verifier.c 175.1 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
Y
Yonghong Song 已提交
25
#include <linux/perf_event.h>
A
Alexei Starovoitov 已提交
26

27 28
#include "disasm.h"

29 30 31 32 33 34 35 36 37
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
38 39 40 41 42 43 44 45 46 47 48 49
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
50
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
78
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
79
 * means the register has some value, but it's not a valid pointer.
80
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
81 82
 *
 * When verifier sees load or store instructions the type of base register
83
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

145
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
146
struct bpf_verifier_stack_elem {
147 148 149 150
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
151
	struct bpf_verifier_state st;
152 153
	int insn_idx;
	int prev_insn_idx;
154
	struct bpf_verifier_stack_elem *next;
155 156
};

157
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 159
#define BPF_COMPLEXITY_LIMIT_STACK	1024

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#define BPF_MAP_PTR_UNPRIV	1UL
#define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
					  POISON_POINTER_DELTA))
#define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))

static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
{
	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
}

static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
{
	return aux->map_state & BPF_MAP_PTR_UNPRIV;
}

static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
			      const struct bpf_map *map, bool unpriv)
{
	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
	unpriv |= bpf_map_ptr_unpriv(aux);
	aux->map_state = (unsigned long)map |
			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
}
183

184 185
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
186
	bool raw_mode;
187
	bool pkt_access;
188 189
	int regno;
	int access_size;
190 191
	s64 msize_smax_value;
	u64 msize_umax_value;
192 193
};

194 195
static DEFINE_MUTEX(bpf_verifier_lock);

196 197
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
198
{
199
	unsigned int n;
200

201 202 203 204 205 206 207 208 209 210 211 212
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
213
}
214 215 216 217

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
218
 */
219 220 221 222 223
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

224 225 226
	if (!bpf_verifier_log_needed(&env->log))
		return;

227
	va_start(args, fmt);
228
	bpf_verifier_vlog(&env->log, fmt, args);
229 230 231 232 233 234
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
235
	struct bpf_verifier_env *env = private_data;
236 237
	va_list args;

238 239 240
	if (!bpf_verifier_log_needed(&env->log))
		return;

241
	va_start(args, fmt);
242
	bpf_verifier_vlog(&env->log, fmt, args);
243 244
	va_end(args);
}
245

246 247 248 249 250 251
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

252 253 254
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
255
	[SCALAR_VALUE]		= "inv",
256 257 258 259 260
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
261
	[PTR_TO_PACKET]		= "pkt",
262
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
263
	[PTR_TO_PACKET_END]	= "pkt_end",
264 265
};

266 267 268 269 270 271 272 273 274 275 276
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

277 278 279 280 281 282 283 284
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

285
static void print_verifier_state(struct bpf_verifier_env *env,
286
				 const struct bpf_func_state *state)
287
{
288
	const struct bpf_reg_state *reg;
289 290 291
	enum bpf_reg_type t;
	int i;

292 293
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
294
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
295 296
		reg = &state->regs[i];
		t = reg->type;
297 298
		if (t == NOT_INIT)
			continue;
299 300 301
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
302 303 304
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
305
			verbose(env, "%lld", reg->var_off.value + reg->off);
306 307
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
308
		} else {
309
			verbose(env, "(id=%d", reg->id);
310
			if (t != SCALAR_VALUE)
311
				verbose(env, ",off=%d", reg->off);
312
			if (type_is_pkt_pointer(t))
313
				verbose(env, ",r=%d", reg->range);
314 315 316
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
317
				verbose(env, ",ks=%d,vs=%d",
318 319
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
320 321 322 323 324
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
325
				verbose(env, ",imm=%llx", reg->var_off.value);
326 327 328
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
329
					verbose(env, ",smin_value=%lld",
330 331 332
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
333
					verbose(env, ",smax_value=%lld",
334 335
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
336
					verbose(env, ",umin_value=%llu",
337 338
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
339
					verbose(env, ",umax_value=%llu",
340 341 342
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
343

344
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
345
					verbose(env, ",var_off=%s", tn_buf);
346
				}
347
			}
348
			verbose(env, ")");
349
		}
350
	}
351
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
352 353 354 355 356
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
357
				reg_type_str[state->stack[i].spilled_ptr.type]);
358
		}
359 360
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
361
	}
362
	verbose(env, "\n");
363 364
}

365 366
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
367
{
368 369 370 371 372 373 374 375 376 377 378 379 380 381
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
382
 * the program calls into realloc_func_state() to grow the stack size.
383 384 385 386
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
387 388
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

421 422
static void free_func_state(struct bpf_func_state *state)
{
423 424
	if (!state)
		return;
425 426 427 428
	kfree(state->stack);
	kfree(state);
}

429 430
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
431
{
432 433 434 435 436 437
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
438 439
	if (free_self)
		kfree(state);
440 441 442 443 444
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
445 446
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
447 448 449
{
	int err;

450
	err = realloc_func_state(dst, src->allocated_stack, false);
451 452
	if (err)
		return err;
453
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
454 455 456
	return copy_stack_state(dst, src);
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

485 486 487 488 489 490
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
491 492

	if (env->head == NULL)
493
		return -ENOENT;
494

495 496 497 498 499 500 501
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
502
	if (prev_insn_idx)
503 504
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
505
	free_verifier_state(&head->st, false);
506
	kfree(head);
507 508
	env->head = elem;
	env->stack_size--;
509
	return 0;
510 511
}

512 513
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
514
{
515
	struct bpf_verifier_state *cur = env->cur_state;
516
	struct bpf_verifier_stack_elem *elem;
517
	int err;
518

519
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
520 521 522 523 524 525 526 527
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
528 529 530
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
531
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
532
		verbose(env, "BPF program is too complex\n");
533 534 535 536
		goto err;
	}
	return &elem->st;
err:
537 538
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
539
	/* pop all elements and return */
540
	while (!pop_stack(env, NULL, NULL));
541 542 543 544 545 546 547 548
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

549 550
static void __mark_reg_not_init(struct bpf_reg_state *reg);

551 552 553 554 555 556 557 558 559 560 561 562 563
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

564 565 566 567
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
568
{
569
	__mark_reg_known(reg, 0);
570
}
571

572 573 574 575 576 577 578
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

579 580
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
581 582
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
583
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
584 585 586 587 588 589 590 591
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

683 684 685 686 687 688 689
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
690
	reg->frameno = 0;
691
	__mark_reg_unbounded(reg);
692 693
}

694 695
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
696 697
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
698
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
699 700
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
701 702 703 704 705 706 707 708 709 710 711 712
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

713 714
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
715 716
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
717
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
718 719
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
720 721 722 723
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
724 725
}

726
static void init_reg_state(struct bpf_verifier_env *env,
727
			   struct bpf_func_state *state)
728
{
729
	struct bpf_reg_state *regs = state->regs;
730 731
	int i;

732
	for (i = 0; i < MAX_BPF_REG; i++) {
733
		mark_reg_not_init(env, regs, i);
734 735
		regs[i].live = REG_LIVE_NONE;
	}
736 737

	/* frame pointer */
738
	regs[BPF_REG_FP].type = PTR_TO_STACK;
739
	mark_reg_known_zero(env, regs, BPF_REG_FP);
740
	regs[BPF_REG_FP].frameno = state->frameno;
741 742 743

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
744
	mark_reg_known_zero(env, regs, BPF_REG_1);
745 746
}

747 748 749 750 751 752 753 754 755 756 757
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

758 759 760 761 762 763
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

764 765
static int cmp_subprogs(const void *a, const void *b)
{
766 767
	return ((struct bpf_subprog_info *)a)->start -
	       ((struct bpf_subprog_info *)b)->start;
768 769 770 771
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
772
	struct bpf_subprog_info *p;
773

774 775
	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
		    sizeof(env->subprog_info[0]), cmp_subprogs);
776 777
	if (!p)
		return -ENOENT;
778
	return p - env->subprog_info;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
J
Jiong Wang 已提交
794
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
795 796 797
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
798 799 800
	env->subprog_info[env->subprog_cnt++].start = off;
	sort(env->subprog_info, env->subprog_cnt,
	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
801 802 803 804 805 806
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
807
	struct bpf_subprog_info *subprog = env->subprog_info;
808 809 810
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

J
Jiong Wang 已提交
811 812 813 814 815
	/* Add entry function. */
	ret = add_subprog(env, 0);
	if (ret < 0)
		return ret;

816 817 818 819 820 821 822 823 824 825 826
	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
827
			verbose(env, "function calls in offloaded programs are not supported yet\n");
828 829 830 831 832 833 834
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

J
Jiong Wang 已提交
835 836 837 838 839
	/* Add a fake 'exit' subprog which could simplify subprog iteration
	 * logic. 'subprog_cnt' should not be increased.
	 */
	subprog[env->subprog_cnt].start = insn_cnt;

840 841
	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
842
			verbose(env, "func#%d @%d\n", i, subprog[i].start);
843 844

	/* now check that all jumps are within the same subprog */
J
Jiong Wang 已提交
845 846
	subprog_start = subprog[cur_subprog].start;
	subprog_end = subprog[cur_subprog + 1].start;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
J
Jiong Wang 已提交
871 872
			cur_subprog++;
			if (cur_subprog < env->subprog_cnt)
873
				subprog_end = subprog[cur_subprog + 1].start;
874 875 876 877 878
		}
	}
	return 0;
}

879
static
880 881 882 883
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
884
{
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
924
	return NULL;
925 926 927 928 929 930 931 932
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
933

A
Alexei Starovoitov 已提交
934 935
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
936
		return 0;
A
Alexei Starovoitov 已提交
937

938 939
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
940
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
941
			break;
942 943 944
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
945
		/* ... then we depend on parent's value */
946
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
947 948
		state = parent;
		parent = state->parent;
949
		writes = true;
950
	}
951
	return 0;
952 953 954
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
955 956
			 enum reg_arg_type t)
{
957 958 959
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
960

