verifier.c 167.4 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
Y
Yonghong Song 已提交
25
#include <linux/perf_event.h>
A
Alexei Starovoitov 已提交
26

27 28
#include "disasm.h"

29 30 31 32 33 34 35 36 37
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
38 39 40 41 42 43 44 45 46 47 48 49
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
50
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
78
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
79
 * means the register has some value, but it's not a valid pointer.
80
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
81 82
 *
 * When verifier sees load or store instructions the type of base register
83
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

145
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
146
struct bpf_verifier_stack_elem {
147 148 149 150
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
151
	struct bpf_verifier_state st;
152 153
	int insn_idx;
	int prev_insn_idx;
154
	struct bpf_verifier_stack_elem *next;
155 156
};

157
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 159
#define BPF_COMPLEXITY_LIMIT_STACK	1024

160 161
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

162 163
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
164
	bool raw_mode;
165
	bool pkt_access;
166 167
	int regno;
	int access_size;
168 169
};

170 171
static DEFINE_MUTEX(bpf_verifier_lock);

172 173
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
174
{
175
	unsigned int n;
176

177 178 179 180 181 182 183 184 185 186 187 188
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
189
}
190 191 192 193

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
194
 */
195 196 197 198 199
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

200 201 202
	if (!bpf_verifier_log_needed(&env->log))
		return;

203
	va_start(args, fmt);
204
	bpf_verifier_vlog(&env->log, fmt, args);
205 206 207 208 209 210
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
211
	struct bpf_verifier_env *env = private_data;
212 213
	va_list args;

214 215 216
	if (!bpf_verifier_log_needed(&env->log))
		return;

217
	va_start(args, fmt);
218
	bpf_verifier_vlog(&env->log, fmt, args);
219 220
	va_end(args);
}
221

222 223 224 225 226 227
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

228 229 230
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
231
	[SCALAR_VALUE]		= "inv",
232 233 234 235 236
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
237
	[PTR_TO_PACKET]		= "pkt",
238
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
239
	[PTR_TO_PACKET_END]	= "pkt_end",
240 241
};

242 243 244 245 246 247 248 249 250 251 252
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

253 254 255 256 257 258 259 260
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

261
static void print_verifier_state(struct bpf_verifier_env *env,
262
				 const struct bpf_func_state *state)
263
{
264
	const struct bpf_reg_state *reg;
265 266 267
	enum bpf_reg_type t;
	int i;

268 269
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
270
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
271 272
		reg = &state->regs[i];
		t = reg->type;
273 274
		if (t == NOT_INIT)
			continue;
275 276 277
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
278 279 280
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
281
			verbose(env, "%lld", reg->var_off.value + reg->off);
282 283
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
284
		} else {
285
			verbose(env, "(id=%d", reg->id);
286
			if (t != SCALAR_VALUE)
287
				verbose(env, ",off=%d", reg->off);
288
			if (type_is_pkt_pointer(t))
289
				verbose(env, ",r=%d", reg->range);
290 291 292
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
293
				verbose(env, ",ks=%d,vs=%d",
294 295
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
296 297 298 299 300
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
301
				verbose(env, ",imm=%llx", reg->var_off.value);
302 303 304
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
305
					verbose(env, ",smin_value=%lld",
306 307 308
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
309
					verbose(env, ",smax_value=%lld",
310 311
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
312
					verbose(env, ",umin_value=%llu",
313 314
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
315
					verbose(env, ",umax_value=%llu",
316 317 318
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
319

320
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
321
					verbose(env, ",var_off=%s", tn_buf);
322
				}
323
			}
324
			verbose(env, ")");
325
		}
326
	}
327
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
328 329 330 331 332
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
333
				reg_type_str[state->stack[i].spilled_ptr.type]);
334
		}
335 336
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
337
	}
338
	verbose(env, "\n");
339 340
}

341 342
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
343
{
344 345 346 347 348 349 350 351 352 353 354 355 356 357
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
358
 * the program calls into realloc_func_state() to grow the stack size.
359 360 361 362
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
363 364
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

397 398
static void free_func_state(struct bpf_func_state *state)
{
399 400
	if (!state)
		return;
401 402 403 404
	kfree(state->stack);
	kfree(state);
}

405 406
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
407
{
408 409 410 411 412 413
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
414 415
	if (free_self)
		kfree(state);
416 417 418 419 420
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
421 422
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
423 424 425
{
	int err;

426
	err = realloc_func_state(dst, src->allocated_stack, false);
427 428
	if (err)
		return err;
429
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
430 431 432
	return copy_stack_state(dst, src);
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

461 462 463 464 465 466
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
467 468

	if (env->head == NULL)
469
		return -ENOENT;
470

471 472 473 474 475 476 477
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
478
	if (prev_insn_idx)
479 480
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
481
	free_verifier_state(&head->st, false);
482
	kfree(head);
483 484
	env->head = elem;
	env->stack_size--;
485
	return 0;
486 487
}

488 489
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
490
{
491
	struct bpf_verifier_state *cur = env->cur_state;
492
	struct bpf_verifier_stack_elem *elem;
493
	int err;
494

495
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
496 497 498 499 500 501 502 503
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
504 505 506
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
507
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
508
		verbose(env, "BPF program is too complex\n");
509 510 511 512
		goto err;
	}
	return &elem->st;
err:
513 514
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
515
	/* pop all elements and return */
516
	while (!pop_stack(env, NULL, NULL));
517 518 519 520 521 522 523 524
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

525 526
static void __mark_reg_not_init(struct bpf_reg_state *reg);

527 528 529 530 531 532 533 534 535 536 537 538 539
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

540 541 542 543
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
544
{
545
	__mark_reg_known(reg, 0);
546
}
547

548 549 550 551 552 553 554
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

555 556
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
557 558
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
559
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
560 561 562 563 564 565 566 567
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

659 660 661 662 663 664 665
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
666
	reg->frameno = 0;
667
	__mark_reg_unbounded(reg);
668 669
}

670 671
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
672 673
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
674
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
675 676
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
677 678 679 680 681 682 683 684 685 686 687 688
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

689 690
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
691 692
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
693
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
694 695
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
696 697 698 699
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
700 701
}

702
static void init_reg_state(struct bpf_verifier_env *env,
703
			   struct bpf_func_state *state)
704
{
705
	struct bpf_reg_state *regs = state->regs;
706 707
	int i;

708
	for (i = 0; i < MAX_BPF_REG; i++) {
709
		mark_reg_not_init(env, regs, i);
710 711
		regs[i].live = REG_LIVE_NONE;
	}
712 713

	/* frame pointer */
714
	regs[BPF_REG_FP].type = PTR_TO_STACK;
715
	mark_reg_known_zero(env, regs, BPF_REG_FP);
716
	regs[BPF_REG_FP].frameno = state->frameno;
717 718 719

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
720
	mark_reg_known_zero(env, regs, BPF_REG_1);
721 722
}

723 724 725 726 727 728 729 730 731 732 733
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

734 735 736 737 738 739
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static int cmp_subprogs(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
	u32 *p;

	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
		    sizeof(env->subprog_starts[0]), cmp_subprogs);
	if (!p)
		return -ENOENT;
	return p - env->subprog_starts;

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
	env->subprog_starts[env->subprog_cnt++] = off;
	sort(env->subprog_starts, env->subprog_cnt,
	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
796
			verbose(env, "function calls in offloaded programs are not supported yet\n");
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);

	/* now check that all jumps are within the same subprog */
	subprog_start = 0;
	if (env->subprog_cnt == cur_subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[cur_subprog++];
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
			if (env->subprog_cnt == cur_subprog)
				subprog_end = insn_cnt;
			else
				subprog_end = env->subprog_starts[cur_subprog++];
		}
	}
	return 0;
}

847
static
848 849 850 851
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
852
{
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
892
	return NULL;
893 894 895 896 897 898 899 900
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
901

A
Alexei Starovoitov 已提交
902 903
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
904
		return 0;
A
Alexei Starovoitov 已提交
905

906 907
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
908
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
909
			break;
910 911 912
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
913
		/* ... then we depend on parent's value */
914
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
915 916
		state = parent;
		parent = state->parent;
917
		writes = true;
918
	}
919
	return 0;
920 921 922
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
923 924
			 enum reg_arg_type t)
{
925 926 927
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
928

