_reset_counter(&dev_priv->gpu_error),
1478
				  interruptible, NULL, NULL);
1479 1480
	if (ret)
		return ret;
1481

1482
	__i915_gem_request_retire__upto(req);
1483 1484 1485
	return 0;
}

1486 1487 1488 1489
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1490
int
1491 1492 1493
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1494
	int ret, i;
1495

1496
	if (!obj->active)
1497 1498
		return 0;

1499 1500 1501 1502 1503
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1504

1505
			i = obj->last_write_req->engine->id;
1506 1507 1508 1509 1510 1511
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1512
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1513 1514 1515 1516 1517 1518 1519 1520 1521
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1522
		GEM_BUG_ON(obj->active);
1523 1524 1525 1526 1527 1528 1529 1530 1531
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1532
	int ring = req->engine->id;
1533 1534 1535 1536 1537 1538 1539

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1540 1541
}

1542 1543 1544 1545 1546
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1547
					    struct intel_rps_client *rps,
1548 1549 1550 1551
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1552
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1553
	unsigned reset_counter;
1554
	int ret, i, n = 0;
1555 1556 1557 1558

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1559
	if (!obj->active)
1560 1561
		return 0;

1562
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1563 1564 1565
	if (ret)
		return ret;

1566
	reset_counter = i915_reset_counter(&dev_priv->gpu_error);
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1577
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1588
	mutex_unlock(&dev->struct_mutex);
1589 1590
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1591
					  NULL, rps);
1592 1593
	mutex_lock(&dev->struct_mutex);

1594 1595 1596 1597 1598 1599 1600
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1601 1602
}

1603 1604 1605 1606 1607 1608
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1609
/**
1610 1611
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1612 1613 1614
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1615
			  struct drm_file *file)
1616 1617
{
	struct drm_i915_gem_set_domain *args = data;
1618
	struct drm_i915_gem_object *obj;
1619 1620
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1621 1622
	int ret;

1623
	/* Only handle setting domains to types used by the CPU. */
1624
	if (write_domain & I915_GEM_GPU_DOMAINS)
1625 1626
		return -EINVAL;

1627
	if (read_domains & I915_GEM_GPU_DOMAINS)
1628 1629 1630 1631 1632 1633 1634 1635
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1636
	ret = i915_mutex_lock_interruptible(dev);
1637
	if (ret)
1638
		return ret;
1639

1640
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1641
	if (&obj->base == NULL) {
1642 1643
		ret = -ENOENT;
		goto unlock;
1644
	}
1645

1646 1647 1648 1649
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1650
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1651
							  to_rps_client(file),
1652
							  !write_domain);
1653 1654 1655
	if (ret)
		goto unref;

1656
	if (read_domains & I915_GEM_DOMAIN_GTT)
1657
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1658
	else
1659
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1660

1661 1662 1663 1664 1665
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1666
unref:
1667
	drm_gem_object_unreference(&obj->base);
1668
unlock:
1669 1670 1671 1672 1673 1674 1675 1676 1677
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1678
			 struct drm_file *file)
1679 1680
{
	struct drm_i915_gem_sw_finish *args = data;
1681
	struct drm_i915_gem_object *obj;
1682 1683
	int ret = 0;

1684
	ret = i915_mutex_lock_interruptible(dev);
1685
	if (ret)
1686
		return ret;
1687

1688
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1689
	if (&obj->base == NULL) {
1690 1691
		ret = -ENOENT;
		goto unlock;
1692 1693 1694
	}

	/* Pinned buffers may be scanout, so flush the cache */
1695
	if (obj->pin_display)
1696
		i915_gem_object_flush_cpu_write_domain(obj);
1697

1698
	drm_gem_object_unreference(&obj->base);
1699
unlock:
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1720 1721 1722
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1723
		    struct drm_file *file)
1724 1725 1726 1727 1728
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1729 1730 1731 1732 1733 1734
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1735
	obj = drm_gem_object_lookup(dev, file, args->handle);
1736
	if (obj == NULL)
1737
		return -ENOENT;
1738

1739 1740 1741 1742 1743 1744 1745 1746
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1747
	addr = vm_mmap(obj->filp, 0, args->size,
1748 1749
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1763
	drm_gem_object_unreference_unlocked(obj);
1764 1765 1766 1767 1768 1769 1770 1771
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1772 1773
/**
 * i915_gem_fault - fault a page into the GTT
1774 1775
 * @vma: VMA in question
 * @vmf: fault info
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1790 1791
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1792 1793
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1794
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 1796 1797
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1798
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799

1800 1801
	intel_runtime_pm_get(dev_priv);

1802 1803 1804 1805
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1806 1807 1808
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1809

C
Chris Wilson 已提交
1810 1811
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1812 1813 1814 1815 1816 1817 1818 1819 1820
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1821 1822
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823
		ret = -EFAULT;
1824 1825 1826
		goto unlock;
	}

1827
	/* Use a partial view if the object is bigger than the aperture. */
1828
	if (obj->base.size >= ggtt->mappable_end &&
1829
	    obj->tiling_mode == I915_TILING_NONE) {
1830
		static const unsigned int chunk_size = 256; // 1 MiB
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 1845
	if (ret)
		goto unlock;
1846

1847 1848 1849
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1850

1851
	ret = i915_gem_object_get_fence(obj);
1852
	if (ret)
1853
		goto unpin;
1854

1855
	/* Finally, remap it using the new GTT offset */
1856
	pfn = ggtt->mappable_base +
1857
		i915_gem_obj_ggtt_offset_view(obj, &view);
1858
	pfn >>= PAGE_SHIFT;
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1869

1870 1871
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 1873 1874 1875 1876
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1898
unpin:
1899
	i915_gem_object_ggtt_unpin_view(obj, &view);
1900
unlock:
1901
	mutex_unlock(&dev->struct_mutex);
1902
out:
1903
	switch (ret) {
1904
	case -EIO:
1905 1906 1907 1908 1909 1910 1911
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 1913 1914
			ret = VM_FAULT_SIGBUS;
			break;
		}
1915
	case -EAGAIN:
D
Daniel Vetter 已提交
1916 1917 1918 1919
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1920
		 */
1921 1922
	case 0:
	case -ERESTARTSYS:
1923
	case -EINTR:
1924 1925 1926 1927 1928
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1929 1930
		ret = VM_FAULT_NOPAGE;
		break;
1931
	case -ENOMEM:
1932 1933
		ret = VM_FAULT_OOM;
		break;
1934
	case -ENOSPC:
1935
	case -EFAULT:
1936 1937
		ret = VM_FAULT_SIGBUS;
		break;
1938
	default:
1939
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 1941
		ret = VM_FAULT_SIGBUS;
		break;
1942
	}
1943 1944 1945

	intel_runtime_pm_put(dev_priv);
	return ret;
1946 1947
}

1948 1949 1950 1951
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1952
 * Preserve the reservation of the mmapping with the DRM core code, but
1953 1954 1955 1956 1957 1958 1959 1960 1961
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1962
void
1963
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964
{
1965 1966
	if (!obj->fault_mappable)
		return;
1967

1968 1969
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1970
	obj->fault_mappable = false;
1971 1972
}

1973 1974 1975 1976 1977 1978 1979 1980 1981
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1982
uint32_t
1983
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984
{
1985
	uint32_t gtt_size;
1986 1987

	if (INTEL_INFO(dev)->gen >= 4 ||
1988 1989
	    tiling_mode == I915_TILING_NONE)
		return size;
1990 1991 1992

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1993
		gtt_size = 1024*1024;
1994
	else
1995
		gtt_size = 512*1024;
1996