961
	if (regno >= MAX_BPF_REG) {
962
		verbose(env, "R%d is invalid\n", regno);
963 964 965 966 967 968
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
969
			verbose(env, "R%d !read_ok\n", regno);
970 971
			return -EACCES;
		}
972
		return mark_reg_read(env, vstate, vstate->parent, regno);
973 974 975
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
976
			verbose(env, "frame pointer is read only\n");
977 978
			return -EACCES;
		}
979
		regs[regno].live |= REG_LIVE_WRITTEN;
980
		if (t == DST_OP)
981
			mark_reg_unknown(env, regs, regno);
982 983 984 985
	}
	return 0;
}

986 987 988 989 990 991 992
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
993
	case PTR_TO_PACKET:
994
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
995
	case PTR_TO_PACKET_END:
996 997 998 999 1000 1001 1002
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

1003 1004 1005 1006 1007 1008
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

1009 1010 1011
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
1012
static int check_stack_write(struct bpf_verifier_env *env,
1013
			     struct bpf_func_state *state, /* func where register points to */
1014
			     int off, int size, int value_regno, int insn_idx)
1015
{
1016
	struct bpf_func_state *cur; /* state of the current function */
1017
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1018
	enum bpf_reg_type type;
1019

1020 1021
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
1022 1023
	if (err)
		return err;
1024 1025 1026
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
1027 1028 1029 1030 1031 1032
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
1033

1034
	cur = env->cur_state->frame[env->cur_state->curframe];
1035
	if (value_regno >= 0 &&
1036
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1037 1038

		/* register containing pointer is being spilled into stack */
1039
		if (size != BPF_REG_SIZE) {
1040
			verbose(env, "invalid size of register spill\n");
1041 1042 1043
			return -EACCES;
		}

1044 1045 1046 1047 1048
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1049
		/* save register state */
1050
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1051
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		for (i = 0; i < BPF_REG_SIZE; i++) {
			if (state->stack[spi].slot_type[i] == STACK_MISC &&
			    !env->allow_ptr_leaks) {
				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
				int soff = (-spi - 1) * BPF_REG_SIZE;

				/* detected reuse of integer stack slot with a pointer
				 * which means either llvm is reusing stack slot or
				 * an attacker is trying to exploit CVE-2018-3639
				 * (speculative store bypass)
				 * Have to sanitize that slot with preemptive
				 * store of zero.
				 */
				if (*poff && *poff != soff) {
					/* disallow programs where single insn stores
					 * into two different stack slots, since verifier
					 * cannot sanitize them
					 */
					verbose(env,
						"insn %d cannot access two stack slots fp%d and fp%d",
						insn_idx, *poff, soff);
					return -EINVAL;
				}
				*poff = soff;
			}
1078
			state->stack[spi].slot_type[i] = STACK_SPILL;
1079
		}
1080
	} else {
1081 1082
		u8 type = STACK_MISC;

1083
		/* regular write of data into stack */
1084
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1102
		for (i = 0; i < size; i++)
1103
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1104
				type;
1105 1106 1107 1108
	}
	return 0;
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1141
{
1142
	bool writes = parent == state->parent; /* Observe write marks */
1143 1144

	while (parent) {
1145 1146 1147 1148 1149 1150 1151 1152
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1153
		/* if read wasn't screened by an earlier write ... */
1154
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1155 1156
			break;
		/* ... then we depend on parent's value */
1157
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1158 1159
		state = parent;
		parent = state->parent;
1160
		writes = true;
1161 1162 1163
	}
}

1164
static int check_stack_read(struct bpf_verifier_env *env,
1165 1166
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1167
{
1168 1169
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1170 1171
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1172

1173
	if (reg_state->allocated_stack <= slot) {
1174 1175 1176 1177
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1178
	stype = reg_state->stack[spi].slot_type;
1179

1180
	if (stype[0] == STACK_SPILL) {
1181
		if (size != BPF_REG_SIZE) {
1182
			verbose(env, "invalid size of register spill\n");
1183 1184
			return -EACCES;
		}
1185
		for (i = 1; i < BPF_REG_SIZE; i++) {
1186
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1187
				verbose(env, "corrupted spill memory\n");
1188 1189 1190 1191
				return -EACCES;
			}
		}

1192
		if (value_regno >= 0) {
1193
			/* restore register state from stack */
1194
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1195 1196 1197 1198 1199
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1200
		}
1201 1202
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1203 1204
		return 0;
	} else {
1205 1206
		int zeros = 0;

1207
		for (i = 0; i < size; i++) {
1208 1209 1210 1211 1212
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1213
			}
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1231 1232 1233 1234 1235 1236
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1237
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1238
			      int size, bool zero_size_allowed)
1239
{
1240 1241
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1242

1243 1244
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1245
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1246 1247 1248 1249 1250 1251
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1252 1253
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1254
			    int off, int size, bool zero_size_allowed)
1255
{
1256 1257
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1258 1259 1260
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1261 1262 1263
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1264
	 */
1265 1266
	if (env->log.level)
		print_verifier_state(env, state);
1267 1268 1269 1270 1271 1272
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1273
	if (reg->smin_value < 0) {
1274
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1275 1276 1277
			regno);
		return -EACCES;
	}
1278 1279
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1280
	if (err) {
1281 1282
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1283 1284 1285
		return err;
	}

1286 1287 1288
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1289
	 */
1290
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1291
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1292 1293 1294
			regno);
		return -EACCES;
	}
1295 1296
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1297
	if (err)
1298 1299
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1300
	return err;
1301 1302
}

A
Alexei Starovoitov 已提交
1303 1304
#define MAX_PACKET_OFF 0xffff

1305
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1306 1307
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1308
{
1309
	switch (env->prog->type) {
1310 1311
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
1312
	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1313 1314 1315
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1316
		/* fallthrough */
1317 1318
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1319
	case BPF_PROG_TYPE_XDP:
1320
	case BPF_PROG_TYPE_LWT_XMIT:
1321
	case BPF_PROG_TYPE_SK_SKB:
1322
	case BPF_PROG_TYPE_SK_MSG:
1323 1324 1325 1326
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1327 1328 1329 1330 1331 1332
		return true;
	default:
		return false;
	}
}

1333
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1334
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1335
{
1336
	struct bpf_reg_state *regs = cur_regs(env);
1337
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1338

1339 1340
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1341
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1342
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1343 1344 1345 1346 1347
		return -EACCES;
	}
	return 0;
}

1348
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1349
			       int size, bool zero_size_allowed)
1350
{
1351
	struct bpf_reg_state *regs = cur_regs(env);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1363
	if (reg->smin_value < 0) {
1364
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1365 1366 1367
			regno);
		return -EACCES;
	}
1368
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1369
	if (err) {
1370
		verbose(env, "R%d offset is outside of the packet\n", regno);
1371 1372 1373 1374 1375 1376
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1377
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1378
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1379
{
1380 1381 1382
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1383

1384
	if (env->ops->is_valid_access &&
1385
	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1386 1387 1388 1389 1390 1391
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1392
		 */
1393
		*reg_type = info.reg_type;
1394

1395
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1396 1397 1398
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1399
		return 0;
1400
	}
1401

1402
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1403 1404 1405
	return -EACCES;
}

1406 1407
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1408
{
1409
	if (allow_ptr_leaks)
1410 1411
		return false;

1412
	return reg->type != SCALAR_VALUE;
1413 1414
}

1415 1416
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1417
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1418 1419
}

1420 1421 1422 1423 1424 1425 1426
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1427 1428 1429 1430 1431 1432 1433
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1434 1435
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1436
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1437
{
1438
	struct tnum reg_off;
1439
	int ip_align;
1440 1441 1442 1443 1444

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1445 1446 1447 1448 1449 1450 1451
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1452
	 */
1453
	ip_align = 2;
1454 1455 1456 1457 1458 1459

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1460 1461
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1462
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1463 1464
		return -EACCES;
	}
1465

A
Alexei Starovoitov 已提交
1466 1467 1468
	return 0;
}

1469 1470
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1471 1472
				       const char *pointer_desc,
				       int off, int size, bool strict)
1473
{
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1485
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1486
			pointer_desc, tn_buf, reg->off, off, size);
1487 1488 1489
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1490 1491 1492
	return 0;
}

1493
static int check_ptr_alignment(struct bpf_verifier_env *env,
1494 1495
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1496
{
1497
	bool strict = env->strict_alignment || strict_alignment_once;
1498
	const char *pointer_desc = "";
1499

1500 1501
	switch (reg->type) {
	case PTR_TO_PACKET:
1502 1503 1504 1505
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1506
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1507 1508 1509 1510 1511 1512 1513 1514
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1515 1516 1517 1518 1519
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1520
		break;
1521
	default:
1522
		break;
1523
	}
1524 1525
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1526 1527
}

1528 1529 1530 1531
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1532
	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1533 1534 1535 1536 1537

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
1538
	env->subprog_info[func->subprogno].stack_depth = -off;
1539 1540
	return 0;
}
1541

1542 1543 1544 1545 1546 1547 1548 1549
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
1550 1551
	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
	struct bpf_subprog_info *subprog = env->subprog_info;
1552 1553 1554
	struct bpf_insn *insn = env->prog->insnsi;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1555

1556 1557 1558 1559
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
1560
	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1561
	if (depth > MAX_BPF_STACK) {
1562
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1563
			frame + 1, depth);
1564 1565
		return -EACCES;
	}
1566
continue_func:
J
Jiong Wang 已提交
1567
	subprog_end = subprog[idx + 1].start;
1568 1569 1570 1571 1572 1573 1574
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
1575
		ret_prog[frame] = idx;
1576 1577 1578

		/* find the callee */
		i = i + insn[i].imm + 1;
1579 1580
		idx = find_subprog(env, i);
		if (idx < 0) {
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
1597
	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1598 1599
	frame--;
	i = ret_insn[frame];
1600
	idx = ret_prog[frame];
1601
	goto continue_func;
1602 1603
}

1604
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
1616
	return env->subprog_info[subprog].stack_depth;
1617
}
1618
#endif
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static int check_ctx_reg(struct bpf_verifier_env *env,
			 const struct bpf_reg_state *reg, int regno)
{
	/* Access to ctx or passing it to a helper is only allowed in
	 * its original, unmodified form.
	 */

	if (reg->off) {
		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
			regno, reg->off);
		return -EACCES;
	}