929
	if (regno >= MAX_BPF_REG) {
930
		verbose(env, "R%d is invalid\n", regno);
931 932 933 934 935 936
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
937
			verbose(env, "R%d !read_ok\n", regno);
938 939
			return -EACCES;
		}
940
		return mark_reg_read(env, vstate, vstate->parent, regno);
941 942 943
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
944
			verbose(env, "frame pointer is read only\n");
945 946
			return -EACCES;
		}
947
		regs[regno].live |= REG_LIVE_WRITTEN;
948
		if (t == DST_OP)
949
			mark_reg_unknown(env, regs, regno);
950 951 952 953
	}
	return 0;
}

954 955 956 957 958 959 960
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
961
	case PTR_TO_PACKET:
962
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
963
	case PTR_TO_PACKET_END:
964 965 966 967 968 969 970
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

971 972 973 974 975 976
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

977 978 979
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
980
static int check_stack_write(struct bpf_verifier_env *env,
981 982
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
983
{
984
	struct bpf_func_state *cur; /* state of the current function */
985
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
986
	enum bpf_reg_type type;
987

988 989
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
990 991
	if (err)
		return err;
992 993 994
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
995 996 997 998 999 1000
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
1001

1002
	cur = env->cur_state->frame[env->cur_state->curframe];
1003
	if (value_regno >= 0 &&
1004
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1005 1006

		/* register containing pointer is being spilled into stack */
1007
		if (size != BPF_REG_SIZE) {
1008
			verbose(env, "invalid size of register spill\n");
1009 1010 1011
			return -EACCES;
		}

1012 1013 1014 1015 1016
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1017
		/* save register state */
1018
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1019
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1020

1021
		for (i = 0; i < BPF_REG_SIZE; i++)
1022
			state->stack[spi].slot_type[i] = STACK_SPILL;
1023
	} else {
1024 1025
		u8 type = STACK_MISC;

1026
		/* regular write of data into stack */
1027
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1045
		for (i = 0; i < size; i++)
1046
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1047
				type;
1048 1049 1050 1051
	}
	return 0;
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1084
{
1085
	bool writes = parent == state->parent; /* Observe write marks */
1086 1087

	while (parent) {
1088 1089 1090 1091 1092 1093 1094 1095
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1096
		/* if read wasn't screened by an earlier write ... */
1097
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1098 1099
			break;
		/* ... then we depend on parent's value */
1100
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1101 1102
		state = parent;
		parent = state->parent;
1103
		writes = true;
1104 1105 1106
	}
}

1107
static int check_stack_read(struct bpf_verifier_env *env,
1108 1109
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1110
{
1111 1112
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1113 1114
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1115

1116
	if (reg_state->allocated_stack <= slot) {
1117 1118 1119 1120
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1121
	stype = reg_state->stack[spi].slot_type;
1122

1123
	if (stype[0] == STACK_SPILL) {
1124
		if (size != BPF_REG_SIZE) {
1125
			verbose(env, "invalid size of register spill\n");
1126 1127
			return -EACCES;
		}
1128
		for (i = 1; i < BPF_REG_SIZE; i++) {
1129
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1130
				verbose(env, "corrupted spill memory\n");
1131 1132 1133 1134
				return -EACCES;
			}
		}

1135
		if (value_regno >= 0) {
1136
			/* restore register state from stack */
1137
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1138 1139 1140 1141 1142
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1143
		}
1144 1145
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1146 1147
		return 0;
	} else {
1148 1149
		int zeros = 0;

1150
		for (i = 0; i < size; i++) {
1151 1152 1153 1154 1155
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1156
			}
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1174 1175 1176 1177 1178 1179
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1180
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1181
			      int size, bool zero_size_allowed)
1182
{
1183 1184
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1185

1186 1187
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1188
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1189 1190 1191 1192 1193 1194
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1195 1196
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1197
			    int off, int size, bool zero_size_allowed)
1198
{
1199 1200
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1201 1202 1203
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1204 1205 1206
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1207
	 */
1208 1209
	if (env->log.level)
		print_verifier_state(env, state);
1210 1211 1212 1213 1214 1215
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1216
	if (reg->smin_value < 0) {
1217
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1218 1219 1220
			regno);
		return -EACCES;
	}
1221 1222
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1223
	if (err) {
1224 1225
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1226 1227 1228
		return err;
	}

1229 1230 1231
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1232
	 */
1233
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1234
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1235 1236 1237
			regno);
		return -EACCES;
	}
1238 1239
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1240
	if (err)
1241 1242
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1243
	return err;
1244 1245
}

A
Alexei Starovoitov 已提交
1246 1247
#define MAX_PACKET_OFF 0xffff

1248
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1249 1250
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1251
{
1252
	switch (env->prog->type) {
1253 1254 1255 1256 1257
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1258
		/* fallthrough */
1259 1260
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1261
	case BPF_PROG_TYPE_XDP:
1262
	case BPF_PROG_TYPE_LWT_XMIT:
1263
	case BPF_PROG_TYPE_SK_SKB:
1264
	case BPF_PROG_TYPE_SK_MSG:
1265 1266 1267 1268
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1269 1270 1271 1272 1273 1274
		return true;
	default:
		return false;
	}
}

1275
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1276
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1277
{
1278
	struct bpf_reg_state *regs = cur_regs(env);
1279
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1280

1281 1282
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1283
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1284
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1285 1286 1287 1288 1289
		return -EACCES;
	}
	return 0;
}

1290
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1291
			       int size, bool zero_size_allowed)
1292
{
1293
	struct bpf_reg_state *regs = cur_regs(env);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1305
	if (reg->smin_value < 0) {
1306
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1307 1308 1309
			regno);
		return -EACCES;
	}
1310
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1311
	if (err) {
1312
		verbose(env, "R%d offset is outside of the packet\n", regno);
1313 1314 1315 1316 1317 1318
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1319
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1320
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1321
{
1322 1323 1324
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1325

1326
	if (env->ops->is_valid_access &&
1327
	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1328 1329 1330 1331 1332 1333
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1334
		 */
1335
		*reg_type = info.reg_type;
1336

1337
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1338 1339 1340
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1341
		return 0;
1342
	}
1343

1344
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1345 1346 1347
	return -EACCES;
}

1348 1349
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1350
{
1351
	if (allow_ptr_leaks)
1352 1353
		return false;

1354
	return reg->type != SCALAR_VALUE;
1355 1356
}

1357 1358
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1359
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1360 1361
}

1362 1363 1364 1365 1366 1367 1368
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1369 1370 1371 1372 1373 1374 1375
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1376 1377
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1378
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1379
{
1380
	struct tnum reg_off;
1381
	int ip_align;
1382 1383 1384 1385 1386

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1387 1388 1389 1390 1391 1392 1393
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1394
	 */
1395
	ip_align = 2;
1396 1397 1398 1399 1400 1401

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1402 1403
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1404
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1405 1406
		return -EACCES;
	}
1407

A
Alexei Starovoitov 已提交
1408 1409 1410
	return 0;
}

1411 1412
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1413 1414
				       const char *pointer_desc,
				       int off, int size, bool strict)
1415
{
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1427
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1428
			pointer_desc, tn_buf, reg->off, off, size);
1429 1430 1431
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1432 1433 1434
	return 0;
}

1435
static int check_ptr_alignment(struct bpf_verifier_env *env,
1436 1437
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1438
{
1439
	bool strict = env->strict_alignment || strict_alignment_once;
1440
	const char *pointer_desc = "";
1441

1442 1443
	switch (reg->type) {
	case PTR_TO_PACKET:
1444 1445 1446 1447
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1448
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1449 1450 1451 1452 1453 1454 1455 1456
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1457 1458 1459 1460 1461
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1462
		break;
1463
	default:
1464
		break;
1465
	}
1466 1467
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1468 1469
}

1470 1471 1472 1473
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1474
	u16 stack = env->subprog_stack_depth[func->subprogno];
1475 1476 1477 1478 1479 1480

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
	env->subprog_stack_depth[func->subprogno] = -off;
1481 1482
	return 0;
}
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
	int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1497

1498 1499 1500 1501 1502 1503
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
	depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	if (depth > MAX_BPF_STACK) {
1504
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1505
			frame + 1, depth);
1506 1507
		return -EACCES;
	}
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
continue_func:
	if (env->subprog_cnt == subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[subprog];
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
		ret_prog[frame] = subprog;

		/* find the callee */
		i = i + insn[i].imm + 1;
		subprog = find_subprog(env, i);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		subprog++;
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
	depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	frame--;
	i = ret_insn[frame];
	subprog = ret_prog[frame];
	goto continue_func;
1548 1549
}

1550
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
	subprog++;
	return env->subprog_stack_depth[subprog];
}
1565
#endif
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1590 1591 1592 1593 1594 1595
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1596 1597 1598
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1599
{
1600 1601
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1602
	struct bpf_func_state *state;
1603 1604 1605 1606 1607 1608
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1609
	/* alignment checks will add in reg->off themselves */
1610
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1611 1612
	if (err)
		return err;
1613

