intel_lrc.c 68.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233 234 235 236
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
237

238 239
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240
 * @dev_priv: i915 device private
241 242 243
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
244
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
245 246 247
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
248
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249
{
250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
253
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254 255
		return 1;

256
	if (INTEL_GEN(dev_priv) >= 9)
257 258
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263 264
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
265 266 267 268
		return 1;

	return 0;
}
269

270
static void
271
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272
{
273
	struct drm_i915_private *dev_priv = engine->i915;
274

275
	engine->disable_lite_restore_wa =
276
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
277
		(engine->id == VCS || engine->id == VCS2);
278

279
	engine->ctx_desc_template = GEN8_CTX_VALID;
280
	if (IS_GEN8(dev_priv))
281 282
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
283 284 285 286 287 288 289

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290 291
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
292 293
}

294
/**
295 296 297
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
298
 * @engine: Engine the descriptor will be used with
299
 *
300 301 302 303 304
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
305 306 307 308 309 310 311
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
312
 */
313
static void
314
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
315
				   struct intel_engine_cs *engine)
316
{
317
	struct intel_context *ce = &ctx->engine[engine->id];
318
	u64 desc;
319

320
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
321

322 323
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
324
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
325
								/* bits 12-31 */
326
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
327

328
	ce->lrc_desc = desc;
329 330
}

331
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
332
				     struct intel_engine_cs *engine)
333
{
334
	return ctx->engine[engine->id].lrc_desc;
335
}
336

337 338 339
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
340
{
341 342 343 344 345 346
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
347

348
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
349 350
}

351 352 353 354 355 356 357 358 359
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

360
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
361
{
362
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
363
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
364
	u32 *reg_state = ce->lrc_reg_state;
365

C
Chris Wilson 已提交
366
	reg_state[CTX_RING_TAIL+1] = rq->tail;
367

368 369 370 371 372 373 374
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
375 376

	return ce->lrc_desc;
377 378
}

379
static void execlists_submit_ports(struct intel_engine_cs *engine)
380
{
381 382
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
383 384 385 386
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

387 388 389 390 391 392 393 394 395 396 397 398
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
399 400 401
	} else {
		desc[1] = 0;
	}
402
	GEM_BUG_ON(desc[0] == desc[1]);
403 404 405 406 407 408 409 410 411 412

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

413
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
414
{
415 416 417
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
418

419 420 421 422 423
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
424

425 426
	if (ctx_single_port_submission(prev))
		return false;
427

428
	return true;
429 430
}

431
static void execlists_dequeue(struct intel_engine_cs *engine)
432
{
433
	struct drm_i915_gem_request *last;
434
	struct execlist_port *port = engine->execlist_port;
435
	unsigned long flags;
436
	struct rb_node *rb;
437 438 439 440 441 442
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443
		 * as we resubmit the request. See gen8_emit_breadcrumb()
444 445 446 447
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
448

449
	GEM_BUG_ON(port[1].request);
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
470
	 */
471

472
	spin_lock_irqsave(&engine->timeline->lock, flags);
473 474 475 476 477
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

478 479 480
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
481
		 *
482 483 484 485
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
486
		 */
487 488 489 490 491 492 493 494 495 496 497 498 499
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
500 501
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
502 503 504 505 506 507 508
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
509

510 511 512 513 514
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

515
		__i915_gem_request_submit(cursor);
516 517 518 519 520
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
521
		engine->execlist_first = rb;
522
	}
523
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
524

525 526
	if (submit)
		execlists_submit_ports(engine);
527 528
}

529
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
530
{
531
	return !engine->execlist_port[0].request;
532 533
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

556
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
557
{
558
	int port;
B
Ben Widawsky 已提交
559

560 561 562
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
563

564
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
565 566
}

567
/*
568 569 570
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
571
static void intel_lrc_irq_handler(unsigned long data)
572
{
573
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
574
	struct execlist_port *port = engine->execlist_port;
575
	struct drm_i915_private *dev_priv = engine->i915;
576