1997 1998
	while (gtt_size < size)
		gtt_size <<= 1;
1999

2000
	return gtt_size;
2001 2002
}

2003 2004 2005 2006 2007
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2008
 * potential fence register mapping.
2009
 */
2010 2011 2012
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2013 2014 2015 2016 2017
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2018
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019
	    tiling_mode == I915_TILING_NONE)
2020 2021
		return 4096;

2022 2023 2024 2025
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2026
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 2028
}

2029 2030 2031 2032 2033
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2034
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 2036
		return 0;

2037 2038
	dev_priv->mm.shrinker_no_lock_stealing = true;

2039 2040
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2041
		goto out;
2042 2043 2044 2045 2046 2047 2048 2049

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2050 2051 2052 2053 2054
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2055 2056
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2057
		goto out;
2058 2059

	i915_gem_shrink_all(dev_priv);
2060 2061 2062 2063 2064
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2065 2066 2067 2068 2069 2070 2071
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2072
int
2073 2074
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2075
		  uint32_t handle,
2076
		  uint64_t *offset)
2077
{
2078
	struct drm_i915_gem_object *obj;
2079 2080
	int ret;

2081
	ret = i915_mutex_lock_interruptible(dev);
2082
	if (ret)
2083
		return ret;
2084

2085
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086
	if (&obj->base == NULL) {
2087 2088 2089
		ret = -ENOENT;
		goto unlock;
	}
2090

2091
	if (obj->madv != I915_MADV_WILLNEED) {
2092
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093
		ret = -EFAULT;
2094
		goto out;
2095 2096
	}

2097 2098 2099
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2100

2101
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102

2103
out:
2104
	drm_gem_object_unreference(&obj->base);
2105
unlock:
2106
	mutex_unlock(&dev->struct_mutex);
2107
	return ret;
2108 2109
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2131
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 2133
}

D
Daniel Vetter 已提交
2134 2135 2136
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137
{
2138
	i915_gem_object_free_mmap_offset(obj);
2139

2140 2141
	if (obj->base.filp == NULL)
		return;
2142

D
Daniel Vetter 已提交
2143 2144 2145 2146 2147
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2148
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2149 2150
	obj->madv = __I915_MADV_PURGED;
}
2151

2152 2153 2154
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2155
{
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 2171
}

2172
static void
2173
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174
{
2175 2176
	struct sg_page_iter sg_iter;
	int ret;
2177

2178
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2179

C
Chris Wilson 已提交
2180 2181 2182 2183 2184 2185
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2186
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2187 2188 2189
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2190 2191
	i915_gem_gtt_finish_object(obj);

2192
	if (i915_gem_object_needs_bit17_swizzle(obj))
2193 2194
		i915_gem_object_save_bit_17_swizzle(obj);

2195 2196
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2197

2198
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199
		struct page *page = sg_page_iter_page(&sg_iter);
2200

2201
		if (obj->dirty)
2202
			set_page_dirty(page);
2203

2204
		if (obj->madv == I915_MADV_WILLNEED)
2205
			mark_page_accessed(page);
2206

2207
		put_page(page);
2208
	}
2209
	obj->dirty = 0;
2210

2211 2212
	sg_free_table(obj->pages);
	kfree(obj->pages);
2213
}
C
Chris Wilson 已提交
2214

2215
int
2216 2217 2218 2219
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2220
	if (obj->pages == NULL)
2221 2222
		return 0;

2223 2224 2225
	if (obj->pages_pin_count)
		return -EBUSY;

2226
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2227

2228 2229 2230
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2231
	list_del(&obj->global_list);
2232

2233
	if (obj->mapping) {
2234 2235 2236 2237
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2238 2239 2240
		obj->mapping = NULL;
	}

2241
	ops->put_pages(obj);
2242
	obj->pages = NULL;
2243

2244
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2245 2246 2247 2248

	return 0;
}

2249
static int
C
Chris Wilson 已提交
2250
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2251
{
C
Chris Wilson 已提交
2252
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2253 2254
	int page_count, i;
	struct address_space *mapping;
2255 2256
	struct sg_table *st;
	struct scatterlist *sg;
2257
	struct sg_page_iter sg_iter;
2258
	struct page *page;
2259
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2260
	int ret;
C
Chris Wilson 已提交
2261
	gfp_t gfp;
2262

C
Chris Wilson 已提交
2263 2264 2265 2266 2267 2268 2269
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2270 2271 2272 2273
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2274
	page_count = obj->base.size / PAGE_SIZE;
2275 2276
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2277
		return -ENOMEM;
2278
	}
2279

2280 2281 2282 2283 2284
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2285
	mapping = file_inode(obj->base.filp)->i_mapping;
2286
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2287
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2288 2289 2290
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2291 2292
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2293 2294 2295 2296 2297
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2298 2299 2300 2301 2302 2303 2304 2305
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2306
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2307 2308
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2309
				goto err_pages;
I
Imre Deak 已提交
2310
			}
C
Chris Wilson 已提交
2311
		}
2312 2313 2314 2315 2316 2317 2318 2319
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2320 2321 2322 2323 2324 2325 2326 2327 2328
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2329 2330 2331

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2332
	}
2333 2334 2335 2336
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2337 2338
	obj->pages = st;

I
Imre Deak 已提交
2339 2340 2341 2342
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2343
	if (i915_gem_object_needs_bit17_swizzle(obj))
2344 2345
		i915_gem_object_do_bit_17_swizzle(obj);

2346 2347 2348 2349
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2350 2351 2352
	return 0;

err_pages:
2353 2354
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2355
		put_page(sg_page_iter_page(&sg_iter));
2356 2357
	sg_free_table(st);
	kfree(st);
2358 2359 2360 2361 2362 2363 2364 2365 2366

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2367 2368 2369 2370
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2371 2372
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2387
	if (obj->pages)
2388 2389
		return 0;

2390
	if (obj->madv != I915_MADV_WILLNEED) {
2391
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2392
		return -EFAULT;
2393 2394
	}

2395 2396
	BUG_ON(obj->pages_pin_count);

2397 2398 2399 2400
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2401
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2402 2403 2404 2405

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2406
	return 0;
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2424 2425 2426 2427 2428 2429 2430
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2431
		if (pages != NULL) {
2432 2433 2434
			struct sg_page_iter sg_iter;
			int n;

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2452
void i915_vma_move_to_active(struct i915_vma *vma,
2453
			     struct drm_i915_gem_request *req)
2454
{
2455
	struct drm_i915_gem_object *obj = vma->obj;
2456
	struct intel_engine_cs *engine;
2457

2458
	engine = i915_gem_request_get_engine(req);
2459 2460

	/* Add a reference if we're newly entering the active list. */
2461
	if (obj->active == 0)
2462
		drm_gem_object_reference(&obj->base);
2463
	obj->active |= intel_engine_flag(engine);
2464

2465
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2466
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2467

2468
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2469 2470
}

2471 2472
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2473
{
2474 2475
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2476 2477

	i915_gem_request_assign(&obj->last_write_req, NULL);
2478
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2479 2480
}

2481
static void
2482
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2483
{
2484
	struct i915_vma *vma;
2485

2486 2487
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2488

2489
	list_del_init(&obj->engine_list[ring]);
2490 2491
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2492
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2493 2494 2495 2496 2497
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2498

2499 2500 2501 2502 2503 2504 2505
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2506 2507 2508
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2509
	}
2510

2511
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2512
	drm_gem_object_unreference(&obj->base);
2513 2514
}

2515
static int
2516
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2517
{
2518
	struct drm_i915_private *dev_priv = dev->dev_private;
2519
	struct intel_engine_cs *engine;
2520
	int ret;
2521