1614 1615 1616 1617
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1618 1619
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1620
			verbose(env, "R%d leaks addr into map\n", value_regno);
1621 1622
			return -EACCES;
		}
1623

1624
		err = check_map_access(env, regno, off, size, false);
1625
		if (!err && t == BPF_READ && value_regno >= 0)
1626
			mark_reg_unknown(env, regs, value_regno);
1627

A
Alexei Starovoitov 已提交
1628
	} else if (reg->type == PTR_TO_CTX) {
1629
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1630

1631 1632
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1633
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1634 1635
			return -EACCES;
		}
1636 1637 1638
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1639
		if (reg->off) {
1640 1641
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1642 1643 1644 1645
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1646 1647 1648
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1649 1650
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1651 1652 1653
				tn_buf, off, size);
			return -EACCES;
		}
1654
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1655
		if (!err && t == BPF_READ && value_regno >= 0) {
1656
			/* ctx access returns either a scalar, or a
1657 1658
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1659 1660
			 */
			if (reg_type == SCALAR_VALUE)
1661
				mark_reg_unknown(env, regs, value_regno);
1662
			else
1663
				mark_reg_known_zero(env, regs,
1664
						    value_regno);
1665 1666 1667 1668
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1669
		}
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1680
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1681 1682 1683 1684
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1685
		if (off >= 0 || off < -MAX_BPF_STACK) {
1686 1687
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1688 1689
			return -EACCES;
		}
1690

1691 1692 1693 1694
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1695

1696
		if (t == BPF_WRITE)
1697 1698
			err = check_stack_write(env, state, off, size,
						value_regno);
1699
		else
1700 1701
			err = check_stack_read(env, state, off, size,
					       value_regno);
1702
	} else if (reg_is_pkt_pointer(reg)) {
1703
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1704
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1705 1706
			return -EACCES;
		}
1707 1708
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1709 1710
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1711 1712
			return -EACCES;
		}
1713
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1714
		if (!err && t == BPF_READ && value_regno >= 0)
1715
			mark_reg_unknown(env, regs, value_regno);
1716
	} else {
1717 1718
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1719 1720
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1721

1722
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1723
	    regs[value_regno].type == SCALAR_VALUE) {
1724
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1725
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1726
	}
1727 1728 1729
	return err;
}

1730
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1731 1732 1733 1734 1735
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1736
		verbose(env, "BPF_XADD uses reserved fields\n");
1737 1738 1739 1740
		return -EINVAL;
	}

	/* check src1 operand */
1741
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1742 1743 1744 1745
	if (err)
		return err;

	/* check src2 operand */
1746
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1747 1748 1749
	if (err)
		return err;

1750
	if (is_pointer_value(env, insn->src_reg)) {
1751
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1752 1753 1754
		return -EACCES;
	}

1755 1756 1757 1758 1759
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1760 1761 1762
		return -EACCES;
	}

1763
	/* check whether atomic_add can read the memory */
1764
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1765
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1766 1767 1768 1769
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1770
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1771
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1772 1773 1774 1775
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1776 1777 1778
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1779
 */
1780
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1781 1782
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1783
{
1784
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1785
	struct bpf_func_state *state = func(env, reg);
1786
	int off, i, slot, spi;
1787

1788
	if (reg->type != PTR_TO_STACK) {
1789
		/* Allow zero-byte read from NULL, regardless of pointer type */
1790
		if (zero_size_allowed && access_size == 0 &&
1791
		    register_is_null(reg))
1792 1793
			return 0;

1794
		verbose(env, "R%d type=%s expected=%s\n", regno,
1795
			reg_type_str[reg->type],
1796
			reg_type_str[PTR_TO_STACK]);
1797
		return -EACCES;
1798
	}
1799

1800
	/* Only allow fixed-offset stack reads */
1801
	if (!tnum_is_const(reg->var_off)) {
1802 1803
		char tn_buf[48];

1804
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1805
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1806
			regno, tn_buf);
1807
		return -EACCES;
1808
	}
1809
	off = reg->off + reg->var_off.value;
1810
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1811
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1812
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1813 1814 1815 1816
			regno, off, access_size);
		return -EACCES;
	}

1817 1818 1819 1820 1821 1822
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1823
	for (i = 0; i < access_size; i++) {
1824 1825
		u8 *stype;

1826 1827
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1828 1829 1830 1831 1832 1833 1834 1835 1836
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1837
		}
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1848
	}
1849
	return update_stack_depth(env, state, off);
1850 1851
}

1852 1853 1854 1855
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1856
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1857

1858
	switch (reg->type) {
1859
	case PTR_TO_PACKET:
1860
	case PTR_TO_PACKET_META:
1861 1862
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1863
	case PTR_TO_MAP_VALUE:
1864 1865
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1866
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1867 1868 1869 1870 1871
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1885
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1886 1887
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1888
{
1889
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1890
	enum bpf_reg_type expected_type, type = reg->type;
1891 1892
	int err = 0;

1893
	if (arg_type == ARG_DONTCARE)
1894 1895
		return 0;

1896 1897 1898
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1899

1900 1901
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1902 1903
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1904 1905
			return -EACCES;
		}
1906
		return 0;
1907
	}
1908

1909
	if (type_is_pkt_pointer(type) &&
1910
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1911
		verbose(env, "helper access to the packet is not allowed\n");
1912 1913 1914
		return -EACCES;
	}

1915
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1916 1917
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1918
		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1919
		    type != expected_type)
1920
			goto err_type;
1921 1922
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1923 1924
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1925
			goto err_type;
1926 1927
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1928 1929
		if (type != expected_type)
			goto err_type;
1930 1931
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1932 1933
		if (type != expected_type)
			goto err_type;
1934
	} else if (arg_type_is_mem_ptr(arg_type)) {
1935 1936
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1937
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1938 1939
		 * happens during stack boundary checking.
		 */
1940
		if (register_is_null(reg) &&
1941
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1942
			/* final test in check_stack_boundary() */;
1943 1944
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1945
			 type != expected_type)
1946
			goto err_type;
1947
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1948
	} else {
1949
		verbose(env, "unsupported arg_type %d\n", arg_type);
1950 1951 1952 1953 1954
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1955
		meta->map_ptr = reg->map_ptr;
1956 1957 1958 1959 1960
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1961
		if (!meta->map_ptr) {
1962 1963 1964 1965 1966
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1967
			verbose(env, "invalid map_ptr to access map->key\n");
1968 1969
			return -EACCES;
		}
1970 1971 1972
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->key_size, false,
					      NULL);
1973 1974 1975 1976
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1977
		if (!meta->map_ptr) {
1978
			/* kernel subsystem misconfigured verifier */
1979
			verbose(env, "invalid map_ptr to access map->value\n");
1980 1981
			return -EACCES;
		}
1982 1983 1984
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->value_size, false,
					      NULL);
1985
	} else if (arg_type_is_mem_size(arg_type)) {
1986
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1987

1988 1989
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1990
		 */
1991
		if (!tnum_is_const(reg->var_off))
1992 1993 1994 1995 1996 1997 1998
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1999
		if (reg->smin_value < 0) {
2000
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2001 2002 2003
				regno);
			return -EACCES;
		}
2004

2005
		if (reg->umin_value == 0) {
2006 2007 2008
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2009 2010 2011
			if (err)
				return err;
		}
2012

2013
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2014
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2015 2016 2017 2018
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2019
					      reg->umax_value,
2020
					      zero_size_allowed, meta);
2021 2022 2023
	}

	return err;
2024
err_type:
2025
	verbose(env, "R%d type=%s expected=%s\n", regno,
2026 2027
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2028 2029
}

2030 2031
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2032 2033 2034 2035
{
	if (!map)
		return 0;