	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
		return -EACCES;
	}

	return 0;
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1667 1668 1669 1670 1671 1672
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1673 1674 1675
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1676
{
1677 1678
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1679
	struct bpf_func_state *state;
1680 1681 1682 1683 1684 1685
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1686
	/* alignment checks will add in reg->off themselves */
1687
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1688 1689
	if (err)
		return err;
1690

1691 1692 1693 1694
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1695 1696
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1697
			verbose(env, "R%d leaks addr into map\n", value_regno);
1698 1699
			return -EACCES;
		}
1700

1701
		err = check_map_access(env, regno, off, size, false);
1702
		if (!err && t == BPF_READ && value_regno >= 0)
1703
			mark_reg_unknown(env, regs, value_regno);
1704

A
Alexei Starovoitov 已提交
1705
	} else if (reg->type == PTR_TO_CTX) {
1706
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1707

1708 1709
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1710
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1711 1712
			return -EACCES;
		}
1713

1714 1715 1716 1717
		err = check_ctx_reg(env, reg, regno);
		if (err < 0)
			return err;

1718
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1719
		if (!err && t == BPF_READ && value_regno >= 0) {
1720
			/* ctx access returns either a scalar, or a
1721 1722
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1723 1724
			 */
			if (reg_type == SCALAR_VALUE)
1725
				mark_reg_unknown(env, regs, value_regno);
1726
			else
1727
				mark_reg_known_zero(env, regs,
1728
						    value_regno);
1729 1730 1731 1732
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1733
		}
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1744
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1745 1746 1747 1748
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1749
		if (off >= 0 || off < -MAX_BPF_STACK) {
1750 1751
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1752 1753
			return -EACCES;
		}
1754

1755 1756 1757 1758
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1759

1760
		if (t == BPF_WRITE)
1761
			err = check_stack_write(env, state, off, size,
1762
						value_regno, insn_idx);
1763
		else
1764 1765
			err = check_stack_read(env, state, off, size,
					       value_regno);
1766
	} else if (reg_is_pkt_pointer(reg)) {
1767
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1768
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1769 1770
			return -EACCES;
		}
1771 1772
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1773 1774
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1775 1776
			return -EACCES;
		}
1777
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1778
		if (!err && t == BPF_READ && value_regno >= 0)
1779
			mark_reg_unknown(env, regs, value_regno);
1780
	} else {
1781 1782
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1783 1784
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1785

1786
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1787
	    regs[value_regno].type == SCALAR_VALUE) {
1788
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1789
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1790
	}
1791 1792 1793
	return err;
}

1794
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1795 1796 1797 1798 1799
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1800
		verbose(env, "BPF_XADD uses reserved fields\n");
1801 1802 1803 1804
		return -EINVAL;
	}

	/* check src1 operand */
1805
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1806 1807 1808 1809
	if (err)
		return err;

	/* check src2 operand */
1810
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1811 1812 1813
	if (err)
		return err;

1814
	if (is_pointer_value(env, insn->src_reg)) {
1815
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1816 1817 1818
		return -EACCES;
	}

1819 1820 1821 1822 1823
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1824 1825 1826
		return -EACCES;
	}

1827
	/* check whether atomic_add can read the memory */
1828
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1829
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1830 1831 1832 1833
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1834
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1835
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1836 1837 1838 1839
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1840 1841 1842
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1843
 */
1844
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1845 1846
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1847
{
1848
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1849
	struct bpf_func_state *state = func(env, reg);
1850
	int off, i, slot, spi;
1851

1852
	if (reg->type != PTR_TO_STACK) {
1853
		/* Allow zero-byte read from NULL, regardless of pointer type */
1854
		if (zero_size_allowed && access_size == 0 &&
1855
		    register_is_null(reg))
1856 1857
			return 0;

1858
		verbose(env, "R%d type=%s expected=%s\n", regno,
1859
			reg_type_str[reg->type],
1860
			reg_type_str[PTR_TO_STACK]);
1861
		return -EACCES;
1862
	}
1863

1864
	/* Only allow fixed-offset stack reads */
1865
	if (!tnum_is_const(reg->var_off)) {
1866 1867
		char tn_buf[48];

1868
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1869
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1870
			regno, tn_buf);
1871
		return -EACCES;
1872
	}
1873
	off = reg->off + reg->var_off.value;
1874
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1875
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1876
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1877 1878 1879 1880
			regno, off, access_size);
		return -EACCES;
	}

1881 1882 1883 1884 1885 1886
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1887
	for (i = 0; i < access_size; i++) {
1888 1889
		u8 *stype;

1890 1891
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1892 1893 1894 1895 1896 1897 1898 1899 1900
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1901
		}
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1912
	}
1913
	return update_stack_depth(env, state, off);
1914 1915
}

1916 1917 1918 1919
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1920
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1921

1922
	switch (reg->type) {
1923
	case PTR_TO_PACKET:
1924
	case PTR_TO_PACKET_META:
1925 1926
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1927
	case PTR_TO_MAP_VALUE:
1928 1929
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1930
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1931 1932 1933 1934 1935
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1949
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1950 1951
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1952
{
1953
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1954
	enum bpf_reg_type expected_type, type = reg->type;
1955 1956
	int err = 0;

1957
	if (arg_type == ARG_DONTCARE)
1958 1959
		return 0;

1960 1961 1962
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1963

1964 1965
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1966 1967
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1968 1969
			return -EACCES;
		}
1970
		return 0;
1971
	}
1972

1973
	if (type_is_pkt_pointer(type) &&
1974
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1975
		verbose(env, "helper access to the packet is not allowed\n");
1976 1977 1978
		return -EACCES;
	}

1979
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1980 1981
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1982
		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1983
		    type != expected_type)
1984
			goto err_type;
1985 1986
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1987 1988
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1989
			goto err_type;
1990 1991
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1992 1993
		if (type != expected_type)
			goto err_type;
1994 1995
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1996 1997
		if (type != expected_type)
			goto err_type;
1998 1999 2000
		err = check_ctx_reg(env, reg, regno);
		if (err < 0)
			return err;
2001
	} else if (arg_type_is_mem_ptr(arg_type)) {
2002 2003
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
2004
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2005 2006
		 * happens during stack boundary checking.
		 */
2007
		if (register_is_null(reg) &&
2008
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2009
			/* final test in check_stack_boundary() */;
2010 2011
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
2012
			 type != expected_type)
2013
			goto err_type;
2014
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2015
	} else {
2016
		verbose(env, "unsupported arg_type %d\n", arg_type);
2017 2018 2019 2020 2021
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2022
		meta->map_ptr = reg->map_ptr;
2023 2024 2025 2026 2027
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
2028
		if (!meta->map_ptr) {
2029 2030 2031 2032 2033
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
2034
			verbose(env, "invalid map_ptr to access map->key\n");
2035 2036
			return -EACCES;
		}
2037 2038 2039
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->key_size, false,
					      NULL);
2040 2041 2042 2043
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
2044
		if (!meta->map_ptr) {
2045
			/* kernel subsystem misconfigured verifier */
2046
			verbose(env, "invalid map_ptr to access map->value\n");
2047 2048
			return -EACCES;
		}
2049 2050 2051
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->value_size, false,
					      NULL);
2052
	} else if (arg_type_is_mem_size(arg_type)) {
2053
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2054

2055 2056 2057 2058 2059 2060
		/* remember the mem_size which may be used later
		 * to refine return values.
		 */
		meta->msize_smax_value = reg->smax_value;
		meta->msize_umax_value = reg->umax_value;

2061 2062
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
2063
		 */
2064
		if (!tnum_is_const(reg->var_off))
2065 2066 2067 2068 2069 2070 2071
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

2072
		if (reg->smin_value < 0) {
2073
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2074 2075 2076
				regno);
			return -EACCES;
		}
2077

2078
		if (reg->umin_value == 0) {
2079 2080 2081
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2082 2083 2084
			if (err)
				return err;
		}
2085

2086
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2087
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2088 2089 2090 2091
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2092
					      reg->umax_value,
2093
					      zero_size_allowed, meta);
2094 2095 2096
	}

	return err;
2097
err_type:
2098
	verbose(env, "R%d type=%s expected=%s\n", regno,
2099 2100
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2101 2102
}

2103 2104
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2105 2106 2107 2108
{
	if (!map)
		return 0;

2109 2110 2111 2112 2113 2114 2115 2116
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2117 2118
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2119 2120 2121 2122 2123 2124
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2125
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2126
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2127
		    func_id != BPF_FUNC_current_task_under_cgroup)
2128 2129
			goto error;
		break;
2130 2131 2132 2133 2134
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2135
		if (func_id != BPF_FUNC_redirect_map)
2136 2137
			goto error;
		break;
2138 2139 2140
	/* Restrict bpf side of cpumap and xskmap, open when use-cases
	 * appear.
	 */
2141
	case BPF_MAP_TYPE_CPUMAP:
2142
	case BPF_MAP_TYPE_XSKMAP:
2143 2144 2145
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2146
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2147
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2148 2149
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2150
		break;
2151 2152 2153
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2154 2155
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2156 2157
			goto error;
		break;
2158 2159 2160 2161 2162 2163 2164
	case BPF_MAP_TYPE_SOCKHASH:
		if (func_id != BPF_FUNC_sk_redirect_hash &&
		    func_id != BPF_FUNC_sock_hash_update &&
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_hash)
			goto error;
		break;
2165 2166 2167 2168 2169 2170 2171 2172 2173
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
J
Jiong Wang 已提交
2174
		if (env->subprog_cnt > 1) {
2175 2176 2177
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2178 2179 2180
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2181
	case BPF_FUNC_perf_event_read_value:
2182 2183 2184 2185 2186 2187 2188
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2189
	case BPF_FUNC_current_task_under_cgroup:
2190
	case BPF_FUNC_skb_under_cgroup:
2191 2192 2193
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2194
	case BPF_FUNC_redirect_map:
2195
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2196 2197
		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2198 2199
			goto error;
		break;
2200
	case BPF_FUNC_sk_redirect_map:
2201
	case BPF_FUNC_msg_redirect_map:
2202
	case BPF_FUNC_sock_map_update:
2203 2204 2205
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2206 2207 2208 2209
	case BPF_FUNC_sk_redirect_hash:
	case BPF_FUNC_msg_redirect_hash:
	case BPF_FUNC_sock_hash_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2210 2211
			goto error;
		break;
2212 2213
	default:
		break;
2214 2215 2216
	}

	return 0;
2217
error:
2218
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2219
		map->map_type, func_id_name(func_id), func_id);
2220
	return -EINVAL;
2221 2222
}