2522
	/* Carefully retire all requests without writing to the rings */
2523
	for_each_engine(engine, dev_priv) {
2524
		ret = intel_engine_idle(engine);
2525 2526
		if (ret)
			return ret;
2527 2528
	}
	i915_gem_retire_requests(dev);
2529 2530

	/* Finally reset hw state */
2531
	for_each_engine(engine, dev_priv)
2532
		intel_ring_init_seqno(engine, seqno);
2533

2534
	return 0;
2535 2536
}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2563 2564
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2565
{
2566 2567 2568 2569
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2570
		int ret = i915_gem_init_seqno(dev, 0);
2571 2572
		if (ret)
			return ret;
2573

2574 2575
		dev_priv->next_seqno = 1;
	}
2576

2577
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2578
	return 0;
2579 2580
}

2581 2582 2583 2584 2585
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2586
void __i915_add_request(struct drm_i915_gem_request *request,
2587 2588
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2589
{
2590
	struct intel_engine_cs *engine;
2591
	struct drm_i915_private *dev_priv;
2592
	struct intel_ringbuffer *ringbuf;
2593
	u32 request_start;
2594 2595
	int ret;

2596
	if (WARN_ON(request == NULL))
2597
		return;
2598

2599
	engine = request->engine;
2600
	dev_priv = request->i915;
2601 2602
	ringbuf = request->ringbuf;

2603 2604 2605 2606 2607 2608 2609
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2610
	request_start = intel_ring_get_tail(ringbuf);
2611 2612 2613 2614 2615 2616 2617
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2618 2619
	if (flush_caches) {
		if (i915.enable_execlists)
2620
			ret = logical_ring_flush_all_caches(request);
2621
		else
2622
			ret = intel_ring_flush_all_caches(request);
2623 2624 2625
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2626

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2649 2650 2651 2652 2653
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2654
	request->postfix = intel_ring_get_tail(ringbuf);
2655

2656
	if (i915.enable_execlists)
2657
		ret = engine->emit_request(request);
2658
	else {
2659
		ret = engine->add_request(request);
2660 2661

		request->tail = intel_ring_get_tail(ringbuf);
2662
	}
2663 2664
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2665

2666
	i915_queue_hangcheck(engine->dev);
2667

2668 2669 2670 2671
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2672

2673 2674
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2675 2676
}

2677
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2678
				   const struct intel_context *ctx)
2679
{
2680
	unsigned long elapsed;
2681

2682 2683 2684
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2685 2686
		return true;

2687 2688
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2689
		if (!i915_gem_context_is_default(ctx)) {
2690
			DRM_DEBUG("context hanging too fast, banning!\n");
2691
			return true;
2692 2693 2694
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2695
			return true;
2696
		}
2697 2698 2699 2700 2701
	}

	return false;
}

2702
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2703
				  struct intel_context *ctx,
2704
				  const bool guilty)
2705
{
2706 2707 2708 2709
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2710

2711 2712 2713
	hs = &ctx->hang_stats;

	if (guilty) {
2714
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2715 2716 2717 2718
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2719 2720 2721
	}
}

2722 2723 2724 2725 2726 2727
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2728 2729 2730
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2731
	if (ctx) {
D
Dave Gordon 已提交
2732
		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2733
			intel_lr_context_unpin(ctx, req->engine);
2734

2735 2736
		i915_gem_context_unreference(ctx);
	}
2737

2738
	kmem_cache_free(req->i915->requests, req);
2739 2740
}

2741
static inline int
2742
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2743 2744
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2745
{
2746
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
D
Daniel Vetter 已提交
2747
	struct drm_i915_gem_request *req;
2748 2749
	int ret;

2750 2751 2752
	if (!req_out)
		return -EINVAL;

2753
	*req_out = NULL;
2754

D
Daniel Vetter 已提交
2755 2756
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2757 2758
		return -ENOMEM;

2759
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2760 2761
	if (ret)
		goto err;
2762

2763 2764
	kref_init(&req->ref);
	req->i915 = dev_priv;
2765
	req->engine = engine;
2766 2767
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2768 2769

	if (i915.enable_execlists)
2770
		ret = intel_logical_ring_alloc_request_extras(req);
2771
	else
D
Daniel Vetter 已提交
2772
		ret = intel_ring_alloc_request_extras(req);
2773 2774
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2775
		goto err;
2776
	}
2777

2778 2779 2780 2781 2782 2783 2784
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2798

2799
	*req_out = req;
2800
	return 0;
2801 2802 2803 2804

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2805 2806
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2827
		ctx = to_i915(engine->dev)->kernel_context;
2828 2829 2830 2831
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2832 2833 2834 2835 2836 2837 2838
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2839
struct drm_i915_gem_request *
2840
i915_gem_find_active_request(struct intel_engine_cs *engine)
2841
{
2842 2843
	struct drm_i915_gem_request *request;

2844
	list_for_each_entry(request, &engine->request_list, list) {
2845
		if (i915_gem_request_completed(request, false))
2846
			continue;
2847

2848
		return request;
2849
	}
2850 2851 2852 2853

	return NULL;
}

2854
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2855
				       struct intel_engine_cs *engine)
2856 2857 2858 2859
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2860
	request = i915_gem_find_active_request(engine);
2861 2862 2863 2864

	if (request == NULL)
		return;

2865
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2866

2867
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2868

2869
	list_for_each_entry_continue(request, &engine->request_list, list)
2870
		i915_set_reset_status(dev_priv, request->ctx, false);
2871
}
2872

2873
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2874
					struct intel_engine_cs *engine)
2875
{
2876 2877
	struct intel_ringbuffer *buffer;

2878
	while (!list_empty(&engine->active_list)) {
2879
		struct drm_i915_gem_object *obj;
2880

2881
		obj = list_first_entry(&engine->active_list,
2882
				       struct drm_i915_gem_object,
2883
				       engine_list[engine->id]);
2884

2885
		i915_gem_object_retire__read(obj, engine->id);
2886
	}
2887

2888 2889 2890 2891 2892 2893
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2894
	if (i915.enable_execlists) {
2895 2896
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2897

2898
		spin_lock_bh(&engine->execlist_lock);
2899
		/* list_splice_tail_init checks for empty lists */
2900 2901
		list_splice_tail_init(&engine->execlist_queue,
				      &engine->execlist_retired_req_list);
2902
		spin_unlock_bh(&engine->execlist_lock);
2903

2904
		intel_execlists_retire_requests(engine);
2905 2906
	}

2907 2908 2909 2910 2911 2912 2913
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2914
	while (!list_empty(&engine->request_list)) {
2915 2916
		struct drm_i915_gem_request *request;

2917
		request = list_first_entry(&engine->request_list,
2918 2919 2920
					   struct drm_i915_gem_request,
					   list);

2921
		i915_gem_request_retire(request);
2922
	}
2923 2924 2925 2926 2927 2928 2929 2930

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2931
	list_for_each_entry(buffer, &engine->buffers, link) {
2932 2933 2934
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2935 2936

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2937 2938
}

2939
void i915_gem_reset(struct drm_device *dev)
2940
{
2941
	struct drm_i915_private *dev_priv = dev->dev_private;
2942
	struct intel_engine_cs *engine;
2943

2944 2945 2946 2947 2948
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2949
	for_each_engine(engine, dev_priv)
2950
		i915_gem_reset_engine_status(dev_priv, engine);
2951

2952
	for_each_engine(engine, dev_priv)
2953
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2954

2955 2956
	i915_gem_context_reset(dev);