2036 2037 2038 2039 2040 2041 2042 2043
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2044 2045
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2046 2047 2048 2049 2050 2051
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2052
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2053
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2054
		    func_id != BPF_FUNC_current_task_under_cgroup)
2055 2056
			goto error;
		break;
2057 2058 2059 2060 2061
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2062
		if (func_id != BPF_FUNC_redirect_map)
2063 2064
			goto error;
		break;
2065 2066 2067 2068 2069
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2070
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2071
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2072 2073
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2074
		break;
2075 2076 2077
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2078 2079
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2080 2081
			goto error;
		break;
2082 2083 2084 2085 2086 2087 2088 2089 2090
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
2091 2092 2093 2094
		if (env->subprog_cnt) {
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2095 2096 2097
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2098
	case BPF_FUNC_perf_event_read_value:
2099 2100 2101 2102 2103 2104 2105
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2106
	case BPF_FUNC_current_task_under_cgroup:
2107
	case BPF_FUNC_skb_under_cgroup:
2108 2109 2110
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2111
	case BPF_FUNC_redirect_map:
2112 2113
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
2114 2115
			goto error;
		break;
2116
	case BPF_FUNC_sk_redirect_map:
2117
	case BPF_FUNC_msg_redirect_map:
2118 2119 2120 2121 2122 2123 2124
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2125 2126
	default:
		break;
2127 2128 2129
	}

	return 0;
2130
error:
2131
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2132
		map->map_type, func_id_name(func_id), func_id);
2133
	return -EINVAL;
2134 2135
}

2136
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2137 2138 2139
{
	int count = 0;

2140
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2141
		count++;
2142
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2143
		count++;
2144
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2145
		count++;
2146
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2147
		count++;
2148
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2149 2150
		count++;

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2189 2190
}

2191 2192
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2193
 */
2194 2195
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2196
{
2197
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2198 2199 2200
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2201
		if (reg_is_pkt_pointer_any(&regs[i]))
2202
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2203

2204 2205
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2206
			continue;
2207
		reg = &state->stack[i].spilled_ptr;
2208 2209
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2210 2211 2212
	}
}

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2229
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2230
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2231
			state->curframe + 2);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
			subprog + 1 /* subprog number within this prog */);

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2328 2329
{
	const struct bpf_func_proto *fn = NULL;
2330
	struct bpf_reg_state *regs;
2331
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2332
	bool changes_data;
2333 2334 2335 2336
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2337 2338
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2339 2340 2341
		return -EINVAL;
	}

2342
	if (env->ops->get_func_proto)
2343
		fn = env->ops->get_func_proto(func_id, env->prog);
2344
	if (!fn) {
2345 2346
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2347 2348 2349 2350
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2351
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2352
		verbose(env, "cannot call GPL only function from proprietary program\n");
2353 2354 2355
		return -EINVAL;
	}

2356
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2357
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2358 2359 2360 2361 2362
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2363

2364
	memset(&meta, 0, sizeof(meta));
2365
	meta.pkt_access = fn->pkt_access;
2366

2367
	err = check_func_proto(fn);
2368
	if (err) {
2369
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2370
			func_id_name(func_id), func_id);
2371 2372 2373
		return err;
	}

2374
	/* check args */
2375
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2376 2377
	if (err)
		return err;
2378
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2379 2380
	if (err)
		return err;
2381 2382 2383 2384 2385 2386 2387
	if (func_id == BPF_FUNC_tail_call) {
		if (meta.map_ptr == NULL) {
			verbose(env, "verifier bug\n");
			return -EINVAL;
		}
		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
	}
2388
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2389 2390
	if (err)
		return err;
2391
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2392 2393
	if (err)
		return err;
2394
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2395 2396 2397
	if (err)
		return err;

2398 2399 2400 2401
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2402 2403
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2404 2405 2406 2407
		if (err)
			return err;
	}

2408
	regs = cur_regs(env);
2409
	/* reset caller saved regs */
2410
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2411
		mark_reg_not_init(env, regs, caller_saved[i]);
2412 2413
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2414

2415
	/* update return register (already marked as written above) */
2416
	if (fn->ret_type == RET_INTEGER) {
2417
		/* sets type to SCALAR_VALUE */
2418
		mark_reg_unknown(env, regs, BPF_REG_0);
2419 2420 2421
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2422 2423
		struct bpf_insn_aux_data *insn_aux;

2424
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2425
		/* There is no offset yet applied, variable or fixed */
2426
		mark_reg_known_zero(env, regs, BPF_REG_0);
2427
		regs[BPF_REG_0].off = 0;
2428 2429 2430 2431
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2432
		if (meta.map_ptr == NULL) {
2433 2434
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2435 2436
			return -EINVAL;
		}
2437
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2438
		regs[BPF_REG_0].id = ++env->id_gen;
2439 2440 2441 2442 2443
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2444
	} else {
2445
		verbose(env, "unknown return type %d of func %s#%d\n",
2446
			fn->ret_type, func_id_name(func_id), func_id);
2447 2448
		return -EINVAL;
	}
2449

2450
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2451 2452
	if (err)
		return err;
2453

Y
Yonghong Song 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
		const char *err_str;

#ifdef CONFIG_PERF_EVENTS
		err = get_callchain_buffers(sysctl_perf_event_max_stack);
		err_str = "cannot get callchain buffer for func %s#%d\n";
#else
		err = -ENOTSUPP;
		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
		if (err) {
			verbose(env, err_str, func_id_name(func_id), func_id);
			return err;
		}

		env->prog->has_callchain_buf = true;
	}

A
Alexei Starovoitov 已提交
2472 2473 2474 2475 2476
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2495 2496
}

A
Alexei Starovoitov 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2532 2533 2534 2535 2536 2537 2538 2539 2540
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2541
{
2542 2543 2544
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2545
	bool known = tnum_is_const(off_reg->var_off);
2546 2547 2548 2549
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2550
	u8 opcode = BPF_OP(insn->code);
2551
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2552

2553
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2554

2555 2556 2557 2558 2559 2560 2561
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2562 2563 2564 2565
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2566 2567 2568
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2569
		return -EACCES;
A
Alexei Starovoitov 已提交
2570 2571
	}

2572
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2573 2574
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2575 2576 2577
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2578 2579
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2580 2581 2582
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2583 2584
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2585 2586 2587 2588 2589
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2590
	 */
2591 2592
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2593

A
Alexei Starovoitov 已提交
2594 2595 2596 2597
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2598 2599 2600 2601
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2602
		 */
2603 2604
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2605
			/* pointer += K.  Accumulate it into fixed offset */
2606 2607 2608 2609
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2610
			dst_reg->var_off = ptr_reg->var_off;
2611
			dst_reg->off = ptr_reg->off + smin_val;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2623
		 */
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2640 2641
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2642
		if (reg_is_pkt_pointer(ptr_reg)) {
2643 2644 2645 2646 2647 2648 2649 2650
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2651 2652
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2653 2654 2655 2656 2657
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2658
		 */
2659
		if (ptr_reg->type == PTR_TO_STACK) {
2660 2661
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2662 2663
			return -EACCES;
		}
2664 2665
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2666
			/* pointer -= K.  Subtract it from fixed offset */
2667 2668 2669 2670
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2671 2672
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2673
			dst_reg->off = ptr_reg->off - smin_val;
2674 2675 2676 2677 2678
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2679
		 */
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2698 2699
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2700
		if (reg_is_pkt_pointer(ptr_reg)) {
2701 2702
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2703
			if (smin_val < 0)
2704
				dst_reg->range = 0;
2705
		}
2706 2707 2708 2709
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2710 2711 2712
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2713 2714 2715
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2716 2717
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2718
		return -EACCES;
2719 2720
	}

A
Alexei Starovoitov 已提交
2721 2722 2723
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2724 2725 2726
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2727 2728 2729
	return 0;
}

J
Jann Horn 已提交
2730 2731 2732 2733
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2734 2735 2736 2737
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2738
{
2739
	struct bpf_reg_state *regs = cur_regs(env);
2740
	u8 opcode = BPF_OP(insn->code);
2741
	bool src_known, dst_known;
2742 2743
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2744
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2745

2746 2747 2748 2749
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2750 2751
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2752

2753 2754 2755 2756 2757 2758 2759 2760 2761
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2762 2763 2764 2765 2766 2767
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2768 2769
	switch (opcode) {
	case BPF_ADD:
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2786
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2787 2788
		break;
	case BPF_SUB:
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2807
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2808 2809
		break;
	case BPF_MUL:
2810 2811
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2812
			/* Ain't nobody got time to multiply that sign */
2813 2814
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2815 2816
			break;
		}
2817 2818
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2819
		 */
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2837 2838
		break;
	case BPF_AND:
2839
		if (src_known && dst_known) {
2840 2841
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2842 2843
			break;
		}
2844 2845
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2846
		 */
2847
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2865 2866 2867
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2868 2869
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2870 2871
			break;
		}
2872 2873
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2874 2875
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2876 2877 2878 2879 2880 2881 2882 2883 2884
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2885
		} else {
2886 2887 2888 2889 2890
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2891
		}
2892 2893
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2894 2895
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2896 2897 2898
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2899
			 */
2900
			mark_reg_unknown(env, regs, insn->dst_reg);
2901 2902
			break;
		}
2903 2904
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2905
		 */
2906 2907 2908 2909 2910 2911
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2912
		} else {
2913 2914
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2915
		}
2916 2917 2918 2919 2920 2921
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2922 2923
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2924 2925 2926
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2927
			 */
2928
			mark_reg_unknown(env, regs, insn->dst_reg);
2929 2930
			break;
		}
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2947
		if (src_known)
2948 2949
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2950
		else
2951 2952 2953 2954 2955
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2956 2957
		break;
	default:
2958
		mark_reg_unknown(env, regs, insn->dst_reg);
2959 2960 2961
		break;
	}