2223
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2224 2225 2226
{
	int count = 0;

2227
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2228
		count++;
2229
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2230
		count++;
2231
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2232
		count++;
2233
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2234
		count++;
2235
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2236 2237
		count++;

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2276 2277
}

2278 2279
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2280
 */
2281 2282
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2283
{
2284
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2285 2286 2287
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2288
		if (reg_is_pkt_pointer_any(&regs[i]))
2289
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2290

2291 2292
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2293
			continue;
2294
		reg = &state->stack[i].spilled_ptr;
2295 2296
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2297 2298 2299
	}
}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2316
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2317
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2318
			state->curframe + 2);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
J
Jiong Wang 已提交
2350
			subprog /* subprog number within this prog */);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
				   int func_id,
				   struct bpf_call_arg_meta *meta)
{
	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];

	if (ret_type != RET_INTEGER ||
	    (func_id != BPF_FUNC_get_stack &&
	     func_id != BPF_FUNC_probe_read_str))
		return;

	ret_reg->smax_value = meta->msize_smax_value;
	ret_reg->umax_value = meta->msize_umax_value;
	__reg_deduce_bounds(ret_reg);
	__reg_bound_offset(ret_reg);
}

2431 2432 2433 2434 2435 2436 2437
static int
record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
		int func_id, int insn_idx)
{
	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];

	if (func_id != BPF_FUNC_tail_call &&
2438 2439 2440
	    func_id != BPF_FUNC_map_lookup_elem &&
	    func_id != BPF_FUNC_map_update_elem &&
	    func_id != BPF_FUNC_map_delete_elem)
2441
		return 0;
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	if (meta->map_ptr == NULL) {
		verbose(env, "kernel subsystem misconfigured verifier\n");
		return -EINVAL;
	}

	if (!BPF_MAP_PTR(aux->map_state))
		bpf_map_ptr_store(aux, meta->map_ptr,
				  meta->map_ptr->unpriv_array);
	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
				  meta->map_ptr->unpriv_array);
	return 0;
}

2457
static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2458 2459
{
	const struct bpf_func_proto *fn = NULL;
2460
	struct bpf_reg_state *regs;
2461
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2462
	bool changes_data;
2463 2464 2465 2466
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2467 2468
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2469 2470 2471
		return -EINVAL;
	}

2472
	if (env->ops->get_func_proto)
2473
		fn = env->ops->get_func_proto(func_id, env->prog);
2474
	if (!fn) {
2475 2476
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2477 2478 2479 2480
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2481
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2482
		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2483 2484 2485
		return -EINVAL;
	}

2486
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2487
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2488 2489 2490 2491 2492
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2493

2494
	memset(&meta, 0, sizeof(meta));
2495
	meta.pkt_access = fn->pkt_access;
2496

2497
	err = check_func_proto(fn);
2498
	if (err) {
2499
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2500
			func_id_name(func_id), func_id);
2501 2502 2503
		return err;
	}

2504
	/* check args */
2505
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2506 2507
	if (err)
		return err;
2508
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2509 2510
	if (err)
		return err;
2511
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2512 2513
	if (err)
		return err;
2514
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2515 2516
	if (err)
		return err;
2517
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2518 2519 2520
	if (err)
		return err;

2521 2522 2523 2524
	err = record_func_map(env, &meta, func_id, insn_idx);
	if (err)
		return err;

2525 2526 2527 2528
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2529 2530
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2531 2532 2533 2534
		if (err)
			return err;
	}

2535
	regs = cur_regs(env);
2536
	/* reset caller saved regs */
2537
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2538
		mark_reg_not_init(env, regs, caller_saved[i]);
2539 2540
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2541

2542
	/* update return register (already marked as written above) */
2543
	if (fn->ret_type == RET_INTEGER) {
2544
		/* sets type to SCALAR_VALUE */
2545
		mark_reg_unknown(env, regs, BPF_REG_0);
2546 2547
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
2548 2549 2550 2551 2552 2553
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
		if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
		else
			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2554
		/* There is no offset yet applied, variable or fixed */
2555
		mark_reg_known_zero(env, regs, BPF_REG_0);
2556
		regs[BPF_REG_0].off = 0;
2557 2558 2559 2560
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2561
		if (meta.map_ptr == NULL) {
2562 2563
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2564 2565
			return -EINVAL;
		}
2566
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2567
		regs[BPF_REG_0].id = ++env->id_gen;
2568
	} else {
2569
		verbose(env, "unknown return type %d of func %s#%d\n",
2570
			fn->ret_type, func_id_name(func_id), func_id);
2571 2572
		return -EINVAL;
	}
2573

2574 2575
	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);

2576
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2577 2578
	if (err)
		return err;
2579

Y
Yonghong Song 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
		const char *err_str;

#ifdef CONFIG_PERF_EVENTS
		err = get_callchain_buffers(sysctl_perf_event_max_stack);
		err_str = "cannot get callchain buffer for func %s#%d\n";
#else
		err = -ENOTSUPP;
		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
		if (err) {
			verbose(env, err_str, func_id_name(func_id), func_id);
			return err;
		}

		env->prog->has_callchain_buf = true;
	}

A
Alexei Starovoitov 已提交
2598 2599 2600 2601 2602
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2621 2622
}

A
Alexei Starovoitov 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2658 2659 2660 2661 2662 2663 2664 2665 2666
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2667
{
2668 2669 2670
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2671
	bool known = tnum_is_const(off_reg->var_off);
2672 2673 2674 2675
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2676
	u8 opcode = BPF_OP(insn->code);
2677
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2678

2679
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2680

2681 2682 2683 2684 2685 2686 2687
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2688 2689 2690 2691
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2692 2693 2694
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2695
		return -EACCES;
A
Alexei Starovoitov 已提交
2696 2697
	}

2698
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2699 2700
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2701 2702 2703
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2704 2705
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2706 2707 2708
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2709 2710
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2711 2712 2713 2714 2715
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2716
	 */
2717 2718
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2719

A
Alexei Starovoitov 已提交
2720 2721 2722 2723
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2724 2725 2726 2727
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2728
		 */
2729 2730
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2731
			/* pointer += K.  Accumulate it into fixed offset */
2732 2733 2734 2735
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2736
			dst_reg->var_off = ptr_reg->var_off;
2737
			dst_reg->off = ptr_reg->off + smin_val;
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2749
		 */
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2766 2767
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2768
		if (reg_is_pkt_pointer(ptr_reg)) {
2769 2770 2771 2772 2773 2774 2775 2776
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2777 2778
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2779 2780 2781 2782 2783
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2784
		 */
2785
		if (ptr_reg->type == PTR_TO_STACK) {
2786 2787
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2788 2789
			return -EACCES;
		}
2790 2791
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2792
			/* pointer -= K.  Subtract it from fixed offset */
2793 2794 2795 2796
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2797 2798
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2799
			dst_reg->off = ptr_reg->off - smin_val;
2800 2801 2802 2803 2804
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2805
		 */
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2824 2825
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2826
		if (reg_is_pkt_pointer(ptr_reg)) {
2827 2828
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2829
			if (smin_val < 0)
2830
				dst_reg->range = 0;
2831
		}
2832 2833 2834 2835
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2836 2837 2838
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2839 2840 2841
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2842 2843
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2844
		return -EACCES;
2845 2846
	}

A
Alexei Starovoitov 已提交
2847 2848 2849
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2850 2851 2852
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2853 2854 2855
	return 0;
}

J
Jann Horn 已提交
2856 2857 2858 2859
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2860 2861 2862 2863
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2864
{
2865
	struct bpf_reg_state *regs = cur_regs(env);
2866
	u8 opcode = BPF_OP(insn->code);
2867
	bool src_known, dst_known;
2868 2869
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2870
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2871

2872 2873 2874 2875
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2876 2877
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2888 2889 2890 2891 2892 2893
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2894 2895
	switch (opcode) {
	case BPF_ADD:
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2912
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2913 2914
		break;
	case BPF_SUB:
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2933
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2934 2935
		break;
	case BPF_MUL:
2936 2937
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2938
			/* Ain't nobody got time to multiply that sign */
2939 2940
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2941 2942
			break;
		}
2943 2944
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2945
		 */
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2963 2964
		break;
	case BPF_AND:
2965
		if (src_known && dst_known) {
2966 2967
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2968 2969
			break;
		}
2970 2971
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2972
		 */
2973
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2991 2992 2993
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2994 2995
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2996 2997
			break;
		}
2998 2999
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
3000 3001
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3002 3003 3004 3005 3006 3007 3008 3009 3010
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
3011
		} else {
3012 3013 3014 3015 3016
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
3017
		}
3018 3019
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
3020 3021
		break;
	case BPF_LSH:
J
Jann Horn 已提交
3022 3023 3024
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
3025
			 */
3026
			mark_reg_unknown(env, regs, insn->dst_reg);
3027 3028
			break;
		}
3029 3030
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
3031
		 */
3032 3033 3034 3035 3036 3037
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
3038
		} else {
3039 3040
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
3041
		}
3042
		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3043 3044
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
3045 3046
		break;
	case BPF_RSH:
J
Jann Horn 已提交
3047 3048 3049
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
3050
			 */
3051
			mark_reg_unknown(env, regs, insn->dst_reg);
3052 3053
			break;
		}
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
3070
		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3071 3072 3073 3074
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
3075
		break;
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	case BPF_ARSH:
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
			 */
			mark_reg_unknown(env, regs, insn->dst_reg);
			break;
		}

		/* Upon reaching here, src_known is true and
		 * umax_val is equal to umin_val.
		 */
		dst_reg->smin_value >>= umin_val;
		dst_reg->smax_value >>= umin_val;
		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);