577
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
610

611 612
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
613 614
		}

615 616 617
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
618 619
	}

620 621
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
622

623
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

652
static void execlists_submit_request(struct drm_i915_gem_request *request)
653
{
654
	struct intel_engine_cs *engine = request->engine;
655
	unsigned long flags;
656

657 658
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
659

660 661
	if (insert_request(&request->priotree, &engine->execlist_queue))
		engine->execlist_first = &request->priotree.node;
662 663
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
664

665
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
666 667
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

695 696
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

725
		list_safe_reset_next(dep, p, dfs_link);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

766 767
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
768
{
769
	struct intel_context *ce = &ctx->engine[engine->id];
770
	unsigned int flags;
771
	void *vaddr;
772
	int ret;
773

774
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
775

776
	if (ce->pin_count++)
777 778
		return 0;

779 780 781 782 783 784
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}

785 786 787 788 789
	flags = PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL;
	if (ctx == ctx->i915->kernel_context)
		flags |= PIN_HIGH;

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
790
	if (ret)
791
		goto err;
792

793
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
794 795
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
796
		goto unpin_vma;
797 798
	}

799
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
800
	if (ret)
801
		goto unpin_map;
802

803
	intel_lr_context_descriptor_update(ctx, engine);
804

805 806
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
807
		i915_ggtt_offset(ce->ring->vma);
808

C
Chris Wilson 已提交
809
	ce->state->obj->mm.dirty = true;
810

811
	/* Invalidate GuC TLB. */
812 813
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
814
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
815
	}
816

817
	i915_gem_context_get(ctx);
818
	return 0;
819

820
unpin_map:
821 822 823
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
824
err:
825
	ce->pin_count = 0;
826 827 828
	return ret;
}

829 830
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
831
{
832
	struct intel_context *ce = &ctx->engine[engine->id];
833

834
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
835
	GEM_BUG_ON(ce->pin_count == 0);
836

837
	if (--ce->pin_count)
838
		return;
839

840
	intel_ring_unpin(ce->ring);
841

842 843
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
844

845
	i915_gem_context_put(ctx);
846 847
}

848
static int execlists_request_alloc(struct drm_i915_gem_request *request)
849 850 851 852 853
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

854 855
	GEM_BUG_ON(!ce->pin_count);

856 857 858 859 860 861
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

862
	GEM_BUG_ON(!ce->ring);
863 864 865 866 867 868 869 870 871 872
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
873
			goto err;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
901
err:
902 903 904
	return ret;
}

905
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
906 907
{
	int ret, i;
908
	struct intel_ring *ring = req->ring;
909
	struct i915_workarounds *w = &req->i915->workarounds;
910

911
	if (w->count == 0)
912 913
		return 0;

914
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
915 916 917
	if (ret)
		return ret;

918
	ret = intel_ring_begin(req, w->count * 2 + 2);
919 920 921
	if (ret)
		return ret;

922
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
923
	for (i = 0; i < w->count; i++) {
924 925
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
926
	}
927
	intel_ring_emit(ring, MI_NOOP);
928

929
	intel_ring_advance(ring);
930

931
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
932 933 934 935 936 937
	if (ret)
		return ret;

	return 0;
}

938
#define wa_ctx_emit(batch, index, cmd)					\
939
	do {								\
940 941
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
942 943
			return -ENOSPC;					\
		}							\
944
		batch[__index] = (cmd);					\
945 946
	} while (0)

V
Ville Syrjälä 已提交
947
#define wa_ctx_emit_reg(batch, index, reg) \
948
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
966
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
967
						uint32_t *batch,
968 969
						uint32_t index)
{
D
Dave Airlie 已提交
970
	struct drm_i915_private *dev_priv = engine->i915;
971 972
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

973
	/*
974
	 * WaDisableLSQCROPERFforOCL:kbl
975 976 977 978
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
979
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
980 981
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

982
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
983
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
984
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
985
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
986 987 988
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
989
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
990 991 992 993 994 995 996 997 998 999
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1000
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1001
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1002
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1003
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1004
	wa_ctx_emit(batch, index, 0);
1005 1006 1007 1008

	return index;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1028 1029 1030 1031 1032 1033
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1034
 *
1035 1036
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1037
 *
1038 1039 1040 1041
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1042
 */
1043
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1044
				    struct i915_wa_ctx_bb *wa_ctx,
1045
				    uint32_t *batch,
1046 1047
				    uint32_t *offset)
{
1048
	uint32_t scratch_addr;
1049 1050
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1051
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1052
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1053