J
Jann Horn 已提交
2962 2963 2964 2965 2966 2967
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

2968 2969
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2970 2971 2972 2973 2974 2975 2976 2977 2978
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2979 2980 2981
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
2994 2995
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
2996
				 */
2997 2998 2999
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
3000
				}
3001 3002 3003 3004
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
3005 3006 3007 3008 3009
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
3010 3011
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3012 3013 3014
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3015 3016
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3017 3018 3019 3020 3021 3022
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3023
		__mark_reg_known(&off_reg, insn->imm);
3024
		src_reg = &off_reg;
3025 3026 3027
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3028 3029 3030 3031
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3032
		print_verifier_state(env, state);
3033
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3034 3035 3036
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3037
		print_verifier_state(env, state);
3038
		verbose(env, "verifier internal error: no src_reg\n");
3039 3040 3041
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3042 3043
}

3044
/* check validity of 32-bit and 64-bit arithmetic operations */
3045
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3046
{
3047
	struct bpf_reg_state *regs = cur_regs(env);
3048 3049 3050 3051 3052 3053 3054 3055
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3056
				verbose(env, "BPF_NEG uses reserved fields\n");
3057 3058 3059 3060
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3061 3062
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3063
				verbose(env, "BPF_END uses reserved fields\n");
3064 3065 3066 3067 3068
				return -EINVAL;
			}
		}

		/* check src operand */
3069
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3070 3071 3072
		if (err)
			return err;

3073
		if (is_pointer_value(env, insn->dst_reg)) {
3074
			verbose(env, "R%d pointer arithmetic prohibited\n",
3075 3076 3077 3078
				insn->dst_reg);
			return -EACCES;
		}

3079
		/* check dest operand */
3080
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3081 3082 3083 3084 3085 3086 3087
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3088
				verbose(env, "BPF_MOV uses reserved fields\n");
3089 3090 3091 3092
				return -EINVAL;
			}

			/* check src operand */
3093
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3094 3095 3096 3097
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3098
				verbose(env, "BPF_MOV uses reserved fields\n");
3099 3100 3101 3102 3103
				return -EINVAL;
			}
		}

		/* check dest operand */
3104
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3105 3106 3107 3108 3109 3110 3111 3112 3113
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3114
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3115
			} else {
3116
				/* R1 = (u32) R2 */
3117
				if (is_pointer_value(env, insn->src_reg)) {
3118 3119
					verbose(env,
						"R%d partial copy of pointer\n",
3120 3121 3122
						insn->src_reg);
					return -EACCES;
				}
3123
				mark_reg_unknown(env, regs, insn->dst_reg);
3124
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3125 3126 3127 3128 3129
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3130
			regs[insn->dst_reg].type = SCALAR_VALUE;
3131 3132 3133 3134 3135 3136 3137
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3138 3139 3140
		}

	} else if (opcode > BPF_END) {
3141
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3142 3143 3144 3145 3146 3147
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3148
				verbose(env, "BPF_ALU uses reserved fields\n");
3149 3150 3151
				return -EINVAL;
			}
			/* check src1 operand */
3152
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3153 3154 3155 3156
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3157
				verbose(env, "BPF_ALU uses reserved fields\n");
3158 3159 3160 3161 3162
				return -EINVAL;
			}
		}

		/* check src2 operand */
3163
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3164 3165 3166 3167 3168
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3169
			verbose(env, "div by zero\n");
3170 3171 3172
			return -EINVAL;
		}

3173 3174 3175 3176 3177
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3178 3179 3180 3181 3182
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3183
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3184 3185 3186 3187
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3188
		/* check dest operand */
3189
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3190 3191 3192
		if (err)
			return err;

3193
		return adjust_reg_min_max_vals(env, insn);
3194 3195 3196 3197 3198
	}

	return 0;
}

3199
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3200
				   struct bpf_reg_state *dst_reg,
3201
				   enum bpf_reg_type type,
3202
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3203
{
3204
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3205
	struct bpf_reg_state *regs = state->regs, *reg;
3206
	u16 new_range;
3207
	int i, j;
3208

3209 3210
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3211 3212 3213
		/* This doesn't give us any range */
		return;

3214 3215
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3216 3217 3218 3219 3220
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3221 3222 3223 3224 3225
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3226
	 *
3227
	 * pkt_data in dst register:
3228 3229 3230 3231 3232 3233
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3234 3235 3236 3237 3238
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3239 3240 3241 3242 3243
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3244
	 * pkt_data in src register:
3245 3246 3247 3248 3249 3250
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3251 3252 3253 3254 3255
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3256 3257 3258 3259 3260 3261
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3262 3263 3264
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3265
	 */
3266

3267 3268 3269 3270 3271
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3272
	for (i = 0; i < MAX_BPF_REG; i++)
3273
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3274
			/* keep the maximum range already checked */
3275
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3286 3287 3288
	}
}

3289 3290 3291
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3292
 * In JEQ/JNE cases we also adjust the var_off values.
3293 3294 3295 3296 3297
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3298 3299 3300 3301 3302 3303 3304 3305
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3306

3307 3308 3309 3310 3311
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3312
		__mark_reg_known(true_reg, val);
3313 3314 3315 3316 3317
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3318
		__mark_reg_known(false_reg, val);
3319 3320
		break;
	case BPF_JGT:
3321 3322 3323
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3324
	case BPF_JSGT:
3325 3326
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3327
		break;
3328 3329 3330 3331 3332 3333 3334 3335
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3336
	case BPF_JGE:
3337 3338 3339
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3340
	case BPF_JSGE:
3341 3342
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3343
		break;
3344 3345 3346 3347 3348 3349 3350 3351
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3352 3353 3354 3355
	default:
		break;
	}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3367 3368
}

3369 3370
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3371 3372 3373 3374 3375
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3376 3377
	if (__is_pointer_value(false, false_reg))
		return;
3378

3379 3380 3381 3382 3383
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3384
		__mark_reg_known(true_reg, val);
3385 3386 3387 3388 3389
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3390
		__mark_reg_known(false_reg, val);
3391 3392
		break;
	case BPF_JGT:
3393 3394 3395
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3396
	case BPF_JSGT:
3397 3398
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3399
		break;
3400 3401 3402 3403 3404 3405 3406 3407
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3408
	case BPF_JGE:
3409 3410 3411
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3412
	case BPF_JSGE:
3413 3414
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3415
		break;
3416 3417 3418 3419 3420 3421 3422 3423
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3424 3425 3426 3427
	default:
		break;
	}

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3439 3440 3441 3442 3443 3444
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3445 3446 3447 3448 3449 3450 3451 3452
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3453 3454
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3484
		break;
3485
	}
3486 3487
}

3488
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3489
			 bool is_null)
3490 3491 3492 3493
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3494 3495 3496 3497
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3498 3499
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3500
				 reg->off)) {
3501 3502
			__mark_reg_known_zero(reg);
			reg->off = 0;
3503 3504 3505
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3506 3507 3508 3509
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3510
			reg->type = PTR_TO_MAP_VALUE;
3511
		}
3512 3513 3514 3515 3516
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3517 3518 3519 3520 3521 3522
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3523
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3524
			  bool is_null)
3525
{
3526
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3527
	struct bpf_reg_state *regs = state->regs;
3528
	u32 id = regs[regno].id;
3529
	int i, j;
3530 3531

	for (i = 0; i < MAX_BPF_REG; i++)
3532
		mark_map_reg(regs, i, id, is_null);
3533

3534 3535 3536 3537 3538 3539 3540
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3541 3542 3543
	}
}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3637
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3638 3639
			     struct bpf_insn *insn, int *insn_idx)
{
3640 3641 3642 3643
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3644 3645 3646
	u8 opcode = BPF_OP(insn->code);
	int err;

3647
	if (opcode > BPF_JSLE) {
3648
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3649 3650 3651 3652 3653
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3654
			verbose(env, "BPF_JMP uses reserved fields\n");
3655 3656 3657 3658
			return -EINVAL;
		}

