verifier.c 134.6 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23

24 25
#include "disasm.h"

26 27 28 29 30 31 32 33 34
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
35 36 37 38 39 40 41 42 43 44 45 46
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
47
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
75
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
76
 * means the register has some value, but it's not a valid pointer.
77
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
78 79
 *
 * When verifier sees load or store instructions the type of base register
80
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

142
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
143
struct bpf_verifier_stack_elem {
144 145 146 147
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
148
	struct bpf_verifier_state st;
149 150
	int insn_idx;
	int prev_insn_idx;
151
	struct bpf_verifier_stack_elem *next;
152 153
};

154
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 156
#define BPF_COMPLEXITY_LIMIT_STACK	1024

157 158
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

159 160
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
161
	bool raw_mode;
162
	bool pkt_access;
163 164
	int regno;
	int access_size;
165 166
};

167 168 169 170 171 172
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
173 174
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
175
{
176
	struct bpf_verifer_log *log = &env->log;
177
	unsigned int n;
178 179
	va_list args;

180
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 182 183
		return;

	va_start(args, fmt);
184
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185
	va_end(args);
186 187 188 189 190 191 192 193 194 195 196

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
197 198
}

199 200 201 202 203 204
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

205 206 207
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
208
	[SCALAR_VALUE]		= "inv",
209 210 211 212 213
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
214
	[PTR_TO_PACKET]		= "pkt",
215
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET_END]	= "pkt_end",
217 218
};

219 220
static void print_verifier_state(struct bpf_verifier_env *env,
				 struct bpf_verifier_state *state)
221
{
222
	struct bpf_reg_state *reg;
223 224 225 226
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
227 228
		reg = &state->regs[i];
		t = reg->type;
229 230
		if (t == NOT_INIT)
			continue;
231
		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 233 234
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
235
			verbose(env, "%lld", reg->var_off.value + reg->off);
236
		} else {
237
			verbose(env, "(id=%d", reg->id);
238
			if (t != SCALAR_VALUE)
239
				verbose(env, ",off=%d", reg->off);
240
			if (type_is_pkt_pointer(t))
241
				verbose(env, ",r=%d", reg->range);
242 243 244
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
245
				verbose(env, ",ks=%d,vs=%d",
246 247
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
248 249 250 251 252
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
253
				verbose(env, ",imm=%llx", reg->var_off.value);
254 255 256
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
257
					verbose(env, ",smin_value=%lld",
258 259 260
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
261
					verbose(env, ",smax_value=%lld",
262 263
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
264
					verbose(env, ",umin_value=%llu",
265 266
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
267
					verbose(env, ",umax_value=%llu",
268 269 270
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
271

272
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273
					verbose(env, ",var_off=%s", tn_buf);
274
				}
275
			}
276
			verbose(env, ")");
277
		}
278
	}
279 280 281 282 283
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] == STACK_SPILL)
			verbose(env, " fp%d=%s",
				-MAX_BPF_STACK + i * BPF_REG_SIZE,
				reg_type_str[state->stack[i].spilled_ptr.type]);
284
	}
285
	verbose(env, "\n");
286 287
}

288 289
static int copy_stack_state(struct bpf_verifier_state *dst,
			    const struct bpf_verifier_state *src)
290
{
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
 * the program calls into realloc_verifier_state() to grow the stack size.
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
				  bool copy_old)
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

static void free_verifier_state(struct bpf_verifier_state *state)
{
	kfree(state->stack);
	kfree(state);
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
static int copy_verifier_state(struct bpf_verifier_state *dst,
			       const struct bpf_verifier_state *src)
{
	int err;

	err = realloc_verifier_state(dst, src->allocated_stack, false);
	if (err)
		return err;
	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
	return copy_stack_state(dst, src);
}

static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
371 372

	if (env->head == NULL)
373
		return -ENOENT;
374

375 376 377 378 379 380 381
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
382
	if (prev_insn_idx)
383 384 385
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
	kfree(head);
386 387
	env->head = elem;
	env->stack_size--;
388
	return 0;
389 390
}

391 392
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
393
{
394
	struct bpf_verifier_state *cur = env->cur_state;
395
	struct bpf_verifier_stack_elem *elem;
396
	int err;
397

398
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
399 400 401
	if (!elem)
		goto err;

402 403 404
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		return NULL;
405 406 407 408 409
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
410
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
411
		verbose(env, "BPF program is too complex\n");
412 413 414 415 416
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
417
	while (!pop_stack(env, NULL, NULL));
418 419 420 421 422 423 424 425
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

426 427
static void __mark_reg_not_init(struct bpf_reg_state *reg);

428 429 430 431 432 433 434 435 436 437 438 439 440
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

441 442 443 444
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
445
{
446
	__mark_reg_known(reg, 0);
447
}
448

449 450
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
451 452
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
453
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
454 455 456 457 458 459 460 461
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

553 554 555 556 557 558 559
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
560
	__mark_reg_unbounded(reg);
561 562
}

563 564
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
565 566
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
567
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
568 569 570 571 572 573 574 575 576 577 578 579 580 581
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

582 583
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
584 585
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
586
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
587 588 589 590 591 592
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
593 594
}

595 596
static void init_reg_state(struct bpf_verifier_env *env,
			   struct bpf_reg_state *regs)
597 598 599
{
	int i;

600
	for (i = 0; i < MAX_BPF_REG; i++) {
601
		mark_reg_not_init(env, regs, i);
602 603
		regs[i].live = REG_LIVE_NONE;
	}
604 605

	/* frame pointer */
606
	regs[BPF_REG_FP].type = PTR_TO_STACK;
607
	mark_reg_known_zero(env, regs, BPF_REG_FP);
608 609 610

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
611
	mark_reg_known_zero(env, regs, BPF_REG_1);
612 613
}

614 615 616 617 618 619
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

620 621 622 623
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
624 625 626 627
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

628 629 630 631 632 633 634 635 636 637 638 639
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
640 641
			 enum reg_arg_type t)
{
642
	struct bpf_reg_state *regs = env->cur_state->regs;
643

644
	if (regno >= MAX_BPF_REG) {
645
		verbose(env, "R%d is invalid\n", regno);
646 647 648 649 650 651
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
652
			verbose(env, "R%d !read_ok\n", regno);
653 654
			return -EACCES;
		}
655
		mark_reg_read(env->cur_state, regno);
656 657 658
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
659
			verbose(env, "frame pointer is read only\n");
660 661
			return -EACCES;
		}
662
		regs[regno].live |= REG_LIVE_WRITTEN;
663
		if (t == DST_OP)
664
			mark_reg_unknown(env, regs, regno);
665 666 667 668
	}
	return 0;
}

669 670 671 672 673 674 675
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
676
	case PTR_TO_PACKET:
677
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
678
	case PTR_TO_PACKET_END:
679 680 681 682 683 684 685
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

686 687 688
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
689 690
static int check_stack_write(struct bpf_verifier_env *env,
			     struct bpf_verifier_state *state, int off,
691
			     int size, int value_regno)
692
{
693 694 695 696 697 698
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;