2957
	i915_gem_restore_fences(dev);
2958 2959

	WARN_ON(i915_verify_lists(dev));
2960 2961 2962 2963 2964
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2965
void
2966
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2967
{
2968
	WARN_ON(i915_verify_lists(engine->dev));
2969

2970 2971 2972 2973
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2974
	 */
2975
	while (!list_empty(&engine->request_list)) {
2976 2977
		struct drm_i915_gem_request *request;

2978
		request = list_first_entry(&engine->request_list,
2979 2980 2981
					   struct drm_i915_gem_request,
					   list);

2982
		if (!i915_gem_request_completed(request, true))
2983 2984
			break;

2985
		i915_gem_request_retire(request);
2986
	}
2987

2988 2989 2990 2991
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2992
	while (!list_empty(&engine->active_list)) {
2993 2994
		struct drm_i915_gem_object *obj;

2995 2996
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2997
				       engine_list[engine->id]);
2998

2999
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3000 3001
			break;

3002
		i915_gem_object_retire__read(obj, engine->id);
3003 3004
	}

3005 3006 3007 3008
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3009
	}
3010

3011
	WARN_ON(i915_verify_lists(engine->dev));
3012 3013
}

3014
bool
3015 3016
i915_gem_retire_requests(struct drm_device *dev)
{
3017
	struct drm_i915_private *dev_priv = dev->dev_private;
3018
	struct intel_engine_cs *engine;
3019
	bool idle = true;
3020

3021
	for_each_engine(engine, dev_priv) {
3022 3023
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3024
		if (i915.enable_execlists) {
3025
			spin_lock_bh(&engine->execlist_lock);
3026
			idle &= list_empty(&engine->execlist_queue);
3027
			spin_unlock_bh(&engine->execlist_lock);
3028

3029
			intel_execlists_retire_requests(engine);
3030
		}
3031 3032 3033 3034 3035 3036 3037 3038
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3039 3040
}

3041
static void
3042 3043
i915_gem_retire_work_handler(struct work_struct *work)
{
3044 3045 3046
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3047
	bool idle;
3048

3049
	/* Come back later if the device is busy... */
3050 3051 3052 3053
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3054
	}
3055
	if (!idle)
3056 3057
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3058
}
3059

3060 3061 3062 3063 3064
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3065
	struct drm_device *dev = dev_priv->dev;
3066
	struct intel_engine_cs *engine;
3067

3068 3069
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3070
			return;
3071

3072
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3073
	 * Also locking seems to be fubar here, engine->request_list is protected
3074 3075
	 * by dev->struct_mutex. */

3076 3077 3078
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3079
		for_each_engine(engine, dev_priv)
3080
			i915_gem_batch_pool_fini(&engine->batch_pool);
3081

3082 3083
		mutex_unlock(&dev->struct_mutex);
	}
3084 3085
}

3086 3087 3088 3089 3090 3091 3092 3093
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3094
	int i;
3095 3096 3097

	if (!obj->active)
		return 0;
3098

3099
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3100
		struct drm_i915_gem_request *req;
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3114 3115 3116 3117 3118
	}

	return 0;
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3144
	struct drm_i915_private *dev_priv = dev->dev_private;
3145 3146
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3147
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3148
	unsigned reset_counter;
3149 3150
	int i, n = 0;
	int ret;
3151

3152 3153 3154
	if (args->flags != 0)
		return -EINVAL;

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3165 3166
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3167 3168 3169
	if (ret)
		goto out;

3170
	if (!obj->active)
3171
		goto out;
3172 3173

	/* Do this after OLR check to make sure we make forward progress polling
3174
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3175
	 */
3176
	if (args->timeout_ns == 0) {
3177 3178 3179 3180 3181
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3182
	reset_counter = i915_reset_counter(&dev_priv->gpu_error);
3183

3184
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3185 3186 3187 3188 3189 3190
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3191 3192
	mutex_unlock(&dev->struct_mutex);

3193 3194 3195 3196
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3197
						  to_rps_client(file));
3198 3199
		i915_gem_request_unreference__unlocked(req[i]);
	}
3200
	return ret;
3201 3202 3203 3204 3205 3206 3207

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3208 3209 3210
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3211 3212
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3213 3214 3215 3216
{
	struct intel_engine_cs *from;
	int ret;

3217
	from = i915_gem_request_get_engine(from_req);
3218 3219 3220
	if (to == from)
		return 0;

3221
	if (i915_gem_request_completed(from_req, true))
3222 3223 3224
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3225
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3226
		ret = __i915_wait_request(from_req,
3227
					  i915_reset_counter(&i915->gpu_error),
3228 3229 3230
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3231 3232 3233
		if (ret)
			return ret;

3234
		i915_gem_object_retire_request(obj, from_req);
3235 3236
	} else {
		int idx = intel_ring_sync_index(from, to);
3237 3238 3239
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3240 3241 3242 3243

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3244
		if (*to_req == NULL) {
3245 3246 3247 3248 3249 3250 3251
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3252 3253
		}

3254 3255
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3270 3271 3272 3273 3274
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3275 3276 3277
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3278 3279 3280
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3281
 * rather than a particular GPU ring. Conceptually we serialise writes
3282
 * between engines inside the GPU. We only allow one engine to write
3283 3284 3285 3286 3287 3288 3289 3290 3291
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3292
 *
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3303 3304
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3305 3306
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3307 3308
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3309
{
3310
	const bool readonly = obj->base.pending_write_domain == 0;
3311
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3312
	int ret, i, n;
3313

3314
	if (!obj->active)
3315 3316
		return 0;

3317 3318
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3319

3320 3321 3322 3323 3324
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3325
		for (i = 0; i < I915_NUM_ENGINES; i++)
3326 3327 3328 3329
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3330
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3331 3332 3333
		if (ret)
			return ret;
	}
3334

3335
	return 0;
3336 3337
}

3338 3339 3340 3341 3342 3343 3344
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3345 3346 3347
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3348 3349 3350
	/* Wait for any direct GTT access to complete */
	mb();

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3362
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3363
{
3364
	struct drm_i915_gem_object *obj = vma->obj;
3365
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3366
	int ret;
3367

3368
	if (list_empty(&vma->obj_link))
3369 3370
		return 0;

3371 3372 3373 3374
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3375

B
Ben Widawsky 已提交
3376
	if (vma->pin_count)
3377
		return -EBUSY;
3378

3379 3380
	BUG_ON(obj->pages == NULL);

3381 3382 3383 3384 3385
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3386

3387
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3388
		i915_gem_object_finish_gtt(obj);
3389

3390 3391 3392 3393 3394
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3395

3396
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3397

3398
	vma->vm->unbind_vma(vma);
3399
	vma->bound = 0;
3400

3401
	list_del_init(&vma->vm_link);
3402
	if (vma->is_ggtt) {
3403 3404 3405 3406 3407 3408
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3409
		vma->ggtt_view.pages = NULL;
3410
	}
3411

B
Ben Widawsky 已提交
3412 3413 3414 3415
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3416
	 * no more VMAs exist. */
I
Imre Deak 已提交
3417
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3418
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3419

3420 3421 3422 3423 3424 3425
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3426
	return 0;
3427 3428
}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3439
int i915_gpu_idle(struct drm_device *dev)
3440
{
3441
	struct drm_i915_private *dev_priv = dev->dev_private;
3442
	struct intel_engine_cs *engine;
3443
	int ret;
3444 3445

	/* Flush everything onto the inactive list. */
3446
	for_each_engine(engine, dev_priv) {
3447
		if (!i915.enable_execlists) {
3448 3449
			struct drm_i915_gem_request *req;

3450
			req = i915_gem_request_alloc(engine, NULL);
3451 3452
			if (IS_ERR(req))
				return PTR_ERR(req);
3453