		/* check src1 operand */
3659
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3660 3661
		if (err)
			return err;
3662 3663

		if (is_pointer_value(env, insn->src_reg)) {
3664
			verbose(env, "R%d pointer comparison prohibited\n",
3665 3666 3667
				insn->src_reg);
			return -EACCES;
		}
3668 3669
	} else {
		if (insn->src_reg != BPF_REG_0) {
3670
			verbose(env, "BPF_JMP uses reserved fields\n");
3671 3672 3673 3674 3675
			return -EINVAL;
		}
	}

	/* check src2 operand */
3676
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3677 3678 3679
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3680 3681
	dst_reg = &regs[insn->dst_reg];

3682 3683 3684
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3685
	    dst_reg->type == SCALAR_VALUE &&
3686 3687 3688
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3706
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3707

3708 3709
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3710 3711 3712 3713
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3714 3715
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3716 3717 3718
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3719
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3720 3721 3722
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3723
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3724 3725 3726 3727
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3728 3729
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3730 3731 3732 3733
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3734
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3735 3736 3737
					dst_reg, insn->imm, opcode);
	}

3738
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3739
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3740 3741
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3742 3743 3744
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3745 3746
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3747 3748 3749
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3750 3751
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3752
		return -EACCES;
3753
	}
3754
	if (env->log.level)
3755
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3756 3757 3758
	return 0;
}

3759 3760 3761 3762 3763 3764 3765 3766
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3767
/* verify BPF_LD_IMM64 instruction */
3768
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3769
{
3770
	struct bpf_reg_state *regs = cur_regs(env);
3771 3772 3773
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3774
		verbose(env, "invalid BPF_LD_IMM insn\n");
3775 3776 3777
		return -EINVAL;
	}
	if (insn->off != 0) {
3778
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3779 3780 3781
		return -EINVAL;
	}

3782
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3783 3784 3785
	if (err)
		return err;

3786 3787 3788
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3789
		regs[insn->dst_reg].type = SCALAR_VALUE;
3790
		__mark_reg_known(&regs[insn->dst_reg], imm);
3791
		return 0;
3792
	}
3793 3794 3795 3796 3797 3798 3799 3800 3801

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3802 3803 3804 3805 3806
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3807
	case BPF_PROG_TYPE_SCHED_ACT:
3808 3809 3810 3811 3812 3813
		return true;
	default:
		return false;
	}
}

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3829
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3830
{
3831
	struct bpf_reg_state *regs = cur_regs(env);
3832 3833 3834
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3835
	if (!may_access_skb(env->prog->type)) {
3836
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3837 3838 3839
		return -EINVAL;
	}

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	if (env->subprog_cnt) {
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3852
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3853
	    BPF_SIZE(insn->code) == BPF_DW ||
3854
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3855
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3856 3857 3858 3859
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3860
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3861 3862 3863 3864
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3865 3866
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3867 3868 3869 3870 3871
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3872
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3873 3874 3875 3876 3877
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3878
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3879
		mark_reg_not_init(env, regs, caller_saved[i]);
3880 3881
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3882 3883

	/* mark destination R0 register as readable, since it contains
3884 3885
	 * the value fetched from the packet.
	 * Already marked as written above.
3886
	 */
3887
	mark_reg_unknown(env, regs, BPF_REG_0);
3888 3889 3890
	return 0;
}

3891 3892 3893 3894 3895 3896 3897 3898
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
A
Andrey Ignatov 已提交
3899
	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3900
	case BPF_PROG_TYPE_SOCK_OPS:
3901
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3902 3903 3904 3905 3906
		break;
	default:
		return 0;
	}

3907
	reg = cur_regs(env) + BPF_REG_0;
3908
	if (reg->type != SCALAR_VALUE) {
3909
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3910 3911 3912 3913 3914
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3915
		verbose(env, "At program exit the register R0 ");
3916 3917 3918 3919
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3920
			verbose(env, "has value %s", tn_buf);
3921
		} else {
3922
			verbose(env, "has unknown scalar value");
3923
		}
3924
		verbose(env, " should have been 0 or 1\n");
3925 3926 3927 3928 3929
		return -EINVAL;
	}
	return 0;
}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3970
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3971

3972 3973 3974 3975 3976 3977 3978 3979 3980
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3981
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3982 3983 3984 3985 3986 3987 3988 3989
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3990
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3991 3992 3993
		return -EINVAL;
	}

3994 3995 3996 3997
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3998 3999 4000 4001 4002 4003 4004 4005 4006
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4007
		verbose(env, "back-edge from insn %d to %d\n", t, w);
4008 4009 4010 4011 4012
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4013
		verbose(env, "insn state internal bug\n");
4014 4015 4016 4017 4018 4019 4020 4021
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4022
static int check_cfg(struct bpf_verifier_env *env)
4023 4024 4025 4026 4027 4028
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4029 4030 4031 4032
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4063 4064
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4065 4066 4067 4068 4069 4070 4071 4072
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4085 4086 4087
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4088 4089
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4090 4091
		} else {
			/* conditional jump with two edges */
4092
			env->explored_states[t] = STATE_LIST_MARK;
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4119
		verbose(env, "pop stack internal bug\n");
4120 4121 4122 4123 4124 4125 4126 4127
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4128
			verbose(env, "unreachable insn %d\n", i);
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4141 4142 4143 4144
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4145 4146 4147 4148
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4167
 */
4168
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4169
{
4170
	unsigned int i;
A
Alexei Starovoitov 已提交
4171

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4188 4189
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4190
{
4191 4192
	bool equal;

4193 4194 4195 4196
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4197 4198 4199 4200 4201 4202 4203 4204 4205
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4206 4207
		return true;

4208 4209
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4210
		return true;
4211 4212 4213 4214 4215 4216 4217 4218 4219
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4220 4221 4222 4223 4224 4225
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4226
			 */
4227
			return false;
4228 4229
		}
	case PTR_TO_MAP_VALUE:
4230 4231 4232 4233 4234 4235 4236 4237
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4252
	case PTR_TO_PACKET_META:
4253
	case PTR_TO_PACKET:
4254
		if (rcur->type != rold->type)
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4285

4286 4287
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4288 4289 4290
	return false;
}

4291 4292
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4310 4311
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4312
			continue;
4313

4314 4315
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4316 4317 4318 4319 4320 4321 4322
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4379 4380
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4381
{
4382 4383
	struct idpair *idmap;
	bool ret = false;
4384 4385
	int i;

4386 4387 4388
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4389
		return false;
4390 4391

	for (i = 0; i < MAX_BPF_REG; i++) {
4392
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4393
			goto out_free;
4394 4395
	}

4396 4397
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4398 4399 4400 4401
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4402 4403
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4425
/* A write screens off any subsequent reads; but write marks come from the
4426 4427 4428 4429 4430
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4431
 */
4432 4433 4434
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4435
{
4436 4437
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4438

4439 4440 4441 4442 4443
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4444 4445 4446 4447
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4448
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4449
			continue;
4450 4451 4452 4453
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4454 4455
		}
	}
4456

4457
	/* ... and stack slots */
4458 4459 4460 4461 4462 4463 4464 4465 4466
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4467 4468
		}
	}
4469
	return err;
4470 4471
}

4472
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4473
{
4474 4475
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4476
	struct bpf_verifier_state *cur = env->cur_state;
4477
	int i, j, err;
4478 4479 4480 4481 4482 4483 4484 4485 4486

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4487
		if (states_equal(env, &sl->state, cur)) {
4488
			/* reached equivalent register/stack state,
4489 4490
			 * prune the search.
			 * Registers read by the continuation are read by us.
4491 4492 4493 4494 4495 4496
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4497
			 */
4498 4499 4500
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4501
			return 1;
4502
		}
4503 4504 4505 4506 4507
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4508 4509 4510 4511
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4512
	 */
4513
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4514 4515 4516 4517
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4518 4519 4520 4521 4522 4523
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4524 4525
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4526
	/* connect new state to parentage chain */
4527
	cur->parent = &new_sl->state;
4528 4529 4530 4531 4532 4533
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4534
	for (i = 0; i < BPF_REG_FP; i++)
4535 4536 4537 4538 4539 4540 4541
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4542
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4543
	}
4544 4545 4546
	return 0;
}

4547
static int do_check(struct bpf_verifier_env *env)
4548
{
4549
	struct bpf_verifier_state *state;
4550
	struct bpf_insn *insns = env->prog->insnsi;
4551
	struct bpf_reg_state *regs;
4552
	int insn_cnt = env->prog->len, i;
4553 4554 4555 4556
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4557 4558 4559
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4560
	state->curframe = 0;
4561
	state->parent = NULL;
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4572 4573 4574 4575 4576 4577 4578
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4579
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4580 4581 4582 4583 4584 4585 4586
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4587
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4588 4589
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4590 4591 4592 4593
				insn_processed);
			return -E2BIG;
		}