	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
				     true);
	if (err)
		return err;
699 700 701
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
702 703 704 705 706 707
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
708 709

	if (value_regno >= 0 &&
710
	    is_spillable_regtype(state->regs[value_regno].type)) {
711 712

		/* register containing pointer is being spilled into stack */
713
		if (size != BPF_REG_SIZE) {
714
			verbose(env, "invalid size of register spill\n");
715 716 717 718
			return -EACCES;
		}

		/* save register state */
719 720
		state->stack[spi].spilled_ptr = state->regs[value_regno];
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
721

722
		for (i = 0; i < BPF_REG_SIZE; i++)
723
			state->stack[spi].slot_type[i] = STACK_SPILL;
724
	} else {
725
		/* regular write of data into stack */
726
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
727 728

		for (i = 0; i < size; i++)
729 730
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
				STACK_MISC;
731 732 733 734
	}
	return 0;
}

735 736 737 738 739 740
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
741
		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
742 743
			break;
		/* ... then we depend on parent's value */
744
		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
745 746 747 748 749
		state = parent;
		parent = state->parent;
	}
}

750 751
static int check_stack_read(struct bpf_verifier_env *env,
			    struct bpf_verifier_state *state, int off, int size,
752 753
			    int value_regno)
{
754 755
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
756

757 758 759 760 761 762
	if (state->allocated_stack <= slot) {
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
	stype = state->stack[spi].slot_type;
763

764
	if (stype[0] == STACK_SPILL) {
765
		if (size != BPF_REG_SIZE) {
766
			verbose(env, "invalid size of register spill\n");
767 768
			return -EACCES;
		}
769
		for (i = 1; i < BPF_REG_SIZE; i++) {
770
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
771
				verbose(env, "corrupted spill memory\n");
772 773 774 775
				return -EACCES;
			}
		}

776
		if (value_regno >= 0) {
777
			/* restore register state from stack */
778
			state->regs[value_regno] = state->stack[spi].spilled_ptr;
779 780
			mark_stack_slot_read(state, spi);
		}
781 782 783
		return 0;
	} else {
		for (i = 0; i < size; i++) {
784
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
785
				verbose(env, "invalid read from stack off %d+%d size %d\n",
786 787 788 789 790 791
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
792
			mark_reg_unknown(env, state->regs, value_regno);
793 794 795 796 797
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
798
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
799 800
			    int size)
{
801 802
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
803

804
	if (off < 0 || size <= 0 || off + size > map->value_size) {
805
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
806 807 808 809 810 811
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

812 813
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
814
			    int off, int size)
815
{
816
	struct bpf_verifier_state *state = env->cur_state;
817 818 819
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

820 821 822
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
823
	 */
824 825
	if (env->log.level)
		print_verifier_state(env, state);
826 827 828 829 830 831
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
832
	if (reg->smin_value < 0) {
833
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
834 835 836
			regno);
		return -EACCES;
	}
837
	err = __check_map_access(env, regno, reg->smin_value + off, size);
838
	if (err) {
839 840
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
841 842 843
		return err;
	}

844 845 846
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
847
	 */
848
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
849
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
850 851 852
			regno);
		return -EACCES;
	}
853
	err = __check_map_access(env, regno, reg->umax_value + off, size);
854
	if (err)
855 856
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
857
	return err;
858 859
}

A
Alexei Starovoitov 已提交
860 861
#define MAX_PACKET_OFF 0xffff

862
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
863 864
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
865
{
866
	switch (env->prog->type) {
867 868 869 870 871
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
872
		/* fallthrough */
873 874
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
875
	case BPF_PROG_TYPE_XDP:
876
	case BPF_PROG_TYPE_LWT_XMIT:
877
	case BPF_PROG_TYPE_SK_SKB:
878 879 880 881
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
882 883 884 885 886 887
		return true;
	default:
		return false;
	}
}

888 889
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
				 int off, int size)
A
Alexei Starovoitov 已提交
890
{
891
	struct bpf_reg_state *regs = cur_regs(env);
892
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
893

894
	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
895
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
896
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
897 898 899 900 901
		return -EACCES;
	}
	return 0;
}

902 903 904
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
			       int size)
{
905
	struct bpf_reg_state *regs = cur_regs(env);
906 907 908 909 910 911 912 913 914 915 916
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
917
	if (reg->smin_value < 0) {
918
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
919 920 921 922 923
			regno);
		return -EACCES;
	}
	err = __check_packet_access(env, regno, off, size);
	if (err) {
924
		verbose(env, "R%d offset is outside of the packet\n", regno);
925 926 927 928 929 930
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
931
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
932
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
933
{
934 935 936
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
937

938 939
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
940 941 942 943 944 945
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
946
		 */
947
		*reg_type = info.reg_type;
948

949 950 951 952
		if (env->analyzer_ops)
			return 0;

		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
953 954 955
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
956
		return 0;
957
	}
958

959
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
960 961 962
	return -EACCES;
}

963 964
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
965
{
966
	if (allow_ptr_leaks)
967 968
		return false;

969
	return reg->type != SCALAR_VALUE;
970 971
}

972 973
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
974
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
975 976
}

977 978
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
979
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
980
{
981
	struct tnum reg_off;
982
	int ip_align;
983 984 985 986 987

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

988 989 990 991 992 993 994
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
995
	 */
996
	ip_align = 2;
997 998 999 1000 1001 1002

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1003 1004
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1005
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1006 1007
		return -EACCES;
	}
1008

A
Alexei Starovoitov 已提交
1009 1010 1011
	return 0;
}

1012 1013
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1014 1015
				       const char *pointer_desc,
				       int off, int size, bool strict)
1016
{
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1028
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1029
			pointer_desc, tn_buf, reg->off, off, size);
1030 1031 1032
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1033 1034 1035
	return 0;
}

1036 1037
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1038 1039
			       int off, int size)
{
1040
	bool strict = env->strict_alignment;
1041
	const char *pointer_desc = "";
1042

1043 1044
	switch (reg->type) {
	case PTR_TO_PACKET:
1045 1046 1047 1048
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1049
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1050 1051 1052 1053 1054 1055 1056 1057 1058
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1059
	default:
1060
		break;
1061
	}
1062 1063
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1064 1065
}

1066 1067 1068 1069 1070 1071
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1072
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1073 1074 1075
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1076 1077 1078
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1079 1080 1081 1082 1083 1084
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1085
	/* alignment checks will add in reg->off themselves */
1086
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1087 1088
	if (err)
		return err;
1089

1090 1091 1092 1093
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1094 1095
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1096
			verbose(env, "R%d leaks addr into map\n", value_regno);
1097 1098
			return -EACCES;
		}
1099

1100
		err = check_map_access(env, regno, off, size);
1101
		if (!err && t == BPF_READ && value_regno >= 0)
1102
			mark_reg_unknown(env, regs, value_regno);
1103

A
Alexei Starovoitov 已提交
1104
	} else if (reg->type == PTR_TO_CTX) {
1105
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1106