		/* blow away the dst_reg umin_value/umax_value and rely on
		 * dst_reg var_off to refine the result.
		 */
		dst_reg->umin_value = 0;
		dst_reg->umax_value = U64_MAX;
		__update_reg_bounds(dst_reg);
		break;
3099
	default:
3100
		mark_reg_unknown(env, regs, insn->dst_reg);
3101 3102 3103
		break;
	}

J
Jann Horn 已提交
3104 3105 3106 3107 3108 3109
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

3110 3111
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
3112 3113 3114 3115 3116 3117 3118 3119 3120
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
3121 3122 3123
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
3136 3137
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
3138
				 */
3139 3140 3141
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
3142
				}
3143 3144 3145 3146
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
3147 3148 3149 3150 3151
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
3152 3153
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3154 3155 3156
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3157 3158
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3159 3160 3161 3162 3163 3164
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3165
		__mark_reg_known(&off_reg, insn->imm);
3166
		src_reg = &off_reg;
3167 3168 3169
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3170 3171 3172 3173
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3174
		print_verifier_state(env, state);
3175
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3176 3177 3178
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3179
		print_verifier_state(env, state);
3180
		verbose(env, "verifier internal error: no src_reg\n");
3181 3182 3183
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3184 3185
}

3186
/* check validity of 32-bit and 64-bit arithmetic operations */
3187
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3188
{
3189
	struct bpf_reg_state *regs = cur_regs(env);
3190 3191 3192 3193 3194 3195 3196 3197
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3198
				verbose(env, "BPF_NEG uses reserved fields\n");
3199 3200 3201 3202
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3203 3204
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3205
				verbose(env, "BPF_END uses reserved fields\n");
3206 3207 3208 3209 3210
				return -EINVAL;
			}
		}

		/* check src operand */
3211
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3212 3213 3214
		if (err)
			return err;

3215
		if (is_pointer_value(env, insn->dst_reg)) {
3216
			verbose(env, "R%d pointer arithmetic prohibited\n",
3217 3218 3219 3220
				insn->dst_reg);
			return -EACCES;
		}

3221
		/* check dest operand */
3222
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3223 3224 3225 3226 3227 3228 3229
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3230
				verbose(env, "BPF_MOV uses reserved fields\n");
3231 3232 3233 3234
				return -EINVAL;
			}

			/* check src operand */
3235
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3236 3237 3238 3239
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3240
				verbose(env, "BPF_MOV uses reserved fields\n");
3241 3242 3243 3244
				return -EINVAL;
			}
		}

3245 3246
		/* check dest operand, mark as required later */
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3247 3248 3249 3250 3251 3252 3253 3254 3255
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3256
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3257
			} else {
3258
				/* R1 = (u32) R2 */
3259
				if (is_pointer_value(env, insn->src_reg)) {
3260 3261
					verbose(env,
						"R%d partial copy of pointer\n",
3262 3263 3264
						insn->src_reg);
					return -EACCES;
				}
3265
				mark_reg_unknown(env, regs, insn->dst_reg);
3266
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3267 3268 3269 3270 3271
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3272 3273
			/* clear any state __mark_reg_known doesn't set */
			mark_reg_unknown(env, regs, insn->dst_reg);
3274
			regs[insn->dst_reg].type = SCALAR_VALUE;
3275 3276 3277 3278 3279 3280 3281
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3282 3283 3284
		}

	} else if (opcode > BPF_END) {
3285
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3286 3287 3288 3289 3290 3291
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3292
				verbose(env, "BPF_ALU uses reserved fields\n");
3293 3294 3295
				return -EINVAL;
			}
			/* check src1 operand */
3296
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3297 3298 3299 3300
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3301
				verbose(env, "BPF_ALU uses reserved fields\n");
3302 3303 3304 3305 3306
				return -EINVAL;
			}
		}

		/* check src2 operand */
3307
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3308 3309 3310 3311 3312
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3313
			verbose(env, "div by zero\n");
3314 3315 3316
			return -EINVAL;
		}

3317 3318 3319 3320 3321
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3322 3323 3324 3325 3326
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3327
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3328 3329 3330 3331
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3332
		/* check dest operand */
3333
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3334 3335 3336
		if (err)
			return err;

3337
		return adjust_reg_min_max_vals(env, insn);
3338 3339 3340 3341 3342
	}

	return 0;
}

3343
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3344
				   struct bpf_reg_state *dst_reg,
3345
				   enum bpf_reg_type type,
3346
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3347
{
3348
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3349
	struct bpf_reg_state *regs = state->regs, *reg;
3350
	u16 new_range;
3351
	int i, j;
3352

3353 3354
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3355 3356 3357
		/* This doesn't give us any range */
		return;

3358 3359
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3360 3361 3362 3363 3364
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3365 3366 3367 3368 3369
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3370
	 *
3371
	 * pkt_data in dst register:
3372 3373 3374 3375 3376 3377
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3378 3379 3380 3381 3382
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3383 3384 3385 3386 3387
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3388
	 * pkt_data in src register:
3389 3390 3391 3392 3393 3394
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3395 3396 3397 3398 3399
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3400 3401 3402 3403 3404 3405
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3406 3407 3408
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3409
	 */
3410

3411 3412 3413 3414 3415
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3416
	for (i = 0; i < MAX_BPF_REG; i++)
3417
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3418
			/* keep the maximum range already checked */
3419
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3420

3421 3422 3423 3424 3425 3426 3427 3428 3429
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3430 3431 3432
	}
}

3433 3434 3435
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3436
 * In JEQ/JNE cases we also adjust the var_off values.
3437 3438 3439 3440 3441
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3442 3443 3444 3445 3446 3447 3448 3449
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3450

3451 3452 3453 3454 3455
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3456
		__mark_reg_known(true_reg, val);
3457 3458 3459 3460 3461
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3462
		__mark_reg_known(false_reg, val);
3463 3464
		break;
	case BPF_JGT:
3465 3466 3467
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3468
	case BPF_JSGT:
3469 3470
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3471
		break;
3472 3473 3474 3475 3476 3477 3478 3479
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3480
	case BPF_JGE:
3481 3482 3483
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3484
	case BPF_JSGE:
3485 3486
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3487
		break;
3488 3489 3490 3491 3492 3493 3494 3495
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3496 3497 3498 3499
	default:
		break;
	}

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3511 3512
}

3513 3514
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3515 3516 3517 3518 3519
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3520 3521
	if (__is_pointer_value(false, false_reg))
		return;
3522

3523 3524 3525 3526 3527
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3528
		__mark_reg_known(true_reg, val);
3529 3530 3531 3532 3533
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3534
		__mark_reg_known(false_reg, val);
3535 3536
		break;
	case BPF_JGT:
3537 3538 3539
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3540
	case BPF_JSGT:
3541 3542
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3543
		break;
3544 3545 3546 3547 3548 3549 3550 3551
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3552
	case BPF_JGE:
3553 3554 3555
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3556
	case BPF_JSGE:
3557 3558
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3559
		break;
3560 3561 3562 3563 3564 3565 3566 3567
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3568 3569 3570 3571
	default:
		break;
	}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3583 3584 3585 3586 3587 3588
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3589 3590 3591 3592 3593 3594 3595 3596
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3597 3598
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3628
		break;
3629
	}
3630 3631
}

3632
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3633
			 bool is_null)
3634 3635 3636 3637
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3638 3639 3640 3641
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3642 3643
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3644
				 reg->off)) {
3645 3646
			__mark_reg_known_zero(reg);
			reg->off = 0;
3647 3648 3649
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3650 3651 3652 3653
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3654
			reg->type = PTR_TO_MAP_VALUE;
3655
		}
3656 3657 3658 3659 3660
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3661 3662 3663 3664 3665 3666
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3667
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3668
			  bool is_null)
3669
{
3670
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3671
	struct bpf_reg_state *regs = state->regs;
3672
	u32 id = regs[regno].id;
3673
	int i, j;
3674 3675

	for (i = 0; i < MAX_BPF_REG; i++)
3676
		mark_map_reg(regs, i, id, is_null);
3677

3678 3679 3680 3681 3682 3683 3684
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3685 3686 3687
	}
}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3781
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3782 3783
			     struct bpf_insn *insn, int *insn_idx)
{
3784 3785 3786 3787
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3788 3789 3790
	u8 opcode = BPF_OP(insn->code);
	int err;

3791
	if (opcode > BPF_JSLE) {
3792
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3793 3794 3795 3796 3797
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3798
			verbose(env, "BPF_JMP uses reserved fields\n");
3799 3800 3801 3802
			return -EINVAL;
		}

		/* check src1 operand */
3803
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3804 3805
		if (err)
			return err;
3806 3807

		if (is_pointer_value(env, insn->src_reg)) {
3808
			verbose(env, "R%d pointer comparison prohibited\n",
3809 3810 3811
				insn->src_reg);
			return -EACCES;
		}
3812 3813
	} else {
		if (insn->src_reg != BPF_REG_0) {
3814
			verbose(env, "BPF_JMP uses reserved fields\n");
3815 3816 3817 3818 3819
			return -EINVAL;
		}
	}

	/* check src2 operand */
3820
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3821 3822 3823
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3824 3825
	dst_reg = &regs[insn->dst_reg];

3826 3827 3828
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3829
	    dst_reg->type == SCALAR_VALUE &&
3830 3831 3832
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3850
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3851

3852 3853
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3854 3855 3856 3857
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3858 3859
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3860 3861 3862
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3863
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3864 3865 3866
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3867
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3868 3869 3870 3871
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3872 3873
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3874 3875 3876 3877
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3878
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3879 3880 3881
					dst_reg, insn->imm, opcode);
	}

3882
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3883
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3884 3885
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3886 3887 3888
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3889 3890
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3891 3892 3893
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3894 3895
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3896
		return -EACCES;
3897
	}
3898
	if (env->log.level)
3899
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3900 3901 3902
	return 0;
}

3903 3904 3905 3906 3907 3908 3909 3910
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3911
/* verify BPF_LD_IMM64 instruction */
3912
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3913
{
3914
	struct bpf_reg_state *regs = cur_regs(env);
3915 3916 3917
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3918
		verbose(env, "invalid BPF_LD_IMM insn\n");
3919 3920 3921
		return -EINVAL;
	}
	if (insn->off != 0) {
3922
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3923 3924 3925
		return -EINVAL;
	}