1054
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1055
	if (IS_BROADWELL(engine->i915)) {
1056
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1057 1058 1059
		if (rc < 0)
			return rc;
		index = rc;
1060 1061
	}

1062 1063
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1064
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1075

1076 1077
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1078
		wa_ctx_emit(batch, index, MI_NOOP);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1089 1090 1091
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1092
 *
1093
 *  The number of DWORDS written are returned using this field.
1094 1095 1096 1097
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1098
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1099
			       struct i915_wa_ctx_bb *wa_ctx,
1100
			       uint32_t *batch,
1101 1102 1103 1104
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1105
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1106
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1107

1108
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1109 1110 1111 1112

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1113
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1114
				    struct i915_wa_ctx_bb *wa_ctx,
1115
				    uint32_t *batch,
1116 1117
				    uint32_t *offset)
{
1118
	int ret;
D
Dave Airlie 已提交
1119
	struct drm_i915_private *dev_priv = engine->i915;
1120 1121
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1122 1123
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1124
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1125

1126
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1127
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1128 1129 1130 1131
	if (ret < 0)
		return ret;
	index = ret;

1132 1133 1134 1135 1136 1137 1138
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1139 1140
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1141
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1142
		u32 scratch_addr =
1143
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1180 1181 1182 1183 1184 1185 1186
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1187
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1188
			       struct i915_wa_ctx_bb *wa_ctx,
1189
			       uint32_t *batch,
1190 1191 1192 1193
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1194 1195
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1196
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1197
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1198 1199 1200 1201 1202
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1203
	/* WaClearTdlStateAckDirtyBits:bxt */
1204
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1222 1223
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1224 1225
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1226 1227 1228 1229 1230
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1231
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1232
{
1233 1234 1235
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1236

1237
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1238 1239
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1240

1241 1242 1243 1244
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1245 1246
	}

1247 1248 1249 1250 1251
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1252
	return 0;
1253 1254 1255 1256

err:
	i915_gem_object_put(obj);
	return err;
1257 1258
}

1259
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1260
{
1261
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1262 1263
}

1264
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1265
{
1266
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1267 1268 1269
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1270
	int ret;
1271

1272
	WARN_ON(engine->id != RCS);
1273

1274
	/* update this when WA for higher Gen are added */
1275
	if (INTEL_GEN(engine->i915) > 9) {
1276
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1277
			  INTEL_GEN(engine->i915));
1278
		return 0;
1279
	}
1280

1281
	/* some WA perform writes to scratch page, ensure it is valid */
1282
	if (!engine->scratch) {
1283
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1284 1285 1286
		return -EINVAL;
	}

1287
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1288 1289 1290 1291 1292
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1293
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1294 1295 1296
	batch = kmap_atomic(page);
	offset = 0;

1297
	if (IS_GEN8(engine->i915)) {
1298
		ret = gen8_init_indirectctx_bb(engine,
1299 1300 1301 1302 1303 1304
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1305
		ret = gen8_init_perctx_bb(engine,
1306 1307 1308 1309 1310
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1311
	} else if (IS_GEN9(engine->i915)) {
1312
		ret = gen9_init_indirectctx_bb(engine,
1313 1314 1315 1316 1317 1318
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1319
		ret = gen9_init_perctx_bb(engine,
1320 1321 1322 1323 1324
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1325 1326 1327 1328 1329
	}

out:
	kunmap_atomic(batch);
	if (ret)
1330
		lrc_destroy_wa_ctx_obj(engine);
1331 1332 1333 1334

	return ret;
}

1335 1336
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1337
	struct drm_i915_private *dev_priv = engine->i915;
1338 1339

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1340
		   engine->status_page.ggtt_offset);
1341 1342 1343
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1344
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1345
{
1346
	struct drm_i915_private *dev_priv = engine->i915;
1347 1348 1349 1350 1351
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1352