1107 1108
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1109
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1110 1111
			return -EACCES;
		}
1112 1113 1114
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1115
		if (reg->off) {
1116 1117
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1118 1119 1120 1121
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1122 1123 1124
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1125 1126
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1127 1128 1129
				tn_buf, off, size);
			return -EACCES;
		}
1130
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1131
		if (!err && t == BPF_READ && value_regno >= 0) {
1132
			/* ctx access returns either a scalar, or a
1133 1134
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1135 1136
			 */
			if (reg_type == SCALAR_VALUE)
1137
				mark_reg_unknown(env, regs, value_regno);
1138
			else
1139
				mark_reg_known_zero(env, regs,
1140
						    value_regno);
1141 1142 1143 1144
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1145
		}
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1156
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1157 1158 1159 1160
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1161
		if (off >= 0 || off < -MAX_BPF_STACK) {
1162 1163
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1164 1165
			return -EACCES;
		}
1166 1167 1168 1169

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1170
		if (t == BPF_WRITE)
1171 1172
			err = check_stack_write(env, state, off, size,
						value_regno);
1173
		else
1174 1175
			err = check_stack_read(env, state, off, size,
					       value_regno);
1176
	} else if (reg_is_pkt_pointer(reg)) {
1177
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1178
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1179 1180
			return -EACCES;
		}
1181 1182
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1183 1184
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1185 1186
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
1187 1188
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
1189
			mark_reg_unknown(env, regs, value_regno);
1190
	} else {
1191 1192
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1193 1194
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1195

1196
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1197
	    regs[value_regno].type == SCALAR_VALUE) {
1198
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1199 1200 1201
		regs[value_regno].var_off =
			tnum_cast(regs[value_regno].var_off, size);
		__update_reg_bounds(&regs[value_regno]);
A
Alexei Starovoitov 已提交
1202
	}
1203 1204 1205
	return err;
}

1206
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1207 1208 1209 1210 1211
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1212
		verbose(env, "BPF_XADD uses reserved fields\n");
1213 1214 1215 1216
		return -EINVAL;
	}

	/* check src1 operand */
1217
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1218 1219 1220 1221
	if (err)
		return err;

	/* check src2 operand */
1222
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1223 1224 1225
	if (err)
		return err;

1226
	if (is_pointer_value(env, insn->src_reg)) {
1227
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1228 1229 1230
		return -EACCES;
	}

1231
	/* check whether atomic_add can read the memory */
1232
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1233 1234 1235 1236 1237
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1238
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1239 1240 1241
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1242 1243 1244 1245 1246 1247
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1248 1249
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1250 1251 1252
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1253
 */
1254
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1255 1256
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1257
{
1258
	struct bpf_verifier_state *state = env->cur_state;
1259
	struct bpf_reg_state *regs = state->regs;
1260
	int off, i, slot, spi;
1261

1262
	if (regs[regno].type != PTR_TO_STACK) {
1263
		/* Allow zero-byte read from NULL, regardless of pointer type */
1264
		if (zero_size_allowed && access_size == 0 &&
1265
		    register_is_null(regs[regno]))
1266 1267
			return 0;

1268
		verbose(env, "R%d type=%s expected=%s\n", regno,
1269 1270
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1271
		return -EACCES;
1272
	}
1273

1274 1275 1276 1277 1278
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1279
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1280 1281 1282
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1283 1284
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
1285
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1286 1287 1288 1289
			regno, off, access_size);
		return -EACCES;
	}

1290 1291 1292
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1293 1294 1295 1296 1297 1298
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1299
	for (i = 0; i < access_size; i++) {
1300 1301 1302 1303 1304
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
		if (state->allocated_stack <= slot ||
		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
			STACK_MISC) {
1305
			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1306 1307 1308 1309 1310 1311 1312
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1313 1314 1315 1316
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1317
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1318

1319
	switch (reg->type) {
1320
	case PTR_TO_PACKET:
1321
	case PTR_TO_PACKET_META:
1322
		return check_packet_access(env, regno, reg->off, access_size);
1323
	case PTR_TO_MAP_VALUE:
1324 1325
		return check_map_access(env, regno, reg->off, access_size);
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1326 1327 1328 1329 1330
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1331
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1332 1333
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1334
{
1335
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1336
	enum bpf_reg_type expected_type, type = reg->type;
1337 1338
	int err = 0;

1339
	if (arg_type == ARG_DONTCARE)
1340 1341
		return 0;

1342 1343 1344
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1345

1346 1347
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1348 1349
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1350 1351
			return -EACCES;
		}
1352
		return 0;
1353
	}
1354

1355
	if (type_is_pkt_pointer(type) &&
1356
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1357
		verbose(env, "helper access to the packet is not allowed\n");
1358 1359 1360
		return -EACCES;
	}

1361
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1362 1363
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1364 1365
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1366
			goto err_type;
1367 1368
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1369 1370
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1371
			goto err_type;
1372 1373
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1374 1375
		if (type != expected_type)
			goto err_type;
1376 1377
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1378 1379
		if (type != expected_type)
			goto err_type;
1380 1381
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1382 1383
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1384
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1385 1386
		 * happens during stack boundary checking.
		 */
1387
		if (register_is_null(*reg))
1388
			/* final test in check_stack_boundary() */;
1389 1390
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1391
			 type != expected_type)
1392
			goto err_type;
1393
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1394
	} else {
1395
		verbose(env, "unsupported arg_type %d\n", arg_type);
1396 1397 1398 1399 1400
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1401
		meta->map_ptr = reg->map_ptr;
1402 1403 1404 1405 1406
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1407
		if (!meta->map_ptr) {
1408 1409 1410 1411 1412
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1413
			verbose(env, "invalid map_ptr to access map->key\n");
1414 1415
			return -EACCES;
		}
1416
		if (type_is_pkt_pointer(type))
1417
			err = check_packet_access(env, regno, reg->off,
1418 1419 1420 1421 1422
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1423 1424 1425 1426
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1427
		if (!meta->map_ptr) {
1428
			/* kernel subsystem misconfigured verifier */
1429
			verbose(env, "invalid map_ptr to access map->value\n");
1430 1431
			return -EACCES;
		}
1432
		if (type_is_pkt_pointer(type))
1433
			err = check_packet_access(env, regno, reg->off,
1434 1435 1436 1437 1438
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1439 1440 1441
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1442 1443 1444 1445 1446 1447 1448

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1449 1450
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1451 1452
			return -EACCES;
		}
1453

1454 1455
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1456
		 */
1457 1458

		if (!tnum_is_const(reg->var_off))
1459 1460 1461 1462 1463 1464 1465
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1466
		if (reg->smin_value < 0) {
1467
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1468 1469 1470
				regno);
			return -EACCES;
		}
1471

1472
		if (reg->umin_value == 0) {
1473 1474 1475
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1476 1477 1478
			if (err)
				return err;
		}
1479

1480
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1481
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1482 1483 1484 1485
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1486
					      reg->umax_value,
1487
					      zero_size_allowed, meta);
1488 1489 1490
	}

	return err;
1491
err_type:
1492
	verbose(env, "R%d type=%s expected=%s\n", regno,
1493 1494
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1495 1496
}