3926
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3927 3928 3929
	if (err)
		return err;

3930 3931 3932
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3933
		regs[insn->dst_reg].type = SCALAR_VALUE;
3934
		__mark_reg_known(&regs[insn->dst_reg], imm);
3935
		return 0;
3936
	}
3937 3938 3939 3940 3941 3942 3943 3944 3945

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3946 3947 3948 3949 3950
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3951
	case BPF_PROG_TYPE_SCHED_ACT:
3952 3953 3954 3955 3956 3957
		return true;
	default:
		return false;
	}
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3973
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3974
{
3975
	struct bpf_reg_state *regs = cur_regs(env);
3976 3977 3978
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3979
	if (!may_access_skb(env->prog->type)) {
3980
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3981 3982 3983
		return -EINVAL;
	}

3984 3985 3986 3987 3988
	if (!env->ops->gen_ld_abs) {
		verbose(env, "bpf verifier is misconfigured\n");
		return -EINVAL;
	}

J
Jiong Wang 已提交
3989
	if (env->subprog_cnt > 1) {
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

4001
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4002
	    BPF_SIZE(insn->code) == BPF_DW ||
4003
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4004
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4005 4006 4007 4008
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
4009
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4010 4011 4012 4013
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4014 4015
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4016 4017 4018 4019 4020
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
4021
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4022 4023 4024 4025 4026
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
4027
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4028
		mark_reg_not_init(env, regs, caller_saved[i]);
4029 4030
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
4031 4032

	/* mark destination R0 register as readable, since it contains
4033 4034
	 * the value fetched from the packet.
	 * Already marked as written above.
4035
	 */
4036
	mark_reg_unknown(env, regs, BPF_REG_0);
4037 4038 4039
	return 0;
}

4040 4041 4042 4043 4044 4045 4046 4047
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
A
Andrey Ignatov 已提交
4048
	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4049
	case BPF_PROG_TYPE_SOCK_OPS:
4050
	case BPF_PROG_TYPE_CGROUP_DEVICE:
4051 4052 4053 4054 4055
		break;
	default:
		return 0;
	}

4056
	reg = cur_regs(env) + BPF_REG_0;
4057
	if (reg->type != SCALAR_VALUE) {
4058
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4059 4060 4061 4062 4063
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
4064
		verbose(env, "At program exit the register R0 ");
4065 4066 4067 4068
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4069
			verbose(env, "has value %s", tn_buf);
4070
		} else {
4071
			verbose(env, "has unknown scalar value");
4072
		}
4073
		verbose(env, " should have been 0 or 1\n");
4074 4075 4076 4077 4078
		return -EINVAL;
	}
	return 0;
}

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

4119
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4120

4121 4122 4123 4124 4125 4126 4127 4128 4129
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
4130
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4131 4132 4133 4134 4135 4136 4137 4138
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
4139
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4140 4141 4142
		return -EINVAL;
	}

4143 4144 4145 4146
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

4147 4148 4149 4150 4151 4152 4153 4154 4155
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4156
		verbose(env, "back-edge from insn %d to %d\n", t, w);
4157 4158 4159 4160 4161
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4162
		verbose(env, "insn state internal bug\n");
4163 4164 4165 4166 4167 4168 4169 4170
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4171
static int check_cfg(struct bpf_verifier_env *env)
4172 4173 4174 4175 4176 4177
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4178 4179 4180 4181
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4212 4213
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4214 4215 4216 4217 4218 4219 4220 4221
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4234 4235 4236
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4237 4238
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4239 4240
		} else {
			/* conditional jump with two edges */
4241
			env->explored_states[t] = STATE_LIST_MARK;
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4268
		verbose(env, "pop stack internal bug\n");
4269 4270 4271 4272 4273 4274 4275 4276
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4277
			verbose(env, "unreachable insn %d\n", i);
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4290 4291 4292 4293
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4294 4295 4296 4297
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4316
 */
4317
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4318
{
4319
	unsigned int i;
A
Alexei Starovoitov 已提交
4320

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4337 4338
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4339
{
4340 4341
	bool equal;

4342 4343 4344 4345
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4346 4347 4348 4349 4350 4351 4352 4353 4354
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4355 4356
		return true;

4357 4358
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4359
		return true;
4360 4361 4362 4363 4364 4365 4366 4367 4368
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4369 4370 4371 4372 4373 4374
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4375
			 */
4376
			return false;
4377 4378
		}
	case PTR_TO_MAP_VALUE:
4379 4380 4381 4382 4383 4384 4385 4386
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4401
	case PTR_TO_PACKET_META:
4402
	case PTR_TO_PACKET:
4403
		if (rcur->type != rold->type)
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4434

4435 4436
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4437 4438 4439
	return false;
}

4440 4441
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4459 4460
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4461
			continue;
4462

4463 4464
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4465 4466 4467 4468 4469 4470 4471
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4528 4529
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4530
{
4531 4532
	struct idpair *idmap;
	bool ret = false;
4533 4534
	int i;

4535 4536 4537
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4538
		return false;
4539 4540

	for (i = 0; i < MAX_BPF_REG; i++) {
4541
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4542
			goto out_free;
4543 4544
	}

4545 4546
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4547 4548 4549 4550
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4551 4552
}

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4574
/* A write screens off any subsequent reads; but write marks come from the
4575 4576 4577 4578 4579
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4580
 */
4581 4582 4583
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4584
{
4585 4586
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4587

4588 4589 4590 4591 4592
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4593 4594 4595 4596
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4597
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4598
			continue;
4599 4600 4601 4602
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4603 4604
		}
	}
4605

4606
	/* ... and stack slots */
4607 4608 4609 4610 4611 4612 4613 4614 4615
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4616 4617
		}
	}
4618
	return err;
4619 4620
}

4621
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4622
{
4623 4624
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4625
	struct bpf_verifier_state *cur = env->cur_state;
4626
	int i, j, err;
4627 4628 4629 4630 4631 4632 4633 4634 4635

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4636
		if (states_equal(env, &sl->state, cur)) {
4637
			/* reached equivalent register/stack state,
4638 4639
			 * prune the search.
			 * Registers read by the continuation are read by us.
4640 4641 4642 4643 4644 4645
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4646
			 */
4647 4648 4649
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4650
			return 1;
4651
		}
4652 4653 4654 4655 4656
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4657 4658 4659 4660
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4661
	 */
4662
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4663 4664 4665 4666
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4667 4668 4669 4670 4671 4672
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4673 4674
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4675
	/* connect new state to parentage chain */
4676
	cur->parent = &new_sl->state;
4677 4678 4679 4680 4681 4682
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4683
	for (i = 0; i < BPF_REG_FP; i++)
4684 4685 4686 4687 4688 4689 4690
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4691
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4692
	}
4693 4694 4695
	return 0;
}

4696
static int do_check(struct bpf_verifier_env *env)
4697
{
4698
	struct bpf_verifier_state *state;
4699
	struct bpf_insn *insns = env->prog->insnsi;
4700
	struct bpf_reg_state *regs;
4701
	int insn_cnt = env->prog->len, i;
4702 4703 4704 4705
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4706 4707 4708
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4709
	state->curframe = 0;
4710
	state->parent = NULL;
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4721 4722 4723 4724 4725 4726 4727
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4728
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4729 4730 4731 4732 4733 4734 4735
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4736
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4737 4738
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4739 4740 4741 4742
				insn_processed);
			return -E2BIG;
		}

4743 4744 4745 4746 4747
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4748
			if (env->log.level) {
4749
				if (do_print_state)
4750
					verbose(env, "\nfrom %d to %d: safe\n",
4751 4752
						prev_insn_idx, insn_idx);
				else
4753
					verbose(env, "%d: safe\n", insn_idx);
4754 4755 4756 4757
			}
			goto process_bpf_exit;
		}

4758 4759 4760
		if (need_resched())
			cond_resched();

4761 4762 4763
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4764
			else
4765
				verbose(env, "\nfrom %d to %d:",
4766
					prev_insn_idx, insn_idx);
4767
			print_verifier_state(env, state->frame[state->curframe]);
4768 4769 4770
			do_print_state = false;
		}

4771
		if (env->log.level) {
4772 4773
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4774
				.private_data	= env,
4775 4776
			};

4777
			verbose(env, "%d: ", insn_idx);
4778
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4779 4780
		}

4781 4782 4783 4784 4785 4786
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4787

4788
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4789
		env->insn_aux_data[insn_idx].seen = true;
4790
		if (class == BPF_ALU || class == BPF_ALU64) {
4791
			err = check_alu_op(env, insn);
4792 4793 4794 4795
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4796
			enum bpf_reg_type *prev_src_type, src_reg_type;
4797 4798 4799

			/* check for reserved fields is already done */

4800
			/* check src operand */
4801
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4802 4803 4804
			if (err)
				return err;

4805
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4806 4807 4808
			if (err)
				return err;

4809 4810
			src_reg_type = regs[insn->src_reg].type;

4811 4812 4813
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4814
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4815
					       BPF_SIZE(insn->code), BPF_READ,
4816
					       insn->dst_reg, false);
4817 4818 4819
			if (err)
				return err;

4820 4821 4822
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4823 4824
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4825
				 * save type to validate intersecting paths
4826
				 */
4827
				*prev_src_type = src_reg_type;
4828

4829
			} else if (src_reg_type != *prev_src_type &&
4830
				   (src_reg_type == PTR_TO_CTX ||
4831
				    *prev_src_type == PTR_TO_CTX)) {
4832 4833 4834 4835 4836 4837 4838
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4839
				verbose(env, "same insn cannot be used with different pointers\n");
4840 4841 4842
				return -EINVAL;
			}

4843
		} else if (class == BPF_STX) {
4844
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4845

4846
			if (BPF_MODE(insn->code) == BPF_XADD) {
4847
				err = check_xadd(env, insn_idx, insn);
4848 4849 4850 4851 4852 4853 4854
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4855
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4856 4857 4858
			if (err)
				return err;
			/* check src2 operand */
4859
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4860 4861 4862
			if (err)
				return err;