1353
	lrc_init_hws(engine);
1354

1355
	intel_engine_reset_breadcrumbs(engine);
1356

1357
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1358

1359
	I915_WRITE(RING_MODE_GEN7(engine),
1360 1361
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1362

1363
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1364

1365
	intel_engine_init_hangcheck(engine);
1366

1367 1368 1369 1370
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1371
		execlists_submit_ports(engine);
1372
	}
1373 1374

	return 0;
1375 1376
}

1377
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1378
{
1379
	struct drm_i915_private *dev_priv = engine->i915;
1380 1381
	int ret;

1382
	ret = gen8_init_common_ring(engine);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1396
	return init_workarounds_ring(engine);
1397 1398
}

1399
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1400 1401 1402
{
	int ret;

1403
	ret = gen8_init_common_ring(engine);
1404 1405 1406
	if (ret)
		return ret;

1407
	return init_workarounds_ring(engine);
1408 1409
}

1410 1411 1412 1413 1414 1415 1416
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1427
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1428 1429
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1430
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1448 1449 1450

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1451 1452
}

1453 1454 1455
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1456
	struct intel_ring *ring = req->ring;
1457
	struct intel_engine_cs *engine = req->engine;
1458 1459 1460
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1461
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1462 1463 1464
	if (ret)
		return ret;

1465
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1466 1467 1468
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1469 1470 1471 1472
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1473 1474
	}

1475 1476
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1477 1478 1479 1480

	return 0;
}

1481
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1482 1483
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1484
{
1485
	struct intel_ring *ring = req->ring;
1486
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1487 1488
	int ret;

1489 1490 1491 1492
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1493 1494
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1495
	if (req->ctx->ppgtt &&
1496
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1497
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1498
		    !intel_vgpu_active(req->i915)) {
1499 1500 1501 1502
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1503

1504
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1505 1506
	}

1507
	ret = intel_ring_begin(req, 4);
1508 1509 1510 1511
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1512 1513 1514 1515 1516 1517 1518 1519
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1520 1521 1522 1523

	return 0;
}

1524
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1525
{
1526
	struct drm_i915_private *dev_priv = engine->i915;
1527 1528 1529
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1530 1531
}

1532
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1533
{
1534
	struct drm_i915_private *dev_priv = engine->i915;
1535
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1536 1537
}

1538
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1539
{
1540 1541
	struct intel_ring *ring = request->ring;
	u32 cmd;
1542 1543
	int ret;

1544
	ret = intel_ring_begin(request, 4);
1545 1546 1547 1548 1549
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1550 1551 1552 1553 1554 1555 1556
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1557
	if (mode & EMIT_INVALIDATE) {
1558
		cmd |= MI_INVALIDATE_TLB;
1559
		if (request->engine->id == VCS)
1560
			cmd |= MI_INVALIDATE_BSD;
1561 1562
	}

1563 1564 1565 1566 1567 1568 1569
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1570 1571 1572 1573

	return 0;
}

1574
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1575
				  u32 mode)
1576
{
1577
	struct intel_ring *ring = request->ring;
1578
	struct intel_engine_cs *engine = request->engine;
1579 1580
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1581
	bool vf_flush_wa = false, dc_flush_wa = false;
1582 1583
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1584
	int len;
1585 1586 1587

	flags |= PIPE_CONTROL_CS_STALL;

1588
	if (mode & EMIT_FLUSH) {
1589 1590
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1591
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1592
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1593 1594
	}

1595
	if (mode & EMIT_INVALIDATE) {
1596 1597 1598 1599 1600 1601 1602 1603 1604
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1605 1606 1607 1608
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1609
		if (IS_GEN9(request->i915))
1610
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1611 1612 1613 1614

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1615
	}
1616

M
Mika Kuoppala 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1626 1627 1628
	if (ret)
		return ret;

1629
	if (vf_flush_wa) {
1630 1631 1632 1633 1634 1635
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1636 1637
	}

M
Mika Kuoppala 已提交
1638
	if (dc_flush_wa) {
1639 1640 1641 1642 1643 1644
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1645 1646
	}