1497 1498
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1499 1500 1501 1502
{
	if (!map)
		return 0;

1503 1504 1505 1506 1507 1508 1509 1510
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1511 1512
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1513 1514 1515 1516 1517 1518
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1519
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1520
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1521
		    func_id != BPF_FUNC_current_task_under_cgroup)
1522 1523
			goto error;
		break;
1524 1525 1526 1527 1528
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1529
		if (func_id != BPF_FUNC_redirect_map)
1530 1531
			goto error;
		break;
1532 1533 1534 1535 1536
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1537
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1538
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1539 1540
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1541
		break;
1542 1543 1544 1545 1546 1547
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1560
	case BPF_FUNC_perf_event_read_value:
1561 1562 1563 1564 1565 1566 1567
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1568
	case BPF_FUNC_current_task_under_cgroup:
1569
	case BPF_FUNC_skb_under_cgroup:
1570 1571 1572
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1573
	case BPF_FUNC_redirect_map:
1574 1575
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1576 1577
			goto error;
		break;
1578 1579 1580 1581 1582 1583 1584 1585
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1586 1587
	default:
		break;
1588 1589 1590
	}

	return 0;
1591
error:
1592
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1593
		map->map_type, func_id_name(func_id), func_id);
1594
	return -EINVAL;
1595 1596
}

1597 1598 1599 1600
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1601
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1602
		count++;
1603
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1604
		count++;
1605
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1606
		count++;
1607
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1608
		count++;
1609
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1610 1611 1612 1613 1614
		count++;

	return count > 1 ? -EINVAL : 0;
}

1615 1616
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
1617
 */
1618
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1619
{
1620
	struct bpf_verifier_state *state = env->cur_state;
1621
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1622 1623 1624
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1625
		if (reg_is_pkt_pointer_any(&regs[i]))
1626
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
1627

1628 1629
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
1630
			continue;
1631
		reg = &state->stack[i].spilled_ptr;
1632 1633
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1634 1635 1636
	}
}

1637
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1638 1639
{
	const struct bpf_func_proto *fn = NULL;
1640
	struct bpf_reg_state *regs;
1641
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1642
	bool changes_data;
1643 1644 1645 1646
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1647 1648
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
1649 1650 1651
		return -EINVAL;
	}

1652 1653
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
1654 1655

	if (!fn) {
1656 1657
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
1658 1659 1660 1661
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1662
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1663
		verbose(env, "cannot call GPL only function from proprietary program\n");
1664 1665 1666
		return -EINVAL;
	}

1667
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1668

1669
	memset(&meta, 0, sizeof(meta));
1670
	meta.pkt_access = fn->pkt_access;
1671

1672 1673 1674 1675 1676
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1677
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1678
			func_id_name(func_id), func_id);
1679 1680 1681
		return err;
	}

1682
	/* check args */
1683
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1684 1685
	if (err)
		return err;
1686
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1687 1688
	if (err)
		return err;
1689
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1690 1691
	if (err)
		return err;
1692
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1693 1694
	if (err)
		return err;
1695
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1696 1697 1698
	if (err)
		return err;

1699 1700 1701 1702
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1703
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1704 1705 1706 1707
		if (err)
			return err;
	}

1708
	regs = cur_regs(env);
1709
	/* reset caller saved regs */
1710
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1711
		mark_reg_not_init(env, regs, caller_saved[i]);
1712 1713
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1714

1715
	/* update return register (already marked as written above) */
1716
	if (fn->ret_type == RET_INTEGER) {
1717
		/* sets type to SCALAR_VALUE */
1718
		mark_reg_unknown(env, regs, BPF_REG_0);
1719 1720 1721
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1722 1723
		struct bpf_insn_aux_data *insn_aux;

1724
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1725
		/* There is no offset yet applied, variable or fixed */
1726
		mark_reg_known_zero(env, regs, BPF_REG_0);
1727
		regs[BPF_REG_0].off = 0;
1728 1729 1730 1731
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1732
		if (meta.map_ptr == NULL) {
1733 1734
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
1735 1736
			return -EINVAL;
		}
1737
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1738
		regs[BPF_REG_0].id = ++env->id_gen;
1739 1740 1741 1742 1743
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1744
	} else {
1745
		verbose(env, "unknown return type %d of func %s#%d\n",
1746
			fn->ret_type, func_id_name(func_id), func_id);
1747 1748
		return -EINVAL;
	}
1749

1750
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1751 1752
	if (err)
		return err;
1753

A
Alexei Starovoitov 已提交
1754 1755 1756 1757 1758
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1759 1760 1761 1762
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1785 1786
}

1787 1788 1789 1790 1791 1792 1793 1794 1795
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1796
{
1797
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1798
	bool known = tnum_is_const(off_reg->var_off);
1799 1800 1801 1802
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1803
	u8 opcode = BPF_OP(insn->code);
1804
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1805

1806
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1807

1808
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1809
		print_verifier_state(env, env->cur_state);
1810 1811
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
1812 1813 1814
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1815
		print_verifier_state(env, env->cur_state);
1816 1817
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
1818 1819 1820 1821 1822 1823
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
1824 1825
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
1826 1827
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1828 1829
	}

1830 1831
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
1832
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1833 1834 1835 1836 1837
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
1838
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1839 1840 1841 1842 1843
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
1844
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1845 1846 1847 1848 1849 1850
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1851
	 */
1852 1853
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1854

1855 1856 1857 1858
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1859
		 */
1860 1861
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1862
			/* pointer += K.  Accumulate it into fixed offset */
1863 1864 1865 1866
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1867
			dst_reg->var_off = ptr_reg->var_off;
1868
			dst_reg->off = ptr_reg->off + smin_val;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1880
		 */
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1897 1898
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1899
		if (reg_is_pkt_pointer(ptr_reg)) {
1900 1901 1902 1903 1904 1905 1906 1907 1908
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
1909
				verbose(env, "R%d tried to subtract pointer from scalar\n",
1910 1911 1912 1913 1914 1915
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1916
		 */
1917 1918
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
1919
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1920 1921 1922
					dst);
			return -EACCES;
		}
1923 1924
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1925
			/* pointer -= K.  Subtract it from fixed offset */
1926 1927 1928 1929
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1930 1931
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1932
			dst_reg->off = ptr_reg->off - smin_val;
1933 1934 1935 1936 1937
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1938
		 */
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1957 1958
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1959
		if (reg_is_pkt_pointer(ptr_reg)) {
1960 1961
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1962
			if (smin_val < 0)
1963
				dst_reg->range = 0;
1964
		}
1965 1966 1967 1968 1969 1970 1971 1972 1973
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
1974
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1975 1976 1977 1978 1979
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
1980
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1981 1982
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1983 1984
	}

1985 1986 1987
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
1988 1989 1990
	return 0;
}

1991 1992 1993 1994
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
1995
{
1996
	struct bpf_reg_state *regs = cur_regs(env);
1997
	u8 opcode = BPF_OP(insn->code);
1998
	bool src_known, dst_known;
1999 2000
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
2001