4594 4595 4596 4597 4598
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4599
			if (env->log.level) {
4600
				if (do_print_state)
4601
					verbose(env, "\nfrom %d to %d: safe\n",
4602 4603
						prev_insn_idx, insn_idx);
				else
4604
					verbose(env, "%d: safe\n", insn_idx);
4605 4606 4607 4608
			}
			goto process_bpf_exit;
		}

4609 4610 4611
		if (need_resched())
			cond_resched();

4612 4613 4614
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4615
			else
4616
				verbose(env, "\nfrom %d to %d:",
4617
					prev_insn_idx, insn_idx);
4618
			print_verifier_state(env, state->frame[state->curframe]);
4619 4620 4621
			do_print_state = false;
		}

4622
		if (env->log.level) {
4623 4624
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4625
				.private_data	= env,
4626 4627
			};

4628
			verbose(env, "%d: ", insn_idx);
4629
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4630 4631
		}

4632 4633 4634 4635 4636 4637
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4638

4639
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4640
		env->insn_aux_data[insn_idx].seen = true;
4641
		if (class == BPF_ALU || class == BPF_ALU64) {
4642
			err = check_alu_op(env, insn);
4643 4644 4645 4646
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4647
			enum bpf_reg_type *prev_src_type, src_reg_type;
4648 4649 4650

			/* check for reserved fields is already done */

4651
			/* check src operand */
4652
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4653 4654 4655
			if (err)
				return err;

4656
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4657 4658 4659
			if (err)
				return err;

4660 4661
			src_reg_type = regs[insn->src_reg].type;

4662 4663 4664
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4665
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4666
					       BPF_SIZE(insn->code), BPF_READ,
4667
					       insn->dst_reg, false);
4668 4669 4670
			if (err)
				return err;

4671 4672 4673
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4674 4675
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4676
				 * save type to validate intersecting paths
4677
				 */
4678
				*prev_src_type = src_reg_type;
4679

4680
			} else if (src_reg_type != *prev_src_type &&
4681
				   (src_reg_type == PTR_TO_CTX ||
4682
				    *prev_src_type == PTR_TO_CTX)) {
4683 4684 4685 4686 4687 4688 4689
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4690
				verbose(env, "same insn cannot be used with different pointers\n");
4691 4692 4693
				return -EINVAL;
			}

4694
		} else if (class == BPF_STX) {
4695
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4696

4697
			if (BPF_MODE(insn->code) == BPF_XADD) {
4698
				err = check_xadd(env, insn_idx, insn);
4699 4700 4701 4702 4703 4704 4705
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4706
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4707 4708 4709
			if (err)
				return err;
			/* check src2 operand */
4710
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4711 4712 4713
			if (err)
				return err;

4714 4715
			dst_reg_type = regs[insn->dst_reg].type;

4716
			/* check that memory (dst_reg + off) is writeable */
4717
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4718
					       BPF_SIZE(insn->code), BPF_WRITE,
4719
					       insn->src_reg, false);
4720 4721 4722
			if (err)
				return err;

4723 4724 4725 4726 4727
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4728
				   (dst_reg_type == PTR_TO_CTX ||
4729
				    *prev_dst_type == PTR_TO_CTX)) {
4730
				verbose(env, "same insn cannot be used with different pointers\n");
4731 4732 4733
				return -EINVAL;
			}

4734 4735 4736
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4737
				verbose(env, "BPF_ST uses reserved fields\n");
4738 4739 4740
				return -EINVAL;
			}
			/* check src operand */
4741
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4742 4743 4744
			if (err)
				return err;

4745 4746 4747 4748 4749 4750
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4751
			/* check that memory (dst_reg + off) is writeable */
4752
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4753
					       BPF_SIZE(insn->code), BPF_WRITE,
4754
					       -1, false);
4755 4756 4757 4758 4759 4760 4761 4762 4763
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4764 4765
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4766
				    insn->dst_reg != BPF_REG_0) {
4767
					verbose(env, "BPF_CALL uses reserved fields\n");
4768 4769 4770
					return -EINVAL;
				}

4771 4772 4773 4774
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4775 4776 4777 4778 4779 4780 4781 4782
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4783
					verbose(env, "BPF_JA uses reserved fields\n");
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4795
					verbose(env, "BPF_EXIT uses reserved fields\n");
4796 4797 4798
					return -EINVAL;
				}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4809 4810 4811 4812 4813 4814
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4815
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4816 4817 4818
				if (err)
					return err;

4819
				if (is_pointer_value(env, BPF_REG_0)) {
4820
					verbose(env, "R0 leaks addr as return value\n");
4821 4822 4823
					return -EACCES;
				}

4824 4825 4826
				err = check_return_code(env);
				if (err)
					return err;
4827
process_bpf_exit:
4828 4829 4830 4831
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4846 4847 4848 4849
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4850 4851 4852 4853 4854 4855
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4856
				env->insn_aux_data[insn_idx].seen = true;
4857
			} else {
4858
				verbose(env, "invalid BPF_LD mode\n");
4859 4860 4861
				return -EINVAL;
			}
		} else {
4862
			verbose(env, "unknown insn class %d\n", class);
4863 4864 4865 4866 4867 4868
			return -EINVAL;
		}

		insn_idx++;
	}

4869 4870
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4871 4872 4873 4874 4875 4876 4877 4878 4879
	for (i = 0; i < env->subprog_cnt + 1; i++) {
		u32 depth = env->subprog_stack_depth[i];

		verbose(env, "%d", depth);
		if (i + 1 < env->subprog_cnt + 1)
			verbose(env, "+");
	}
	verbose(env, "\n");
	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4880 4881 4882
	return 0;
}

4883 4884 4885
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4886 4887
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4888 4889 4890
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4891 4892
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4893 4894 4895
					struct bpf_prog *prog)

{
4896 4897 4898 4899 4900 4901 4902
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4903
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4904 4905 4906 4907
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4908
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4909 4910
			return -EINVAL;
		}
4911
	}
4912 4913 4914 4915 4916 4917 4918

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

4919 4920 4921
	return 0;
}

4922 4923 4924
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4925
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4926 4927 4928
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4929
	int i, j, err;
4930

4931
	err = bpf_prog_calc_tag(env->prog);
4932 4933 4934
	if (err)
		return err;

4935
	for (i = 0; i < insn_cnt; i++, insn++) {
4936
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4937
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4938
			verbose(env, "BPF_LDX uses reserved fields\n");
4939 4940 4941
			return -EINVAL;
		}

4942 4943 4944
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4945
			verbose(env, "BPF_STX uses reserved fields\n");
4946 4947 4948
			return -EINVAL;
		}

4949 4950 4951 4952 4953 4954 4955
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4956
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4957 4958 4959 4960 4961 4962 4963 4964
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4965 4966
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4967 4968 4969 4970
				return -EINVAL;
			}

			f = fdget(insn->imm);
4971
			map = __bpf_map_get(f);
4972
			if (IS_ERR(map)) {
4973
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4974 4975 4976 4977
					insn->imm);
				return PTR_ERR(map);
			}

4978
			err = check_map_prog_compatibility(env, map, env->prog);
4979 4980 4981 4982 4983
			if (err) {
				fdput(f);
				return err;
			}

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
5005 5006 5007 5008 5009 5010 5011
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

5012 5013 5014 5015
			fdput(f);
next_insn:
			insn++;
			i++;
5016 5017 5018 5019 5020 5021 5022
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5034
static void release_maps(struct bpf_verifier_env *env)
5035 5036 5037 5038 5039 5040 5041 5042
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5043
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5054 5055 5056 5057 5058 5059 5060 5061
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5062
	int i;
5063 5064 5065 5066 5067 5068 5069 5070 5071

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5072 5073
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5074 5075 5076 5077 5078
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
	for (i = 0; i < env->subprog_cnt; i++) {
		if (env->subprog_starts[i] < off)
			continue;
		env->subprog_starts[i] += len - 1;
	}
}

5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5102
	adjust_subprog_starts(env, off, len);
5103 5104 5105
	return new_prog;
}

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5116 5117 5118 5119
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5120
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5121 5122 5123 5124 5125 5126 5127
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5128
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5129 5130 5131
	}
}