1647 1648 1649 1650 1651 1652
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1653 1654

	if (dc_flush_wa) {
1655 1656 1657 1658 1659 1660
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1661 1662
	}

1663
	intel_ring_advance(ring);
1664 1665 1666 1667

	return 0;
}

1668
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1680
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1681 1682
}

1683 1684 1685 1686 1687
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1688
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1689
{
C
Chris Wilson 已提交
1690 1691 1692 1693
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1694

C
Chris Wilson 已提交
1695 1696 1697
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1698 1699
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1700

C
Chris Wilson 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1710
}
1711

1712 1713
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1714 1715
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1716
{
1717 1718 1719
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1720 1721 1722 1723
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1724 1725 1726 1727 1728 1729 1730
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1731
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1732 1733 1734 1735 1736 1737
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1738 1739
}

1740 1741
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1742
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1743 1744 1745
{
	int ret;

1746
	ret = intel_logical_ring_workarounds_emit(req);
1747 1748 1749
	if (ret)
		return ret;

1750 1751 1752 1753 1754 1755 1756 1757
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1758
	return i915_gem_render_state_emit(req);
1759 1760
}

1761 1762
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1763
 * @engine: Engine Command Streamer.
1764
 */
1765
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1766
{
1767
	struct drm_i915_private *dev_priv;
1768

1769 1770 1771 1772 1773 1774 1775
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1776
	dev_priv = engine->i915;
1777

1778 1779
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1780
	}
1781

1782 1783
	if (engine->cleanup)
		engine->cleanup(engine);
1784

1785 1786 1787
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1788
	}
1789 1790

	intel_engine_cleanup_common(engine);
1791

1792
	lrc_destroy_wa_ctx_obj(engine);
1793
	engine->i915 = NULL;
1794 1795
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1796 1797
}

1798 1799 1800
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1801
	enum intel_engine_id id;
1802

1803
	for_each_engine(engine, dev_priv, id) {
1804
		engine->submit_request = execlists_submit_request;
1805 1806
		engine->schedule = execlists_schedule;
	}
1807 1808
}

1809
static void
1810
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1811 1812
{
	/* Default vfuncs which can be overriden by each engine. */
1813
	engine->init_hw = gen8_init_common_ring;
1814
	engine->reset_hw = reset_common_ring;
1815 1816 1817 1818

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1819 1820
	engine->request_alloc = execlists_request_alloc;

1821
	engine->emit_flush = gen8_emit_flush;
1822
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1823
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1824
	engine->submit_request = execlists_submit_request;
1825
	engine->schedule = execlists_schedule;
1826

1827 1828
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1829
	engine->emit_bb_start = gen8_emit_bb_start;
1830
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1831
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1832 1833
}

1834
static inline void
1835
logical_ring_default_irqs(struct intel_engine_cs *engine)
1836
{
1837
	unsigned shift = engine->irq_shift;
1838 1839
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1840 1841
}

1842
static int
1843
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1844
{
1845
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1846
	void *hws;
1847 1848

	/* The HWSP is part of the default context object in LRC mode. */
1849
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1850 1851
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1852 1853

	engine->status_page.page_addr = hws + hws_offset;
1854
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1855
	engine->status_page.vma = vma;
1856 1857

	return 0;
1858 1859
}

1860 1861 1862 1863 1864 1865
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1866 1867
	intel_engine_setup_common(engine);

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1893 1894 1895 1896 1897 1898
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1899
	ret = intel_engine_init_common(engine);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1917
int logical_render_ring_init(struct intel_engine_cs *engine)
1918 1919 1920 1921
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1922 1923
	logical_ring_setup(engine);

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1934
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1935
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1936

1937
	ret = intel_engine_create_scratch(engine, 4096);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1952
	return logical_ring_init(engine);
1953 1954
}

1955
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1956 1957 1958 1959
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1960 1961
}