2002 2003 2004 2005
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
2006
	}
2007 2008 2009 2010
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2011 2012
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2013

2014 2015
	switch (opcode) {
	case BPF_ADD:
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2032
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2033 2034
		break;
	case BPF_SUB:
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2053
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2054 2055
		break;
	case BPF_MUL:
2056 2057
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2058
			/* Ain't nobody got time to multiply that sign */
2059 2060
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2061 2062
			break;
		}
2063 2064
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2065
		 */
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2083 2084
		break;
	case BPF_AND:
2085
		if (src_known && dst_known) {
2086 2087
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2088 2089
			break;
		}
2090 2091
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2092
		 */
2093
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2111 2112 2113
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2114 2115
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2116 2117
			break;
		}
2118 2119
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2120 2121
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2122 2123 2124 2125 2126 2127 2128 2129 2130
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2131
		} else {
2132 2133 2134 2135 2136
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2137
		}
2138 2139
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2140 2141
		break;
	case BPF_LSH:
2142 2143 2144 2145
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2146
			mark_reg_unknown(env, regs, insn->dst_reg);
2147 2148
			break;
		}
2149 2150
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2151
		 */
2152 2153 2154 2155 2156 2157
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2158
		} else {
2159 2160
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2161
		}
2162 2163 2164 2165 2166 2167
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2168 2169
		break;
	case BPF_RSH:
2170 2171 2172 2173
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2174
			mark_reg_unknown(env, regs, insn->dst_reg);
2175 2176 2177
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2178 2179
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2180
				/* Sign bit will be cleared */
2181 2182 2183 2184 2185 2186
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2187
		} else {
2188 2189
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2190
		}
2191
		if (src_known)
2192 2193
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2194
		else
2195 2196 2197 2198 2199
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2200 2201
		break;
	default:
2202
		mark_reg_unknown(env, regs, insn->dst_reg);
2203 2204 2205
		break;
	}

2206 2207
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2208 2209 2210 2211 2212 2213 2214 2215 2216
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2217
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2234
					verbose(env, "R%d pointer %s pointer prohibited\n",
2235 2236 2237 2238
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2239
				mark_reg_unknown(env, regs, insn->dst_reg);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2274
		__mark_reg_known(&off_reg, insn->imm);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2291
		print_verifier_state(env, env->cur_state);
2292
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2293 2294 2295
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2296
		print_verifier_state(env, env->cur_state);
2297
		verbose(env, "verifier internal error: no src_reg\n");
2298 2299 2300
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2301 2302
}

2303
/* check validity of 32-bit and 64-bit arithmetic operations */
2304
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2305
{
2306
	struct bpf_reg_state *regs = cur_regs(env);
2307 2308 2309 2310 2311 2312 2313 2314
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2315
				verbose(env, "BPF_NEG uses reserved fields\n");
2316 2317 2318 2319
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2320 2321
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2322
				verbose(env, "BPF_END uses reserved fields\n");
2323 2324 2325 2326 2327
				return -EINVAL;
			}
		}

		/* check src operand */
2328
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2329 2330 2331
		if (err)
			return err;

2332
		if (is_pointer_value(env, insn->dst_reg)) {
2333
			verbose(env, "R%d pointer arithmetic prohibited\n",
2334 2335 2336 2337
				insn->dst_reg);
			return -EACCES;
		}

2338
		/* check dest operand */
2339
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2340 2341 2342 2343 2344 2345 2346
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2347
				verbose(env, "BPF_MOV uses reserved fields\n");
2348 2349 2350 2351
				return -EINVAL;
			}

			/* check src operand */
2352
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2353 2354 2355 2356
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2357
				verbose(env, "BPF_MOV uses reserved fields\n");
2358 2359 2360 2361 2362
				return -EINVAL;
			}
		}

		/* check dest operand */
2363
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2364 2365 2366 2367 2368 2369 2370 2371 2372
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2373
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2374
			} else {
2375
				/* R1 = (u32) R2 */
2376
				if (is_pointer_value(env, insn->src_reg)) {
2377 2378
					verbose(env,
						"R%d partial copy of pointer\n",
2379 2380 2381
						insn->src_reg);
					return -EACCES;
				}
2382
				mark_reg_unknown(env, regs, insn->dst_reg);
2383
				/* high 32 bits are known zero. */
2384 2385
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2386
				__update_reg_bounds(&regs[insn->dst_reg]);
2387 2388 2389 2390 2391
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2392
			regs[insn->dst_reg].type = SCALAR_VALUE;
2393
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2394 2395 2396
		}

	} else if (opcode > BPF_END) {
2397
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2398 2399 2400 2401 2402 2403
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2404
				verbose(env, "BPF_ALU uses reserved fields\n");
2405 2406 2407
				return -EINVAL;
			}
			/* check src1 operand */
2408
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2409 2410 2411 2412
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2413
				verbose(env, "BPF_ALU uses reserved fields\n");
2414 2415 2416 2417 2418
				return -EINVAL;
			}
		}

		/* check src2 operand */
2419
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2420 2421 2422 2423 2424
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2425
			verbose(env, "div by zero\n");
2426 2427 2428
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2429 2430 2431 2432 2433
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2434
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2435 2436 2437 2438
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2439
		/* check dest operand */
2440
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2441 2442 2443
		if (err)
			return err;

2444
		return adjust_reg_min_max_vals(env, insn);
2445 2446 2447 2448 2449
	}

	return 0;
}

2450
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2451
				   struct bpf_reg_state *dst_reg,
2452
				   enum bpf_reg_type type,
2453
				   bool range_right_open)
A
Alexei Starovoitov 已提交
2454
{
2455
	struct bpf_reg_state *regs = state->regs, *reg;
2456
	u16 new_range;
A
Alexei Starovoitov 已提交
2457
	int i;
2458

2459 2460
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
2461 2462 2463
		/* This doesn't give us any range */
		return;

2464 2465
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2466 2467 2468 2469 2470
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2471 2472 2473 2474 2475
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
2476
	 *
2477
	 * pkt_data in dst register:
2478 2479 2480 2481 2482 2483
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2484 2485 2486 2487 2488
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2489 2490 2491 2492 2493
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2494
	 * pkt_data in src register:
2495 2496 2497 2498 2499 2500
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2501 2502 2503 2504 2505
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2506 2507 2508 2509 2510 2511
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2512 2513 2514
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
2515
	 */
2516

2517 2518 2519 2520 2521
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2522
	for (i = 0; i < MAX_BPF_REG; i++)
2523
		if (regs[i].type == type && regs[i].id == dst_reg->id)
2524
			/* keep the maximum range already checked */
2525
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
2526

2527 2528
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2529
			continue;
2530
		reg = &state->stack[i].spilled_ptr;
2531
		if (reg->type == type && reg->id == dst_reg->id)
2532
			reg->range = max_t(u16, reg->range, new_range);
A
Alexei Starovoitov 已提交
2533 2534 2535
	}
}

2536 2537 2538
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2539
 * In JEQ/JNE cases we also adjust the var_off values.
2540 2541 2542 2543 2544
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2545 2546 2547 2548 2549 2550 2551 2552
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2553