5132 5133 5134
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5135
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5136
{
5137
	const struct bpf_verifier_ops *ops = env->ops;
5138
	int i, cnt, size, ctx_field_size, delta = 0;
5139
	const int insn_cnt = env->prog->len;
5140
	struct bpf_insn insn_buf[16], *insn;
5141
	struct bpf_prog *new_prog;
5142
	enum bpf_access_type type;
5143 5144
	bool is_narrower_load;
	u32 target_size;
5145

5146 5147 5148 5149
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5150
			verbose(env, "bpf verifier is misconfigured\n");
5151 5152
			return -EINVAL;
		} else if (cnt) {
5153
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5154 5155
			if (!new_prog)
				return -ENOMEM;
5156

5157
			env->prog = new_prog;
5158
			delta += cnt - 1;
5159 5160 5161 5162
		}
	}

	if (!ops->convert_ctx_access)
5163 5164
		return 0;

5165
	insn = env->prog->insnsi + delta;
5166

5167
	for (i = 0; i < insn_cnt; i++, insn++) {
5168 5169 5170
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5171
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5172
			type = BPF_READ;
5173 5174 5175
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5176
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5177 5178
			type = BPF_WRITE;
		else
5179 5180
			continue;

5181
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5182 5183
			continue;

5184
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5185
		size = BPF_LDST_BYTES(insn);
5186 5187 5188 5189 5190 5191

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5192
		is_narrower_load = size < ctx_field_size;
5193
		if (is_narrower_load) {
5194 5195 5196 5197
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5198
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5199 5200
				return -EINVAL;
			}
5201

5202
			size_code = BPF_H;
5203 5204 5205 5206
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5207

5208 5209 5210
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5211 5212 5213 5214 5215 5216

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5217
			verbose(env, "bpf verifier is misconfigured\n");
5218 5219
			return -EINVAL;
		}
5220 5221

		if (is_narrower_load && size < target_size) {
5222 5223
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5224
								(1 << size * 8) - 1);
5225 5226
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5227
								(1 << size * 8) - 1);
5228
		}
5229

5230
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5231 5232 5233
		if (!new_prog)
			return -ENOMEM;

5234
		delta += cnt - 1;
5235 5236 5237

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5238
		insn      = new_prog->insnsi + i + delta;
5239 5240 5241 5242 5243
	}

	return 0;
}

5244 5245 5246 5247
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5248
	struct bpf_insn *insn;
5249 5250 5251 5252 5253 5254
	void *old_bpf_func;
	int err = -ENOMEM;

	if (env->subprog_cnt == 0)
		return 0;

5255
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
		insn->off = subprog + 1;
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

	func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
	if (!func)
		return -ENOMEM;

	for (i = 0; i <= env->subprog_cnt; i++) {
		subprog_start = subprog_end;
		if (env->subprog_cnt == i)
			subprog_end = prog->len;
		else
			subprog_end = env->subprog_starts[i];

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5294
		func[i]->type = prog->type;
5295
		func[i]->len = len;
5296 5297
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
		func[i]->aux->stack_depth = env->subprog_stack_depth[i];
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->off = 0;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
	}
	for (i = 0; i <= env->subprog_cnt; i++) {
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		unsigned long addr;

		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
		addr  = (unsigned long)func[subprog + 1]->bpf_func;
		addr &= PAGE_MASK;
		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
			    addr - __bpf_call_base;
	}

5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
	prog->aux->func_cnt = env->subprog_cnt + 1;
	return 0;
out_free:
	for (i = 0; i <= env->subprog_cnt; i++)
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5388 5389
static int fixup_call_args(struct bpf_verifier_env *env)
{
5390
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5391 5392 5393
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5394 5395
#endif
	int err;
5396

5397 5398 5399 5400
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5401
			return 0;
5402 5403
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5404 5405 5406 5407 5408 5409 5410 5411 5412
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5413 5414 5415
	err = 0;
#endif
	return err;
5416 5417
}

5418
/* fixup insn->imm field of bpf_call instructions
5419
 * and inline eligible helpers as explicit sequence of BPF instructions
5420 5421 5422
 *
 * this function is called after eBPF program passed verification
 */
5423
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5424
{
5425 5426
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5427
	const struct bpf_func_proto *fn;
5428
	const int insn_cnt = prog->len;
5429 5430 5431 5432
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5433

5434
	for (i = 0; i < insn_cnt; i++, insn++) {
5435 5436 5437
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5438
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5466 5467 5468 5469 5470 5471 5472 5473 5474
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5475 5476
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5477 5478
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5479

5480 5481 5482 5483
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5484 5485
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5486
		if (insn->imm == BPF_FUNC_tail_call) {
5487 5488 5489 5490 5491 5492
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5493
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5494

5495 5496 5497 5498
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5499
			 */
5500
			insn->imm = 0;
5501
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5502 5503 5504 5505 5506 5507 5508 5509 5510

			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
			if (map_ptr == BPF_MAP_PTR_POISON) {
5511
				verbose(env, "tail_call abusing map_ptr\n");
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
				return -EINVAL;
			}
			if (!map_ptr->unpriv_array)
				continue;
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5531 5532
			continue;
		}
5533

5534 5535 5536
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
5537
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5538
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5539
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5540 5541
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5542 5543 5544 5545
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5546
				verbose(env, "bpf verifier is misconfigured\n");
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5563
		if (insn->imm == BPF_FUNC_redirect_map) {
5564 5565 5566 5567 5568 5569
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5584
patch_call_imm:
5585
		fn = env->ops->get_func_proto(insn->imm, env->prog);
5586 5587 5588 5589
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5590 5591
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5592 5593
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5594
		}
5595
		insn->imm = fn->func - __bpf_call_base;
5596 5597
	}

5598 5599
	return 0;
}
5600

5601
static void free_states(struct bpf_verifier_env *env)
5602
{
5603
	struct bpf_verifier_state_list *sl, *sln;
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5615
				free_verifier_state(&sl->state, false);
5616 5617 5618 5619 5620 5621 5622 5623
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5624
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5625
{
5626
	struct bpf_verifier_env *env;
M
Martin KaFai Lau 已提交
5627
	struct bpf_verifier_log *log;
A
Alexei Starovoitov 已提交
5628 5629
	int ret = -EINVAL;

5630 5631 5632 5633
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5634
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5635 5636
	 * allocate/free it every time bpf_check() is called
	 */
5637
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5638 5639
	if (!env)
		return -ENOMEM;
5640
	log = &env->log;
5641

5642 5643 5644 5645 5646
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5647
	env->prog = *prog;
5648
	env->ops = bpf_verifier_ops[env->prog->type];
5649

5650 5651 5652 5653 5654 5655 5656
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5657 5658 5659
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5660 5661

		ret = -EINVAL;
5662 5663 5664
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5665
			goto err_unlock;
5666
	}
5667 5668 5669

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5670
		env->strict_alignment = true;
5671

5672
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5673 5674 5675 5676 5677
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5678 5679 5680 5681
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5682
	env->explored_states = kcalloc(env->prog->len,
5683
				       sizeof(struct bpf_verifier_state_list *),
5684 5685 5686 5687 5688
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5689 5690
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5691 5692 5693 5694
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5695
	ret = do_check(env);
5696 5697 5698 5699
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5700

5701
skip_full_check:
5702
	while (!pop_stack(env, NULL, NULL));
5703
	free_states(env);
5704

A
Alexei Starovoitov 已提交
5705 5706 5707
	if (ret == 0)
		sanitize_dead_code(env);

5708 5709 5710
	if (ret == 0)
		ret = check_max_stack_depth(env);

5711 5712 5713 5714
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5715
	if (ret == 0)
5716
		ret = fixup_bpf_calls(env);
5717

5718 5719 5720
	if (ret == 0)
		ret = fixup_call_args(env);

5721
	if (log->level && bpf_verifier_log_full(log))
5722
		ret = -ENOSPC;
5723
	if (log->level && !log->ubuf) {
5724
		ret = -EFAULT;
5725
		goto err_release_maps;
5726 5727
	}

5728 5729
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5730 5731 5732
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5733

5734
		if (!env->prog->aux->used_maps) {
5735
			ret = -ENOMEM;
5736
			goto err_release_maps;
5737 5738
		}

5739
		memcpy(env->prog->aux->used_maps, env->used_maps,
5740
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5741
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5742 5743 5744 5745 5746 5747

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5748

5749
err_release_maps:
5750
	if (!env->prog->aux->used_maps)
5751 5752 5753 5754
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5755
	*prog = env->prog;
5756
err_unlock:
5757
	mutex_unlock(&bpf_verifier_lock);
5758 5759 5760
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5761 5762
	return ret;
}