3454
			ret = i915_switch_context(req);
3455 3456 3457 3458 3459
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3460
			i915_add_request_no_flush(req);
3461
		}
3462

3463
		ret = intel_engine_idle(engine);
3464 3465 3466
		if (ret)
			return ret;
	}
3467

3468
	WARN_ON(i915_verify_lists(dev));
3469
	return 0;
3470 3471
}

3472
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3473 3474
				     unsigned long cache_level)
{
3475
	struct drm_mm_node *gtt_space = &vma->node;
3476 3477
	struct drm_mm_node *other;

3478 3479 3480 3481 3482 3483
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3484
	 */
3485
	if (vma->vm->mm.color_adjust == NULL)
3486 3487
		return true;

3488
	if (!drm_mm_node_allocated(gtt_space))
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3505
/**
3506 3507
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3508
 */
3509
static struct i915_vma *
3510 3511
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3512
			   const struct i915_ggtt_view *ggtt_view,
3513
			   unsigned alignment,
3514
			   uint64_t flags)
3515
{
3516
	struct drm_device *dev = obj->base.dev;
3517 3518
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3519
	u32 fence_alignment, unfenced_alignment;
3520 3521
	u32 search_flag, alloc_flag;
	u64 start, end;
3522
	u64 size, fence_size;
B
Ben Widawsky 已提交
3523
	struct i915_vma *vma;
3524
	int ret;
3525

3526 3527 3528 3529 3530
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3561

3562 3563 3564
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3565
		end = min_t(u64, end, ggtt->mappable_end);
3566
	if (flags & PIN_ZONE_4G)
3567
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3568

3569
	if (alignment == 0)
3570
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3571
						unfenced_alignment;
3572
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3573 3574 3575
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3576
		return ERR_PTR(-EINVAL);
3577 3578
	}

3579 3580 3581
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3582
	 */
3583
	if (size > end) {
3584
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3585 3586
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3587
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3588
			  end);
3589
		return ERR_PTR(-E2BIG);
3590 3591
	}

3592
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3593
	if (ret)
3594
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3595

3596 3597
	i915_gem_object_pin_pages(obj);

3598 3599 3600
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3601
	if (IS_ERR(vma))
3602
		goto err_unpin;
B
Ben Widawsky 已提交
3603

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3622
	} else {
3623 3624 3625 3626 3627 3628 3629
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3630

3631
search_free:
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3645

3646 3647
			goto err_free_vma;
		}
3648
	}
3649
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3650
		ret = -EINVAL;
3651
		goto err_remove_node;
3652 3653
	}

3654
	trace_i915_vma_bind(vma, flags);
3655
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3656
	if (ret)
I
Imre Deak 已提交
3657
		goto err_remove_node;
3658

3659
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3660
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3661

3662
	return vma;
B
Ben Widawsky 已提交
3663

3664
err_remove_node:
3665
	drm_mm_remove_node(&vma->node);
3666
err_free_vma:
B
Ben Widawsky 已提交
3667
	i915_gem_vma_destroy(vma);
3668
	vma = ERR_PTR(ret);
3669
err_unpin:
B
Ben Widawsky 已提交
3670
	i915_gem_object_unpin_pages(obj);
3671
	return vma;
3672 3673
}

3674
bool
3675 3676
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3677 3678 3679 3680 3681
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3682
	if (obj->pages == NULL)
3683
		return false;
3684

3685 3686 3687 3688
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3689
	if (obj->stolen || obj->phys_handle)
3690
		return false;
3691

3692 3693 3694 3695 3696 3697 3698 3699
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3700 3701
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3702
		return false;
3703
	}
3704

C
Chris Wilson 已提交
3705
	trace_i915_gem_object_clflush(obj);
3706
	drm_clflush_sg(obj->pages);
3707
	obj->cache_dirty = false;
3708 3709

	return true;
3710 3711 3712 3713
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3714
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3715
{
C
Chris Wilson 已提交
3716 3717
	uint32_t old_write_domain;

3718
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3719 3720
		return;

3721
	/* No actual flushing is required for the GTT write domain.  Writes
3722 3723
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3724 3725 3726 3727
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3728
	 */
3729 3730
	wmb();

3731 3732
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3733

3734
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3735

C
Chris Wilson 已提交
3736
	trace_i915_gem_object_change_domain(obj,
3737
					    obj->base.read_domains,
C
Chris Wilson 已提交
3738
					    old_write_domain);
3739 3740 3741 3742
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3743
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3744
{
C
Chris Wilson 已提交
3745
	uint32_t old_write_domain;
3746

3747
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3748 3749
		return;

3750
	if (i915_gem_clflush_object(obj, obj->pin_display))
3751 3752
		i915_gem_chipset_flush(obj->base.dev);

3753 3754
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3755

3756
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3757

C
Chris Wilson 已提交
3758
	trace_i915_gem_object_change_domain(obj,
3759
					    obj->base.read_domains,
C
Chris Wilson 已提交
3760
					    old_write_domain);
3761 3762
}

3763 3764 3765 3766 3767 3768
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3769
int
3770
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3771
{
3772 3773 3774
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3775
	uint32_t old_write_domain, old_read_domains;
3776
	struct i915_vma *vma;
3777
	int ret;
3778

3779 3780 3781
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3782
	ret = i915_gem_object_wait_rendering(obj, !write);
3783 3784 3785
	if (ret)
		return ret;

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3798
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3799

3800 3801 3802 3803 3804 3805 3806
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3807 3808
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3809

3810 3811 3812
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3813 3814
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3815
	if (write) {
3816 3817 3818
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3819 3820
	}

C
Chris Wilson 已提交
3821 3822 3823 3824
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3825
	/* And bump the LRU for this access */
3826 3827
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3828
		list_move_tail(&vma->vm_link,
3829
			       &ggtt->base.inactive_list);
3830

3831 3832 3833
	return 0;
}

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3847 3848 3849
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3850
	struct drm_device *dev = obj->base.dev;
3851
	struct i915_vma *vma, *next;
3852
	bool bound = false;
3853
	int ret = 0;
3854 3855

	if (obj->cache_level == cache_level)
3856
		goto out;
3857

3858 3859 3860 3861 3862
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3863
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3864 3865 3866 3867 3868 3869 3870 3871
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3872
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3873
			ret = i915_vma_unbind(vma);
3874 3875
			if (ret)
				return ret;
3876 3877
		} else
			bound = true;
3878 3879
	}

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3892
		ret = i915_gem_object_wait_rendering(obj, false);
3893 3894 3895
		if (ret)
			return ret;

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3913 3914 3915
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3916 3917 3918 3919 3920 3921 3922 3923
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3924 3925
		}

3926
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3927 3928 3929 3930 3931 3932 3933
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3934 3935
	}

3936
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3937 3938 3939
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3940
out:
3941 3942 3943 3944
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3945 3946 3947 3948 3949
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3950 3951 3952 3953 3954
	}

	return 0;
}

B
Ben Widawsky 已提交
3955 3956
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3957
{
B
Ben Widawsky 已提交
3958
	struct drm_i915_gem_caching *args = data;
3959 3960 3961
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3962 3963
	if (&obj->base == NULL)
		return -ENOENT;
3964

3965 3966 3967 3968 3969 3970
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3971 3972 3973 3974
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3975 3976 3977 3978
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3979

3980 3981
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3982 3983
}

B
Ben Widawsky 已提交
3984 3985
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3986
{
3987
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3988
	struct drm_i915_gem_caching *args = data;
3989 3990 3991 3992
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3993 3994
	switch (args->caching) {
	case I915_CACHING_NONE:
3995 3996
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3997
	case I915_CACHING_CACHED:
3998 3999 4000 4001 4002 4003
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4004
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4005 4006
			return -ENODEV;