2554 2555 2556 2557 2558
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2559
		__mark_reg_known(true_reg, val);
2560 2561 2562 2563 2564
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2565
		__mark_reg_known(false_reg, val);
2566 2567
		break;
	case BPF_JGT:
2568 2569 2570
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2571
	case BPF_JSGT:
2572 2573
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2574
		break;
2575 2576 2577 2578 2579 2580 2581 2582
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2583
	case BPF_JGE:
2584 2585 2586
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2587
	case BPF_JSGE:
2588 2589
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2590
		break;
2591 2592 2593 2594 2595 2596 2597 2598
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2599 2600 2601 2602
	default:
		break;
	}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2614 2615
}

2616 2617
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2618 2619 2620 2621 2622
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2623 2624
	if (__is_pointer_value(false, false_reg))
		return;
2625

2626 2627 2628 2629 2630
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2631
		__mark_reg_known(true_reg, val);
2632 2633 2634 2635 2636
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2637
		__mark_reg_known(false_reg, val);
2638 2639
		break;
	case BPF_JGT:
2640 2641 2642
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2643
	case BPF_JSGT:
2644 2645
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2646
		break;
2647 2648 2649 2650 2651 2652 2653 2654
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2655
	case BPF_JGE:
2656 2657 2658
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2659
	case BPF_JSGE:
2660 2661
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2662
		break;
2663 2664 2665 2666 2667 2668 2669 2670
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2671 2672 2673 2674
	default:
		break;
	}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2686 2687 2688 2689 2690 2691
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2692 2693 2694 2695 2696 2697 2698 2699
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2700 2701
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2731
		break;
2732
	}
2733 2734
}

2735
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2736
			 bool is_null)
2737 2738 2739 2740
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2741 2742 2743 2744
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2745 2746
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2747
				 reg->off)) {
2748 2749
			__mark_reg_known_zero(reg);
			reg->off = 0;
2750 2751 2752
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2753 2754 2755 2756
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2757
			reg->type = PTR_TO_MAP_VALUE;
2758
		}
2759 2760 2761 2762 2763
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2764 2765 2766 2767 2768 2769 2770
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2771
			  bool is_null)
2772 2773
{
	struct bpf_reg_state *regs = state->regs;
2774
	u32 id = regs[regno].id;
2775 2776 2777
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2778
		mark_map_reg(regs, i, id, is_null);
2779

2780 2781
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
2782
			continue;
2783
		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2784 2785 2786
	}
}

2787
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2788 2789
			     struct bpf_insn *insn, int *insn_idx)
{
2790
	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2791
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2792 2793 2794
	u8 opcode = BPF_OP(insn->code);
	int err;

2795
	if (opcode > BPF_JSLE) {
2796
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2797 2798 2799 2800 2801
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
2802
			verbose(env, "BPF_JMP uses reserved fields\n");
2803 2804 2805 2806
			return -EINVAL;
		}

		/* check src1 operand */
2807
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2808 2809
		if (err)
			return err;
2810 2811

		if (is_pointer_value(env, insn->src_reg)) {
2812
			verbose(env, "R%d pointer comparison prohibited\n",
2813 2814 2815
				insn->src_reg);
			return -EACCES;
		}
2816 2817
	} else {
		if (insn->src_reg != BPF_REG_0) {
2818
			verbose(env, "BPF_JMP uses reserved fields\n");
2819 2820 2821 2822 2823
			return -EINVAL;
		}
	}

	/* check src2 operand */
2824
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2825 2826 2827
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2828 2829
	dst_reg = &regs[insn->dst_reg];

2830 2831 2832
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2833 2834
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2854 2855
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2856 2857 2858 2859
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2860 2861
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2880 2881 2882 2883
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2884
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2885
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2886 2887
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2888 2889 2890
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
2891 2892
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
A
Alexei Starovoitov 已提交
2893 2894 2895
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2896
		/* pkt_data' > pkt_end */
2897 2898
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET, false);
2899 2900 2901 2902
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		/* pkt_end > pkt_data' */
2903 2904
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET, true);
2905 2906 2907
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2908
		/* pkt_data' < pkt_end */
2909 2910
		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET,
				       true);
2911
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2912 2913 2914
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		/* pkt_end < pkt_data' */
2915 2916
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET, false);
2917
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2918 2919
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2920
		/* pkt_data' >= pkt_end */
2921 2922
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET, true);
2923 2924 2925
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2926
		/* pkt_end >= pkt_data' */
2927
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2928
				       PTR_TO_PACKET, false);
2929 2930 2931 2932
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
		/* pkt_data' <= pkt_end */
2933 2934
		find_good_pkt_pointers(other_branch, dst_reg,
				       PTR_TO_PACKET, false);
2935 2936 2937
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2938
		/* pkt_end <= pkt_data' */
2939
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2940
				       PTR_TO_PACKET, true);
2941 2942 2943
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2944 2945
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET_META, false);
2946 2947 2948
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2949 2950
		find_good_pkt_pointers(other_branch, dst_reg,
				       PTR_TO_PACKET_META, false);
2951 2952 2953 2954
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2955
				       PTR_TO_PACKET_META, false);
2956 2957 2958 2959
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2960
				       PTR_TO_PACKET_META, false);
2961
	} else if (is_pointer_value(env, insn->dst_reg)) {
2962 2963
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
2964
		return -EACCES;
2965
	}
2966 2967
	if (env->log.level)
		print_verifier_state(env, this_branch);
2968 2969 2970
	return 0;
}

2971 2972 2973 2974 2975 2976 2977 2978
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2979
/* verify BPF_LD_IMM64 instruction */
2980
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2981
{
2982
	struct bpf_reg_state *regs = cur_regs(env);
2983 2984 2985
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
2986
		verbose(env, "invalid BPF_LD_IMM insn\n");
2987 2988 2989
		return -EINVAL;
	}
	if (insn->off != 0) {
2990
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2991 2992 2993
		return -EINVAL;
	}

2994
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2995 2996 2997
	if (err)
		return err;

2998 2999 3000
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3001
		regs[insn->dst_reg].type = SCALAR_VALUE;
3002
		__mark_reg_known(&regs[insn->dst_reg], imm);
3003
		return 0;
3004
	}
3005 3006 3007 3008 3009 3010 3011 3012 3013

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3014 3015 3016 3017 3018
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3019
	case BPF_PROG_TYPE_SCHED_ACT:
3020 3021 3022 3023 3024 3025
		return true;
	default:
		return false;
	}
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3041
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3042
{
3043
	struct bpf_reg_state *regs = cur_regs(env);
3044 3045 3046
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3047
	if (!may_access_skb(env->prog->type)) {
3048
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3049 3050 3051 3052
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3053
	    BPF_SIZE(insn->code) == BPF_DW ||
3054
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3055
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3056 3057 3058 3059
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3060
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3061 3062 3063 3064
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3065 3066
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3067 3068 3069 3070 3071
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3072
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3073 3074 3075 3076 3077
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3078
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3079
		mark_reg_not_init(env, regs, caller_saved[i]);
3080 3081
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3082 3083