4863 4864
			dst_reg_type = regs[insn->dst_reg].type;

4865
			/* check that memory (dst_reg + off) is writeable */
4866
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4867
					       BPF_SIZE(insn->code), BPF_WRITE,
4868
					       insn->src_reg, false);
4869 4870 4871
			if (err)
				return err;

4872 4873 4874 4875 4876
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4877
				   (dst_reg_type == PTR_TO_CTX ||
4878
				    *prev_dst_type == PTR_TO_CTX)) {
4879
				verbose(env, "same insn cannot be used with different pointers\n");
4880 4881 4882
				return -EINVAL;
			}

4883 4884 4885
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4886
				verbose(env, "BPF_ST uses reserved fields\n");
4887 4888 4889
				return -EINVAL;
			}
			/* check src operand */
4890
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4891 4892 4893
			if (err)
				return err;

4894 4895 4896 4897 4898 4899
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4900
			/* check that memory (dst_reg + off) is writeable */
4901
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4902
					       BPF_SIZE(insn->code), BPF_WRITE,
4903
					       -1, false);
4904 4905 4906 4907 4908 4909 4910 4911 4912
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4913 4914
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4915
				    insn->dst_reg != BPF_REG_0) {
4916
					verbose(env, "BPF_CALL uses reserved fields\n");
4917 4918 4919
					return -EINVAL;
				}

4920 4921 4922 4923
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4924 4925 4926 4927 4928 4929 4930 4931
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4932
					verbose(env, "BPF_JA uses reserved fields\n");
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4944
					verbose(env, "BPF_EXIT uses reserved fields\n");
4945 4946 4947
					return -EINVAL;
				}

4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4958 4959 4960 4961 4962 4963
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4964
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4965 4966 4967
				if (err)
					return err;

4968
				if (is_pointer_value(env, BPF_REG_0)) {
4969
					verbose(env, "R0 leaks addr as return value\n");
4970 4971 4972
					return -EACCES;
				}

4973 4974 4975
				err = check_return_code(env);
				if (err)
					return err;
4976
process_bpf_exit:
4977 4978 4979 4980
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4995 4996 4997 4998
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4999 5000 5001 5002 5003 5004
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
5005
				env->insn_aux_data[insn_idx].seen = true;
5006
			} else {
5007
				verbose(env, "invalid BPF_LD mode\n");
5008 5009 5010
				return -EINVAL;
			}
		} else {
5011
			verbose(env, "unknown insn class %d\n", class);
5012 5013 5014 5015 5016 5017
			return -EINVAL;
		}

		insn_idx++;
	}

5018 5019
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
J
Jiong Wang 已提交
5020
	for (i = 0; i < env->subprog_cnt; i++) {
5021
		u32 depth = env->subprog_info[i].stack_depth;
5022 5023

		verbose(env, "%d", depth);
J
Jiong Wang 已提交
5024
		if (i + 1 < env->subprog_cnt)
5025 5026 5027
			verbose(env, "+");
	}
	verbose(env, "\n");
5028
	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5029 5030 5031
	return 0;
}

5032 5033 5034
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
5035 5036
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5037 5038 5039
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

5040 5041
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
5042 5043 5044
					struct bpf_prog *prog)

{
5045 5046 5047 5048 5049 5050 5051
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
5052
			verbose(env, "perf_event programs can only use preallocated hash map\n");
5053 5054 5055 5056
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
5057
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5058 5059
			return -EINVAL;
		}
5060
	}
5061 5062

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5063
	    !bpf_offload_prog_map_match(prog, map)) {
5064 5065 5066 5067
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

5068 5069 5070
	return 0;
}

5071 5072 5073
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
5074
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5075 5076 5077
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
5078
	int i, j, err;
5079

5080
	err = bpf_prog_calc_tag(env->prog);
5081 5082 5083
	if (err)
		return err;

5084
	for (i = 0; i < insn_cnt; i++, insn++) {
5085
		if (BPF_CLASS(insn->code) == BPF_LDX &&
5086
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5087
			verbose(env, "BPF_LDX uses reserved fields\n");
5088 5089 5090
			return -EINVAL;
		}

5091 5092 5093
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5094
			verbose(env, "BPF_STX uses reserved fields\n");
5095 5096 5097
			return -EINVAL;
		}

5098 5099 5100 5101 5102 5103 5104
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
5105
				verbose(env, "invalid bpf_ld_imm64 insn\n");
5106 5107 5108 5109 5110 5111 5112 5113
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5114 5115
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
5116 5117 5118 5119
				return -EINVAL;
			}

			f = fdget(insn->imm);
5120
			map = __bpf_map_get(f);
5121
			if (IS_ERR(map)) {
5122
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5123 5124 5125 5126
					insn->imm);
				return PTR_ERR(map);
			}

5127
			err = check_map_prog_compatibility(env, map, env->prog);
5128 5129 5130 5131 5132
			if (err) {
				fdput(f);
				return err;
			}

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
5152
			 * and all maps are released in free_used_maps()
5153
			 */
A
Alexei Starovoitov 已提交
5154 5155 5156 5157 5158 5159 5160
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

5161 5162 5163 5164 5165 5166 5167 5168
			if (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE &&
			    bpf_cgroup_storage_assign(env->prog, map)) {
				verbose(env,
					"only one cgroup storage is allowed\n");
				fdput(f);
				return -EBUSY;
			}

5169 5170 5171 5172
			fdput(f);
next_insn:
			insn++;
			i++;
5173 5174 5175 5176 5177 5178 5179
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5191
static void release_maps(struct bpf_verifier_env *env)
5192 5193 5194
{
	int i;

5195 5196 5197 5198
	if (env->prog->aux->cgroup_storage)
		bpf_cgroup_storage_release(env->prog,
					   env->prog->aux->cgroup_storage);

5199 5200 5201 5202 5203
	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5204
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5215 5216 5217 5218 5219 5220 5221 5222
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5223
	int i;
5224 5225 5226

	if (cnt == 1)
		return 0;
5227 5228
	new_data = vzalloc(array_size(prog_len,
				      sizeof(struct bpf_insn_aux_data)));
5229 5230 5231 5232 5233
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5234 5235
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5236 5237 5238 5239 5240
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5241 5242 5243 5244 5245 5246
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
J
Jiong Wang 已提交
5247 5248
	/* NOTE: fake 'exit' subprog should be updated as well. */
	for (i = 0; i <= env->subprog_cnt; i++) {
5249
		if (env->subprog_info[i].start < off)
5250
			continue;
5251
		env->subprog_info[i].start += len - 1;
5252 5253 5254
	}
}

5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5265
	adjust_subprog_starts(env, off, len);
5266 5267 5268
	return new_prog;
}

5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5279 5280 5281 5282
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5283
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5284 5285 5286 5287 5288 5289 5290
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5291
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5292 5293 5294
	}
}

5295 5296 5297
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5298
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5299
{
5300
	const struct bpf_verifier_ops *ops = env->ops;
5301
	int i, cnt, size, ctx_field_size, delta = 0;
5302
	const int insn_cnt = env->prog->len;
5303
	struct bpf_insn insn_buf[16], *insn;
5304
	struct bpf_prog *new_prog;
5305
	enum bpf_access_type type;
5306 5307
	bool is_narrower_load;
	u32 target_size;
5308

5309 5310 5311 5312
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5313
			verbose(env, "bpf verifier is misconfigured\n");
5314 5315
			return -EINVAL;
		} else if (cnt) {
5316
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5317 5318
			if (!new_prog)
				return -ENOMEM;
5319

5320
			env->prog = new_prog;
5321
			delta += cnt - 1;
5322 5323 5324
		}
	}

5325
	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5326 5327
		return 0;

5328
	insn = env->prog->insnsi + delta;
5329

5330
	for (i = 0; i < insn_cnt; i++, insn++) {
5331 5332 5333
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5334
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5335
			type = BPF_READ;
5336 5337 5338
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5339
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5340 5341
			type = BPF_WRITE;
		else
5342 5343
			continue;

5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
		if (type == BPF_WRITE &&
		    env->insn_aux_data[i + delta].sanitize_stack_off) {
			struct bpf_insn patch[] = {
				/* Sanitize suspicious stack slot with zero.
				 * There are no memory dependencies for this store,
				 * since it's only using frame pointer and immediate
				 * constant of zero
				 */
				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
					   env->insn_aux_data[i + delta].sanitize_stack_off,
					   0),
				/* the original STX instruction will immediately
				 * overwrite the same stack slot with appropriate value
				 */
				*insn,
			};

			cnt = ARRAY_SIZE(patch);
			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5372
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5373 5374
			continue;

5375
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5376
		size = BPF_LDST_BYTES(insn);
5377 5378 5379 5380 5381 5382

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5383
		is_narrower_load = size < ctx_field_size;
5384
		if (is_narrower_load) {
5385
			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5386 5387 5388 5389
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5390
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5391 5392
				return -EINVAL;
			}
5393

5394
			size_code = BPF_H;
5395 5396 5397 5398
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5399

5400
			insn->off = off & ~(size_default - 1);
5401 5402
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5403 5404 5405 5406 5407 5408

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5409
			verbose(env, "bpf verifier is misconfigured\n");
5410 5411
			return -EINVAL;
		}
5412 5413

		if (is_narrower_load && size < target_size) {
5414 5415
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5416
								(1 << size * 8) - 1);
5417 5418
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5419
								(1 << size * 8) - 1);
5420
		}
5421

5422
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5423 5424 5425
		if (!new_prog)
			return -ENOMEM;

5426
		delta += cnt - 1;
5427 5428 5429

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5430
		insn      = new_prog->insnsi + i + delta;
5431 5432 5433 5434 5435
	}

	return 0;
}

5436 5437 5438 5439
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5440
	struct bpf_insn *insn;
5441 5442 5443
	void *old_bpf_func;
	int err = -ENOMEM;

J
Jiong Wang 已提交
5444
	if (env->subprog_cnt <= 1)
5445 5446
		return 0;