4007 4008
		level = I915_CACHE_LLC;
		break;
4009 4010 4011
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4012 4013 4014 4015
	default:
		return -EINVAL;
	}

4016 4017
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4018 4019
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4020
		goto rpm_put;
B
Ben Widawsky 已提交
4021

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4033 4034 4035
rpm_put:
	intel_runtime_pm_put(dev_priv);

4036 4037 4038
	return ret;
}

4039
/*
4040 4041 4042
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4043 4044
 */
int
4045 4046
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4047
				     const struct i915_ggtt_view *view)
4048
{
4049
	u32 old_read_domains, old_write_domain;
4050 4051
	int ret;

4052 4053 4054
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4055
	obj->pin_display++;
4056

4057 4058 4059 4060 4061 4062 4063 4064 4065
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4066 4067
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4068
	if (ret)
4069
		goto err_unpin_display;
4070

4071 4072 4073 4074
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4075 4076 4077
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4078
	if (ret)
4079
		goto err_unpin_display;
4080

4081
	i915_gem_object_flush_cpu_write_domain(obj);
4082

4083
	old_write_domain = obj->base.write_domain;
4084
	old_read_domains = obj->base.read_domains;
4085 4086 4087 4088

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4089
	obj->base.write_domain = 0;
4090
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4091 4092 4093

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4094
					    old_write_domain);
4095 4096

	return 0;
4097 4098

err_unpin_display:
4099
	obj->pin_display--;
4100 4101 4102 4103
	return ret;
}

void
4104 4105
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4106
{
4107 4108 4109
	if (WARN_ON(obj->pin_display == 0))
		return;

4110 4111
	i915_gem_object_ggtt_unpin_view(obj, view);

4112
	obj->pin_display--;
4113 4114
}

4115 4116 4117 4118 4119 4120
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4121
int
4122
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4123
{
C
Chris Wilson 已提交
4124
	uint32_t old_write_domain, old_read_domains;
4125 4126
	int ret;

4127 4128 4129
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4130
	ret = i915_gem_object_wait_rendering(obj, !write);
4131 4132 4133
	if (ret)
		return ret;

4134
	i915_gem_object_flush_gtt_write_domain(obj);
4135

4136 4137
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4138

4139
	/* Flush the CPU cache if it's still invalid. */
4140
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4141
		i915_gem_clflush_object(obj, false);
4142

4143
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4144 4145 4146 4147 4148
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4149
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4150 4151 4152 4153 4154

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4155 4156
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4157
	}
4158

C
Chris Wilson 已提交
4159 4160 4161 4162
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4163 4164 4165
	return 0;
}

4166 4167 4168
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4169 4170 4171 4172
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4173 4174 4175
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4176
static int
4177
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4178
{
4179 4180
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4181
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4182
	struct drm_i915_gem_request *request, *target = NULL;
4183
	unsigned reset_counter;
4184
	int ret;
4185

4186 4187 4188 4189 4190 4191 4192
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4193

4194
	spin_lock(&file_priv->mm.lock);
4195
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4196 4197
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4198

4199 4200 4201 4202 4203 4204 4205
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4206
		target = request;
4207
	}
4208
	reset_counter = i915_reset_counter(&dev_priv->gpu_error);
4209 4210
	if (target)
		i915_gem_request_reference(target);
4211
	spin_unlock(&file_priv->mm.lock);
4212

4213
	if (target == NULL)
4214
		return 0;
4215

4216
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4217 4218
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4219

4220
	i915_gem_request_unreference__unlocked(target);
4221

4222 4223 4224
	return ret;
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4241 4242 4243 4244
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4245 4246 4247
	return false;
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4266
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4267 4268 4269 4270

	obj->map_and_fenceable = mappable && fenceable;
}

4271 4272 4273 4274 4275 4276
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4277
{
4278
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4279
	struct i915_vma *vma;
4280
	unsigned bound;
4281 4282
	int ret;

4283 4284 4285
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4286
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4287
		return -EINVAL;
4288

4289 4290 4291
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4292 4293 4294 4295 4296 4297
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4298
	if (vma) {
B
Ben Widawsky 已提交
4299 4300 4301
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4302
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4303
			WARN(vma->pin_count,
4304
			     "bo is already pinned in %s with incorrect alignment:"
4305
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4306
			     " obj->map_and_fenceable=%d\n",
4307
			     ggtt_view ? "ggtt" : "ppgtt",
4308 4309
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4310
			     alignment,
4311
			     !!(flags & PIN_MAPPABLE),
4312
			     obj->map_and_fenceable);
4313
			ret = i915_vma_unbind(vma);
4314 4315
			if (ret)
				return ret;
4316 4317

			vma = NULL;
4318 4319 4320
		}
	}

4321
	bound = vma ? vma->bound : 0;
4322
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4323 4324
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4325 4326
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4327 4328
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4329 4330 4331
		if (ret)
			return ret;
	}
4332

4333 4334
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4335
		__i915_vma_set_map_and_fenceable(vma);
4336 4337
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4338

4339
	vma->pin_count++;
4340 4341 4342
	return 0;
}

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4360 4361 4362 4363
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4364
	BUG_ON(!view);
4365

4366
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4367
				      alignment, flags | PIN_GLOBAL);
4368 4369
}

4370
void
4371 4372
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4373
{
4374
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4375

B
Ben Widawsky 已提交
4376
	BUG_ON(!vma);
4377
	WARN_ON(vma->pin_count == 0);
4378
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4379

4380
	--vma->pin_count;
4381 4382 4383 4384
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4385
		    struct drm_file *file)
4386 4387
{
	struct drm_i915_gem_busy *args = data;
4388
	struct drm_i915_gem_object *obj;
4389 4390
	int ret;

4391
	ret = i915_mutex_lock_interruptible(dev);
4392
	if (ret)
4393
		return ret;
4394

4395
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4396
	if (&obj->base == NULL) {
4397 4398
		ret = -ENOENT;
		goto unlock;
4399
	}
4400

4401 4402 4403 4404
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4405
	 */
4406
	ret = i915_gem_object_flush_active(obj);
4407 4408
	if (ret)
		goto unref;
4409

4410 4411 4412 4413
	args->busy = 0;
	if (obj->active) {
		int i;

4414
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4415 4416 4417 4418
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4419
				args->busy |= 1 << (16 + req->engine->exec_id);
4420 4421
		}
		if (obj->last_write_req)
4422
			args->busy |= obj->last_write_req->engine->exec_id;
4423
	}
4424

4425
unref:
4426
	drm_gem_object_unreference(&obj->base);
4427
unlock:
4428
	mutex_unlock(&dev->struct_mutex);
4429
	return ret;
4430 4431 4432 4433 4434 4435
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4436
	return i915_gem_ring_throttle(dev, file_priv);
4437 4438
}

4439 4440 4441 4442
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4443
	struct drm_i915_private *dev_priv = dev->dev_private;
4444
	struct drm_i915_gem_madvise *args = data;
4445
	struct drm_i915_gem_object *obj;
4446
	int ret;
4447 4448 4449 4450 4451 4452 4453 4454 4455

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4456 4457 4458 4459
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4460
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4461
	if (&obj->base == NULL) {
4462 4463
		ret = -ENOENT;
		goto unlock;
4464 4465
	}

B
Ben Widawsky 已提交
4466
	if (i915_gem_obj_is_pinned(obj)) {
4467 4468
		ret = -EINVAL;
		goto out;
4469 4470
	}

4471 4472 4473 4474 4475 4476 4477 4478 4479
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4480 4481
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4482