	/* mark destination R0 register as readable, since it contains
3084 3085
	 * the value fetched from the packet.
	 * Already marked as written above.
3086
	 */
3087
	mark_reg_unknown(env, regs, BPF_REG_0);
3088 3089 3090
	return 0;
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
		break;
	default:
		return 0;
	}

3105
	reg = cur_regs(env) + BPF_REG_0;
3106
	if (reg->type != SCALAR_VALUE) {
3107
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3108 3109 3110 3111 3112
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3113
		verbose(env, "At program exit the register R0 ");
3114 3115 3116 3117
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3118
			verbose(env, "has value %s", tn_buf);
3119
		} else {
3120
			verbose(env, "has unknown scalar value");
3121
		}
3122
		verbose(env, " should have been 0 or 1\n");
3123 3124 3125 3126 3127
		return -EINVAL;
	}
	return 0;
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3168
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3179
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3180 3181 3182 3183 3184 3185 3186 3187
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3188
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3189 3190 3191
		return -EINVAL;
	}

3192 3193 3194 3195
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3196 3197 3198 3199 3200 3201 3202 3203 3204
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3205
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3206 3207 3208 3209 3210
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3211
		verbose(env, "insn state internal bug\n");
3212 3213 3214 3215 3216 3217 3218 3219
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3220
static int check_cfg(struct bpf_verifier_env *env)
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3257 3258
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3271 3272 3273
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3274 3275
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3276 3277
		} else {
			/* conditional jump with two edges */
3278
			env->explored_states[t] = STATE_LIST_MARK;
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3305
		verbose(env, "pop stack internal bug\n");
3306 3307 3308 3309 3310 3311 3312 3313
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3314
			verbose(env, "unreachable insn %d\n", i);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3327 3328 3329 3330
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3331 3332 3333 3334
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3353
 */
3354
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3355
{
3356
	unsigned int i;
A
Alexei Starovoitov 已提交
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3374 3375
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3376
{
3377 3378 3379 3380 3381
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3382 3383
		return true;

3384 3385
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3386
		return true;
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3400 3401 3402 3403
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3404 3405 3406
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3407 3408 3409 3410 3411 3412 3413 3414
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
3429
	case PTR_TO_PACKET_META:
3430
	case PTR_TO_PACKET:
3431
		if (rcur->type != rold->type)
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3463

3464 3465
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3466 3467 3468
	return false;
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
static bool stacksafe(struct bpf_verifier_state *old,
		      struct bpf_verifier_state *cur,
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3546 3547
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3548
			 struct bpf_verifier_state *cur)
3549
{
3550 3551
	struct idpair *idmap;
	bool ret = false;
3552 3553
	int i;

3554 3555 3556
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3557
		return false;
3558 3559

	for (i = 0; i < MAX_BPF_REG; i++) {
3560
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3561
			goto out_free;
3562 3563
	}

3564 3565
	if (!stacksafe(old, cur, idmap))
		goto out_free;
3566 3567 3568 3569
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3570 3571
}

3572 3573 3574 3575 3576 3577
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3578 3579 3580
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3581
	bool writes = parent == state->parent; /* Observe write marks */
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3593 3594 3595
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3596 3597 3598 3599 3600
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
3601 3602 3603
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3604
			continue;
3605
		if (state->stack[i].slot_type[0] != STACK_SPILL)
3606
			continue;
3607
		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3608
			continue;
3609 3610
		if (writes &&
		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3611
			continue;
3612 3613
		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3614 3615 3616 3617 3618 3619
			touched = true;
		}
	}
	return touched;
}

3620 3621 3622 3623 3624 3625 3626 3627 3628
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3639
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3640
{
3641 3642
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3643
	struct bpf_verifier_state *cur = env->cur_state;
3644
	int i;
3645 3646 3647 3648 3649 3650 3651 3652 3653

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3654
		if (states_equal(env, &sl->state, cur)) {
3655
			/* reached equivalent register/stack state,
3656 3657
			 * prune the search.
			 * Registers read by the continuation are read by us.
3658 3659 3660 3661 3662 3663
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3664
			 */
3665
			propagate_liveness(&sl->state, cur);
3666
			return 1;
3667
		}
3668 3669 3670 3671 3672 3673 3674 3675 3676
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3677
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3678 3679 3680 3681
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
3682
	copy_verifier_state(&new_sl->state, cur);
3683 3684
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3685
	/* connect new state to parentage chain */
3686
	cur->parent = &new_sl->state;
3687 3688 3689 3690 3691 3692
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3693
	for (i = 0; i < BPF_REG_FP; i++)
3694 3695 3696 3697
		cur->regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
		if (cur->stack[i].slot_type[0] == STACK_SPILL)
			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3698 3699 3700
	return 0;
}

3701 3702 3703 3704 3705 3706 3707 3708 3709
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

3710
static int do_check(struct bpf_verifier_env *env)
3711
{
3712
	struct bpf_verifier_state *state;
3713
	struct bpf_insn *insns = env->prog->insnsi;
3714
	struct bpf_reg_state *regs;
3715 3716 3717 3718 3719
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

3720 3721 3722 3723 3724
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
	env->cur_state = state;
	init_reg_state(env, state->regs);
3725
	state->parent = NULL;
3726 3727 3728 3729 3730 3731 3732
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
3733
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3734 3735 3736 3737 3738 3739 3740
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3741
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3742 3743
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
3744 3745 3746 3747
				insn_processed);
			return -E2BIG;
		}

3748 3749 3750 3751 3752
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
3753
			if (env->log.level) {
3754
				if (do_print_state)
3755
					verbose(env, "\nfrom %d to %d: safe\n",
3756 3757
						prev_insn_idx, insn_idx);
				else
3758
					verbose(env, "%d: safe\n", insn_idx);
3759 3760 3761 3762
			}
			goto process_bpf_exit;
		}

3763 3764 3765
		if (need_resched())
			cond_resched();

3766 3767 3768
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
3769
			else
3770
				verbose(env, "\nfrom %d to %d:",
3771
					prev_insn_idx, insn_idx);
3772
			print_verifier_state(env, state);
3773 3774 3775
			do_print_state = false;
		}

3776 3777
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
3778 3779
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
3780 3781
		}

3782 3783 3784 3785
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3786
		regs = cur_regs(env);
3787
		if (class == BPF_ALU || class == BPF_ALU64) {
3788
			err = check_alu_op(env, insn);
3789 3790 3791 3792
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3793
			enum bpf_reg_type *prev_src_type, src_reg_type;
3794 3795 3796

			/* check for reserved fields is already done */

3797
			/* check src operand */
3798
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3799 3800 3801
			if (err)
				return err;

3802
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3803 3804 3805
			if (err)
				return err;

3806 3807
			src_reg_type = regs[insn->src_reg].type;

3808 3809 3810
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3811
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3812 3813 3814 3815 3816
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3817 3818 3819
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3820 3821
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3822
				 * save type to validate intersecting paths
3823
				 */
3824
				*prev_src_type = src_reg_type;
3825