5447
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5448 5449 5450
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
5451 5452 5453 5454
		/* Upon error here we cannot fall back to interpreter but
		 * need a hard reject of the program. Thus -EFAULT is
		 * propagated in any case.
		 */
5455 5456 5457 5458 5459 5460 5461 5462 5463
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
J
Jiong Wang 已提交
5464
		insn->off = subprog;
5465 5466 5467 5468 5469 5470 5471 5472
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

K
Kees Cook 已提交
5473
	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5474
	if (!func)
5475
		goto out_undo_insn;
5476

J
Jiong Wang 已提交
5477
	for (i = 0; i < env->subprog_cnt; i++) {
5478
		subprog_start = subprog_end;
J
Jiong Wang 已提交
5479
		subprog_end = env->subprog_info[i + 1].start;
5480 5481 5482 5483 5484 5485 5486

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5487
		func[i]->type = prog->type;
5488
		func[i]->len = len;
5489 5490
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5491 5492 5493 5494 5495
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
5496
		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
J
Jiong Wang 已提交
5509
	for (i = 0; i < env->subprog_cnt; i++) {
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533

		/* we use the aux data to keep a list of the start addresses
		 * of the JITed images for each function in the program
		 *
		 * for some architectures, such as powerpc64, the imm field
		 * might not be large enough to hold the offset of the start
		 * address of the callee's JITed image from __bpf_call_base
		 *
		 * in such cases, we can lookup the start address of a callee
		 * by using its subprog id, available from the off field of
		 * the call instruction, as an index for this list
		 */
		func[i]->aux->func = func;
		func[i]->aux->func_cnt = env->subprog_cnt;
5534
	}
J
Jiong Wang 已提交
5535
	for (i = 0; i < env->subprog_cnt; i++) {
5536 5537 5538 5539
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5540
			err = -ENOTSUPP;
5541 5542 5543 5544 5545 5546 5547 5548
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
J
Jiong Wang 已提交
5549
	for (i = 0; i < env->subprog_cnt; i++) {
5550 5551 5552
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
5564
		insn->imm = subprog;
5565 5566
	}

5567 5568 5569
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
J
Jiong Wang 已提交
5570
	prog->aux->func_cnt = env->subprog_cnt;
5571 5572
	return 0;
out_free:
J
Jiong Wang 已提交
5573
	for (i = 0; i < env->subprog_cnt; i++)
5574 5575 5576
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
5577
out_undo_insn:
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5590 5591
static int fixup_call_args(struct bpf_verifier_env *env)
{
5592
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5593 5594 5595
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5596 5597
#endif
	int err;
5598

5599 5600 5601 5602
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5603
			return 0;
5604 5605
		if (err == -EFAULT)
			return err;
5606 5607
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5608 5609 5610 5611 5612 5613 5614 5615 5616
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5617 5618 5619
	err = 0;
#endif
	return err;
5620 5621
}

5622
/* fixup insn->imm field of bpf_call instructions
5623
 * and inline eligible helpers as explicit sequence of BPF instructions
5624 5625 5626
 *
 * this function is called after eBPF program passed verification
 */
5627
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5628
{
5629 5630
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5631
	const struct bpf_func_proto *fn;
5632
	const int insn_cnt = prog->len;
5633
	const struct bpf_map_ops *ops;
5634
	struct bpf_insn_aux_data *aux;
5635 5636 5637 5638
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5639

5640
	for (i = 0; i < insn_cnt; i++, insn++) {
5641 5642 5643
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5644
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5672 5673 5674 5675 5676 5677 5678 5679 5680
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
		if (BPF_CLASS(insn->code) == BPF_LD &&
		    (BPF_MODE(insn->code) == BPF_ABS ||
		     BPF_MODE(insn->code) == BPF_IND)) {
			cnt = env->ops->gen_ld_abs(insn, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose(env, "bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5700 5701
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5702 5703
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5704

5705 5706 5707 5708
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5709 5710
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5711
		if (insn->imm == BPF_FUNC_tail_call) {
5712 5713 5714 5715 5716 5717
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5718
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5719

5720 5721 5722 5723
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5724
			 */
5725
			insn->imm = 0;
5726
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5727

5728 5729 5730 5731
			aux = &env->insn_aux_data[i + delta];
			if (!bpf_map_ptr_unpriv(aux))
				continue;

5732 5733 5734 5735 5736 5737
			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
5738
			if (bpf_map_ptr_poisoned(aux)) {
5739
				verbose(env, "tail_call abusing map_ptr\n");
5740 5741
				return -EINVAL;
			}
5742 5743

			map_ptr = BPF_MAP_PTR(aux->map_state);
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5759 5760
			continue;
		}
5761

5762
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5763 5764
		 * and other inlining handlers are currently limited to 64 bit
		 * only.
5765
		 */
5766
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5767 5768 5769
		    (insn->imm == BPF_FUNC_map_lookup_elem ||
		     insn->imm == BPF_FUNC_map_update_elem ||
		     insn->imm == BPF_FUNC_map_delete_elem)) {
5770 5771 5772 5773 5774
			aux = &env->insn_aux_data[i + delta];
			if (bpf_map_ptr_poisoned(aux))
				goto patch_call_imm;

			map_ptr = BPF_MAP_PTR(aux->map_state);
5775 5776 5777 5778 5779 5780 5781 5782
			ops = map_ptr->ops;
			if (insn->imm == BPF_FUNC_map_lookup_elem &&
			    ops->map_gen_lookup) {
				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
					verbose(env, "bpf verifier is misconfigured\n");
					return -EINVAL;
				}
5783

5784 5785 5786 5787
				new_prog = bpf_patch_insn_data(env, i + delta,
							       insn_buf, cnt);
				if (!new_prog)
					return -ENOMEM;
5788

5789 5790 5791 5792 5793
				delta    += cnt - 1;
				env->prog = prog = new_prog;
				insn      = new_prog->insnsi + i + delta;
				continue;
			}
5794

5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
				     (void *(*)(struct bpf_map *map, void *key))NULL));
			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
				     (int (*)(struct bpf_map *map, void *key))NULL));
			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
				     (int (*)(struct bpf_map *map, void *key, void *value,
					      u64 flags))NULL));
			switch (insn->imm) {
			case BPF_FUNC_map_lookup_elem:
				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
					    __bpf_call_base;
				continue;
			case BPF_FUNC_map_update_elem:
				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
					    __bpf_call_base;
				continue;
			case BPF_FUNC_map_delete_elem:
				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
					    __bpf_call_base;
				continue;
			}
5816

5817
			goto patch_call_imm;
5818 5819
		}

5820
		if (insn->imm == BPF_FUNC_redirect_map) {
5821 5822 5823 5824 5825 5826
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5841
patch_call_imm:
5842
		fn = env->ops->get_func_proto(insn->imm, env->prog);
5843 5844 5845 5846
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5847 5848
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5849 5850
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5851
		}
5852
		insn->imm = fn->func - __bpf_call_base;
5853 5854
	}

5855 5856
	return 0;
}
5857

5858
static void free_states(struct bpf_verifier_env *env)
5859
{
5860
	struct bpf_verifier_state_list *sl, *sln;
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5872
				free_verifier_state(&sl->state, false);
5873 5874 5875 5876 5877 5878 5879 5880
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5881
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5882
{
5883
	struct bpf_verifier_env *env;
M
Martin KaFai Lau 已提交
5884
	struct bpf_verifier_log *log;
A
Alexei Starovoitov 已提交
5885 5886
	int ret = -EINVAL;

5887 5888 5889 5890
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5891
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5892 5893
	 * allocate/free it every time bpf_check() is called
	 */
5894
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5895 5896
	if (!env)
		return -ENOMEM;
5897
	log = &env->log;
5898

5899 5900 5901
	env->insn_aux_data =
		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
				   (*prog)->len));
5902 5903 5904
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5905
	env->prog = *prog;
5906
	env->ops = bpf_verifier_ops[env->prog->type];
5907

5908 5909 5910 5911 5912 5913 5914
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5915 5916 5917
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5918 5919

		ret = -EINVAL;
5920 5921 5922
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5923
			goto err_unlock;
5924
	}
5925 5926 5927

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5928
		env->strict_alignment = true;
5929

5930 5931 5932 5933
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5934
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5935 5936
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
5937
			goto skip_full_check;
5938 5939
	}

5940
	env->explored_states = kcalloc(env->prog->len,
5941
				       sizeof(struct bpf_verifier_state_list *),
5942 5943 5944 5945 5946
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5947 5948
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5949 5950 5951 5952
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5953
	ret = do_check(env);
5954 5955 5956 5957
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5958

5959
skip_full_check:
5960
	while (!pop_stack(env, NULL, NULL));
5961
	free_states(env);
5962

A
Alexei Starovoitov 已提交
5963 5964 5965
	if (ret == 0)
		sanitize_dead_code(env);

5966 5967 5968
	if (ret == 0)
		ret = check_max_stack_depth(env);

5969 5970 5971 5972
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5973
	if (ret == 0)
5974
		ret = fixup_bpf_calls(env);
5975

5976 5977 5978
	if (ret == 0)
		ret = fixup_call_args(env);

5979
	if (log->level && bpf_verifier_log_full(log))
5980
		ret = -ENOSPC;
5981
	if (log->level && !log->ubuf) {
5982
		ret = -EFAULT;
5983
		goto err_release_maps;
5984 5985
	}

5986 5987
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5988 5989 5990
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5991

5992
		if (!env->prog->aux->used_maps) {
5993
			ret = -ENOMEM;
5994
			goto err_release_maps;
5995 5996
		}

5997
		memcpy(env->prog->aux->used_maps, env->used_maps,
5998
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5999
		env->prog->aux->used_map_cnt = env->used_map_cnt;
6000 6001 6002 6003 6004 6005

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
6006

6007
err_release_maps:
6008
	if (!env->prog->aux->used_maps)
6009
		/* if we didn't copy map pointers into bpf_prog_info, release
6010
		 * them now. Otherwise free_used_maps() will release them.
6011 6012
		 */
		release_maps(env);
6013
	*prog = env->prog;
6014
err_unlock:
6015
	mutex_unlock(&bpf_verifier_lock);
6016 6017 6018
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
6019 6020
	return ret;
}