C
Chris Wilson 已提交
4483
	/* if the object is no longer attached, discard its backing storage */
4484
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4485 4486
		i915_gem_object_truncate(obj);

4487
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4488

4489
out:
4490
	drm_gem_object_unreference(&obj->base);
4491
unlock:
4492
	mutex_unlock(&dev->struct_mutex);
4493
	return ret;
4494 4495
}

4496 4497
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4498
{
4499 4500
	int i;

4501
	INIT_LIST_HEAD(&obj->global_list);
4502
	for (i = 0; i < I915_NUM_ENGINES; i++)
4503
		INIT_LIST_HEAD(&obj->engine_list[i]);
4504
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4505
	INIT_LIST_HEAD(&obj->vma_list);
4506
	INIT_LIST_HEAD(&obj->batch_pool_link);
4507

4508 4509
	obj->ops = ops;

4510 4511 4512 4513 4514 4515
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4516
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4517
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4518 4519 4520 4521
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4522 4523
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4524
{
4525
	struct drm_i915_gem_object *obj;
4526
	struct address_space *mapping;
D
Daniel Vetter 已提交
4527
	gfp_t mask;
4528

4529
	obj = i915_gem_object_alloc(dev);
4530 4531
	if (obj == NULL)
		return NULL;
4532

4533
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4534
		i915_gem_object_free(obj);
4535 4536
		return NULL;
	}
4537

4538 4539 4540 4541 4542 4543 4544
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4545
	mapping = file_inode(obj->base.filp)->i_mapping;
4546
	mapping_set_gfp_mask(mapping, mask);
4547

4548
	i915_gem_object_init(obj, &i915_gem_object_ops);
4549

4550 4551
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4552

4553 4554
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4570 4571
	trace_i915_gem_object_create(obj);

4572
	return obj;
4573 4574
}

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4599
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4600
{
4601
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4602
	struct drm_device *dev = obj->base.dev;
4603
	struct drm_i915_private *dev_priv = dev->dev_private;
4604
	struct i915_vma *vma, *next;
4605

4606 4607
	intel_runtime_pm_get(dev_priv);

4608 4609
	trace_i915_gem_object_destroy(obj);

4610
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4611 4612 4613 4614
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4615 4616
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4617

4618 4619
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4620

4621
			WARN_ON(i915_vma_unbind(vma));
4622

4623 4624
			dev_priv->mm.interruptible = was_interruptible;
		}
4625 4626
	}

B
Ben Widawsky 已提交
4627 4628 4629 4630 4631
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4632 4633
	WARN_ON(obj->frontbuffer_bits);

4634 4635 4636 4637 4638
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4639 4640
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4641
	if (discard_backing_storage(obj))
4642
		obj->madv = I915_MADV_DONTNEED;
4643
	i915_gem_object_put_pages(obj);
4644
	i915_gem_object_free_mmap_offset(obj);
4645

4646 4647
	BUG_ON(obj->pages);

4648 4649
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4650

4651 4652 4653
	if (obj->ops->release)
		obj->ops->release(obj);

4654 4655
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4656

4657
	kfree(obj->bit_17);
4658
	i915_gem_object_free(obj);
4659 4660

	intel_runtime_pm_put(dev_priv);
4661 4662
}

4663 4664
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4665 4666
{
	struct i915_vma *vma;
4667
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4668 4669
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4670
			return vma;
4671 4672 4673 4674 4675 4676 4677
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
4678 4679 4680
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4681
	struct i915_vma *vma;
4682

4683
	BUG_ON(!view);
4684

4685
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4686
		if (vma->vm == &ggtt->base &&
4687
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4688
			return vma;
4689 4690 4691
	return NULL;
}

B
Ben Widawsky 已提交
4692 4693 4694
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4695 4696 4697 4698 4699

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4700 4701
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4702

4703
	list_del(&vma->obj_link);
4704

4705
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4706 4707
}

4708
static void
4709
i915_gem_stop_engines(struct drm_device *dev)
4710 4711
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4712
	struct intel_engine_cs *engine;
4713

4714
	for_each_engine(engine, dev_priv)
4715
		dev_priv->gt.stop_engine(engine);
4716 4717
}

4718
int
4719
i915_gem_suspend(struct drm_device *dev)
4720
{
4721
	struct drm_i915_private *dev_priv = dev->dev_private;
4722
	int ret = 0;
4723

4724
	mutex_lock(&dev->struct_mutex);
4725
	ret = i915_gpu_idle(dev);
4726
	if (ret)
4727
		goto err;
4728

4729
	i915_gem_retire_requests(dev);
4730

4731
	i915_gem_stop_engines(dev);
4732 4733
	mutex_unlock(&dev->struct_mutex);

4734
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4735
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4736
	flush_delayed_work(&dev_priv->mm.idle_work);
4737

4738 4739 4740 4741 4742
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4743
	return 0;
4744 4745 4746 4747

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4748 4749
}

4750
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4751
{
4752
	struct intel_engine_cs *engine = req->engine;
4753
	struct drm_device *dev = engine->dev;
4754
	struct drm_i915_private *dev_priv = dev->dev_private;
4755
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4756
	int i, ret;
B
Ben Widawsky 已提交
4757

4758
	if (!HAS_L3_DPF(dev) || !remap_info)
4759
		return 0;
B
Ben Widawsky 已提交
4760

4761
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4762 4763
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4764

4765 4766 4767 4768 4769
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4770
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4771 4772 4773
		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
		intel_ring_emit(engine, remap_info[i]);
B
Ben Widawsky 已提交
4774 4775
	}

4776
	intel_ring_advance(engine);
B
Ben Widawsky 已提交
4777

4778
	return ret;
B
Ben Widawsky 已提交
4779 4780
}

4781 4782
void i915_gem_init_swizzling(struct drm_device *dev)
{
4783
	struct drm_i915_private *dev_priv = dev->dev_private;
4784

4785
	if (INTEL_INFO(dev)->gen < 5 ||
4786 4787 4788 4789 4790 4791
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4792 4793 4794
	if (IS_GEN5(dev))
		return;

4795 4796
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4797
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4798
	else if (IS_GEN7(dev))
4799
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4800 4801
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4802 4803
	else
		BUG();
4804
}
D
Daniel Vetter 已提交
4805

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4833
int i915_gem_init_engines(struct drm_device *dev)
4834
{
4835
	struct drm_i915_private *dev_priv = dev->dev_private;
4836
	int ret;
4837

4838
	ret = intel_init_render_ring_buffer(dev);
4839
	if (ret)
4840
		return ret;
4841 4842

	if (HAS_BSD(dev)) {
4843
		ret = intel_init_bsd_ring_buffer(dev);
4844 4845
		if (ret)
			goto cleanup_render_ring;
4846
	}
4847

4848
	if (HAS_BLT(dev)) {
4849 4850 4851 4852 4853
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4854 4855 4856 4857 4858 4859
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4860 4861 4862 4863 4864
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4865

4866 4867
	return 0;

B
Ben Widawsky 已提交
4868
cleanup_vebox_ring:
4869
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4870
cleanup_blt_ring:
4871
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4872
cleanup_bsd_ring:
4873
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4874
cleanup_render_ring:
4875
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4876 4877 4878 4879 4880 4881 4882

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4883
	struct drm_i915_private *dev_priv = dev->dev_private;
4884
	struct intel_engine_cs *engine;
4885
	int ret, j;
4886 4887 4888 4889

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4890 4891 4892
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4893
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4894
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4895

4896 4897 4898
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4899

4900
	if (HAS_PCH_NOP(dev)) {
4901 4902 4903 4904 4905 4906 4907 4908 4909
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4910 4911
	}