1962
static u32
1963
make_rpcs(struct drm_i915_private *dev_priv)
1964 1965 1966 1967 1968 1969 1970
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1971
	if (INTEL_GEN(dev_priv) < 9)
1972 1973 1974 1975 1976 1977 1978 1979
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1980
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1981
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1982
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1983 1984 1985 1986
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1987
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1988
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1989
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1990 1991 1992 1993
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1994 1995
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1996
			GEN8_RPCS_EU_MIN_SHIFT;
1997
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1998 1999 2000 2001 2002 2003 2004
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2005
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2006 2007 2008
{
	u32 indirect_ctx_offset;

2009
	switch (INTEL_GEN(engine->i915)) {
2010
	default:
2011
		MISSING_CASE(INTEL_GEN(engine->i915));
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2026 2027 2028 2029
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2030
{
2031 2032
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2033 2034 2035 2036 2037 2038

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2039
	reg_state[CTX_LRI_HEADER_0] =
2040 2041 2042
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2043 2044
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2045
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2046
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2047 2048 2049 2050 2051 2052 2053 2054
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2055
		       RING_CTL_SIZE(ring->size) | RING_VALID);
2056 2057 2058 2059 2060 2061
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2062
		       RING_BB_PPGTT);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2076
		if (engine->wa_ctx.vma) {
2077
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2078
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2079 2080 2081 2082 2083 2084

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2085
				intel_lr_indirect_ctx_offset(engine) << 6;
2086 2087 2088 2089 2090

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2091
	}
2092
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2093 2094
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2095
	/* PDP values well be assigned later if needed */
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2125
		execlists_update_context_pdps(ppgtt, reg_state);
2126 2127
	}

2128
	if (engine->id == RCS) {
2129
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2130
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2131
			       make_rpcs(dev_priv));
2132
	}
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2156
	ctx_obj->mm.dirty = true;
2157 2158 2159 2160 2161 2162

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2163

2164
	i915_gem_object_unpin_map(ctx_obj);
2165 2166 2167 2168

	return 0;
}

2169 2170
/**
 * intel_lr_context_size() - return the size of the context for an engine
2171
 * @engine: which engine to find the context size for
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2183
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2184 2185 2186
{
	int ret = 0;

2187
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2188

2189
	switch (engine->id) {
2190
	case RCS:
2191
		if (INTEL_GEN(engine->i915) >= 9)
2192 2193 2194
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2205 2206
}

2207
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2208
					    struct intel_engine_cs *engine)
2209
{
2210
	struct drm_i915_gem_object *ctx_obj;
2211
	struct intel_context *ce = &ctx->engine[engine->id];
2212
	struct i915_vma *vma;
2213
	uint32_t context_size;
2214
	struct intel_ring *ring;
2215 2216
	int ret;

2217
	WARN_ON(ce->state);
2218

2219
	context_size = round_up(intel_lr_context_size(engine), 4096);
2220

2221 2222 2223
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2224
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2225
	if (IS_ERR(ctx_obj)) {
2226
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2227
		return PTR_ERR(ctx_obj);
2228 2229
	}

2230 2231 2232 2233 2234 2235
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2236
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2237 2238
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2239
		goto error_deref_obj;
2240 2241
	}

2242
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2243 2244
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2245
		goto error_ring_free;
2246 2247
	}

2248
	ce->ring = ring;
2249
	ce->state = vma;
2250
	ce->initialised = engine->init_context == NULL;
2251 2252

	return 0;
2253

2254
error_ring_free:
2255
	intel_ring_free(ring);
2256
error_deref_obj:
2257
	i915_gem_object_put(ctx_obj);
2258
	return ret;
2259
}
2260

2261
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2262
{
2263
	struct intel_engine_cs *engine;
2264
	struct i915_gem_context *ctx;
2265
	enum intel_engine_id id;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2278
		for_each_engine(engine, dev_priv, id) {
2279 2280
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2281

2282 2283
			if (!ce->state)
				continue;
2284

2285 2286 2287 2288
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2289

2290 2291 2292
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2293

C
Chris Wilson 已提交
2294
			ce->state->obj->mm.dirty = true;
2295
			i915_gem_object_unpin_map(ce->state->obj);
2296

2297 2298 2299 2300
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2301 2302
	}
}