4912 4913
	i915_gem_init_swizzling(dev);

4914 4915 4916 4917 4918 4919 4920 4921
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4922
	BUG_ON(!dev_priv->kernel_context);
4923

4924 4925 4926 4927 4928 4929 4930
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4931
	for_each_engine(engine, dev_priv) {
4932
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4933
		if (ret)
4934
			goto out;
D
Daniel Vetter 已提交
4935
	}
4936

4937
	/* We can't enable contexts until all firmware is loaded */
4938 4939 4940
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4941 4942 4943
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4944
		}
4945 4946
	}

4947 4948 4949 4950 4951 4952 4953 4954
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4955
	/* Now it is safe to go back round and do everything else: */
4956
	for_each_engine(engine, dev_priv) {
4957 4958
		struct drm_i915_gem_request *req;

4959
		req = i915_gem_request_alloc(engine, NULL);
4960 4961
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
4962
			i915_gem_cleanup_engines(dev);
4963 4964 4965
			goto out;
		}

4966
		if (engine->id == RCS) {
4967
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4968
				i915_gem_l3_remap(req, j);
4969
		}
4970

4971
		ret = i915_ppgtt_init_ring(req);
4972
		if (ret && ret != -EIO) {
4973 4974
			DRM_ERROR("PPGTT enable %s failed %d\n",
				  engine->name, ret);
4975
			i915_gem_request_cancel(req);
4976
			i915_gem_cleanup_engines(dev);
4977 4978
			goto out;
		}
4979

4980
		ret = i915_gem_context_enable(req);
4981
		if (ret && ret != -EIO) {
4982 4983
			DRM_ERROR("Context enable %s failed %d\n",
				  engine->name, ret);
4984
			i915_gem_request_cancel(req);
4985
			i915_gem_cleanup_engines(dev);
4986 4987
			goto out;
		}
4988

4989
		i915_add_request_no_flush(req);
4990
	}
D
Daniel Vetter 已提交
4991

4992 4993
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4994
	return ret;
4995 4996
}

4997 4998 4999 5000 5001
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5002 5003 5004
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5005
	mutex_lock(&dev->struct_mutex);
5006

5007
	if (!i915.enable_execlists) {
5008
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5009 5010 5011
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5012
	} else {
5013
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5014 5015 5016
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5017 5018
	}

5019 5020 5021 5022 5023 5024 5025 5026
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5027
	ret = i915_gem_init_userptr(dev);
5028 5029
	if (ret)
		goto out_unlock;
5030

5031
	i915_gem_init_ggtt(dev);
5032

5033
	ret = i915_gem_context_init(dev);
5034 5035
	if (ret)
		goto out_unlock;
5036

5037
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5038
	if (ret)
5039
		goto out_unlock;
5040

5041
	ret = i915_gem_init_hw(dev);
5042 5043 5044 5045 5046 5047
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5048
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5049
		ret = 0;
5050
	}
5051 5052

out_unlock:
5053
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5054
	mutex_unlock(&dev->struct_mutex);
5055

5056
	return ret;
5057 5058
}

5059
void
5060
i915_gem_cleanup_engines(struct drm_device *dev)
5061
{
5062
	struct drm_i915_private *dev_priv = dev->dev_private;
5063
	struct intel_engine_cs *engine;
5064

5065
	for_each_engine(engine, dev_priv)
5066
		dev_priv->gt.cleanup_engine(engine);
5067

5068 5069 5070 5071 5072 5073 5074
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
5075 5076
}

5077
static void
5078
init_engine_lists(struct intel_engine_cs *engine)
5079
{
5080 5081
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5082 5083
}

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5108
void
5109
i915_gem_load_init(struct drm_device *dev)
5110
{
5111
	struct drm_i915_private *dev_priv = dev->dev_private;
5112 5113
	int i;

5114
	dev_priv->objects =
5115 5116 5117 5118
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5119 5120 5121 5122 5123
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5124 5125 5126 5127 5128
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5129

B
Ben Widawsky 已提交
5130
	INIT_LIST_HEAD(&dev_priv->vm_list);
5131
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5132 5133
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5134
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5135 5136
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5137
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5138
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5139 5140
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5141 5142
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5143
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5144

5145 5146
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5147 5148 5149 5150 5151 5152 5153 5154
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5155
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5156

5157
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5158

5159 5160
	dev_priv->mm.interruptible = true;

5161
	mutex_init(&dev_priv->fb_tracking.lock);
5162
}
5163

5164 5165 5166 5167 5168 5169 5170 5171 5172
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5173
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5174
{
5175
	struct drm_i915_file_private *file_priv = file->driver_priv;
5176 5177 5178 5179 5180

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5181
	spin_lock(&file_priv->mm.lock);
5182 5183 5184 5185 5186 5187 5188 5189 5190
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5191
	spin_unlock(&file_priv->mm.lock);
5192

5193
	if (!list_empty(&file_priv->rps.link)) {
5194
		spin_lock(&to_i915(dev)->rps.client_lock);
5195
		list_del(&file_priv->rps.link);
5196
		spin_unlock(&to_i915(dev)->rps.client_lock);
5197
	}
5198 5199 5200 5201 5202
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5203
	int ret;
5204 5205 5206 5207 5208 5209 5210 5211 5212

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5213
	file_priv->file = file;
5214
	INIT_LIST_HEAD(&file_priv->rps.link);
5215 5216 5217 5218

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5219 5220
	file_priv->bsd_ring = -1;

5221 5222 5223
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5224

5225
	return ret;
5226 5227
}

5228 5229
/**
 * i915_gem_track_fb - update frontbuffer tracking
5230 5231 5232
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5233 5234 5235 5236
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5254
/* All the new VM stuff */
5255 5256
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5257 5258 5259 5260
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5261
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5262

5263
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5264
		if (vma->is_ggtt &&
5265 5266 5267
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5268 5269
			return vma->node.start;
	}
5270

5271 5272
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5273 5274 5275
	return -1;
}

5276 5277
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5278
{
5279 5280
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5281 5282
	struct i915_vma *vma;

5283
	list_for_each_entry(vma, &o->vma_list, obj_link)
5284
		if (vma->vm == &ggtt->base &&
5285
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5286 5287
			return vma->node.start;

5288
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5289 5290 5291 5292 5293 5294 5295 5296
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5297
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5298
		if (vma->is_ggtt &&
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5309
				  const struct i915_ggtt_view *view)
5310
{
5311 5312
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5313 5314
	struct i915_vma *vma;

5315
	list_for_each_entry(vma, &o->vma_list, obj_link)
5316
		if (vma->vm == &ggtt->base &&
5317
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5318
		    drm_mm_node_allocated(&vma->node))
5319 5320 5321 5322 5323 5324 5325
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5326
	struct i915_vma *vma;
5327

5328
	list_for_each_entry(vma, &o->vma_list, obj_link)
5329
		if (drm_mm_node_allocated(&vma->node))
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5341
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5342 5343 5344

	BUG_ON(list_empty(&o->vma_list));

5345
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5346
		if (vma->is_ggtt &&
5347 5348
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5349 5350
		if (vma->vm == vm)
			return vma->node.size;
5351
	}
5352 5353 5354
	return 0;
}

5355
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5356 5357
{
	struct i915_vma *vma;
5358
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5359 5360
		if (vma->pin_count > 0)
			return true;
5361

5362
	return false;
5363
}
5364

5365 5366 5367 5368 5369 5370 5371
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5372
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5373 5374 5375 5376 5377 5378 5379
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5405
	obj->dirty = 1;		/* Backing store is now out of date */
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}