3826
			} else if (src_reg_type != *prev_src_type &&
3827
				   (src_reg_type == PTR_TO_CTX ||
3828
				    *prev_src_type == PTR_TO_CTX)) {
3829 3830 3831 3832 3833 3834 3835
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
3836
				verbose(env, "same insn cannot be used with different pointers\n");
3837 3838 3839
				return -EINVAL;
			}

3840
		} else if (class == BPF_STX) {
3841
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3842

3843
			if (BPF_MODE(insn->code) == BPF_XADD) {
3844
				err = check_xadd(env, insn_idx, insn);
3845 3846 3847 3848 3849 3850 3851
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3852
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3853 3854 3855
			if (err)
				return err;
			/* check src2 operand */
3856
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3857 3858 3859
			if (err)
				return err;

3860 3861
			dst_reg_type = regs[insn->dst_reg].type;

3862
			/* check that memory (dst_reg + off) is writeable */
3863
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3864 3865 3866 3867 3868
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3869 3870 3871 3872 3873
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3874
				   (dst_reg_type == PTR_TO_CTX ||
3875
				    *prev_dst_type == PTR_TO_CTX)) {
3876
				verbose(env, "same insn cannot be used with different pointers\n");
3877 3878 3879
				return -EINVAL;
			}

3880 3881 3882
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
3883
				verbose(env, "BPF_ST uses reserved fields\n");
3884 3885 3886
				return -EINVAL;
			}
			/* check src operand */
3887
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3888 3889 3890 3891
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3892
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3906
					verbose(env, "BPF_CALL uses reserved fields\n");
3907 3908 3909
					return -EINVAL;
				}

3910
				err = check_call(env, insn->imm, insn_idx);
3911 3912 3913 3914 3915 3916 3917 3918
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3919
					verbose(env, "BPF_JA uses reserved fields\n");
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3931
					verbose(env, "BPF_EXIT uses reserved fields\n");
3932 3933 3934 3935 3936 3937 3938 3939 3940
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3941
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3942 3943 3944
				if (err)
					return err;

3945
				if (is_pointer_value(env, BPF_REG_0)) {
3946
					verbose(env, "R0 leaks addr as return value\n");
3947 3948 3949
					return -EACCES;
				}

3950 3951 3952
				err = check_return_code(env);
				if (err)
					return err;
3953
process_bpf_exit:
3954 3955 3956 3957
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3972 3973 3974 3975
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3976 3977 3978 3979 3980 3981 3982
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
3983
				verbose(env, "invalid BPF_LD mode\n");
3984 3985 3986
				return -EINVAL;
			}
		} else {
3987
			verbose(env, "unknown insn class %d\n", class);
3988 3989 3990 3991 3992 3993
			return -EINVAL;
		}

		insn_idx++;
	}

3994 3995
	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
		env->prog->aux->stack_depth);
3996 3997 3998
	return 0;
}

3999 4000 4001
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4002 4003
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4004 4005 4006
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4007 4008
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4009 4010 4011
					struct bpf_prog *prog)

{
4012 4013 4014 4015 4016 4017 4018
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4019
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4020 4021 4022 4023
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4024
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4025 4026
			return -EINVAL;
		}
4027 4028 4029 4030
	}
	return 0;
}

4031 4032 4033
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4034
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4035 4036 4037
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4038
	int i, j, err;
4039

4040
	err = bpf_prog_calc_tag(env->prog);
4041 4042 4043
	if (err)
		return err;

4044
	for (i = 0; i < insn_cnt; i++, insn++) {
4045
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4046
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4047
			verbose(env, "BPF_LDX uses reserved fields\n");
4048 4049 4050
			return -EINVAL;
		}

4051 4052 4053
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4054
			verbose(env, "BPF_STX uses reserved fields\n");
4055 4056 4057
			return -EINVAL;
		}

4058 4059 4060 4061 4062 4063 4064
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4065
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4066 4067 4068 4069 4070 4071 4072 4073
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4074 4075
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4076 4077 4078 4079
				return -EINVAL;
			}

			f = fdget(insn->imm);
4080
			map = __bpf_map_get(f);
4081
			if (IS_ERR(map)) {
4082
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4083 4084 4085 4086
					insn->imm);
				return PTR_ERR(map);
			}

4087
			err = check_map_prog_compatibility(env, map, env->prog);
4088 4089 4090 4091 4092
			if (err) {
				fdput(f);
				return err;
			}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4114 4115 4116 4117 4118 4119 4120
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4136
static void release_maps(struct bpf_verifier_env *env)
4137 4138 4139 4140 4141 4142 4143 4144
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4145
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

4191 4192 4193
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4194
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4195
{
4196
	const struct bpf_verifier_ops *ops = env->ops;
4197
	int i, cnt, size, ctx_field_size, delta = 0;
4198
	const int insn_cnt = env->prog->len;
4199
	struct bpf_insn insn_buf[16], *insn;
4200
	struct bpf_prog *new_prog;
4201
	enum bpf_access_type type;
4202 4203
	bool is_narrower_load;
	u32 target_size;
4204

4205 4206 4207 4208
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4209
			verbose(env, "bpf verifier is misconfigured\n");
4210 4211
			return -EINVAL;
		} else if (cnt) {
4212
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4213 4214
			if (!new_prog)
				return -ENOMEM;
4215

4216
			env->prog = new_prog;
4217
			delta += cnt - 1;
4218 4219 4220 4221
		}
	}

	if (!ops->convert_ctx_access)
4222 4223
		return 0;

4224
	insn = env->prog->insnsi + delta;
4225

4226
	for (i = 0; i < insn_cnt; i++, insn++) {
4227 4228 4229
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4230
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4231
			type = BPF_READ;
4232 4233 4234
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4235
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4236 4237
			type = BPF_WRITE;
		else
4238 4239
			continue;

4240
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4241 4242
			continue;

4243
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4244
		size = BPF_LDST_BYTES(insn);
4245 4246 4247 4248 4249 4250

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4251
		is_narrower_load = size < ctx_field_size;
4252
		if (is_narrower_load) {
4253 4254 4255 4256
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4257
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4258 4259
				return -EINVAL;
			}
4260

4261
			size_code = BPF_H;
4262 4263 4264 4265
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4266

4267 4268 4269
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4270 4271 4272 4273 4274 4275

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4276
			verbose(env, "bpf verifier is misconfigured\n");
4277 4278
			return -EINVAL;
		}
4279 4280

		if (is_narrower_load && size < target_size) {
4281 4282
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4283
								(1 << size * 8) - 1);
4284 4285
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4286
								(1 << size * 8) - 1);
4287
		}
4288

4289
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4290 4291 4292
		if (!new_prog)
			return -ENOMEM;

4293
		delta += cnt - 1;
4294 4295 4296

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4297
		insn      = new_prog->insnsi + i + delta;
4298 4299 4300 4301 4302
	}

	return 0;
}

4303
/* fixup insn->imm field of bpf_call instructions
4304
 * and inline eligible helpers as explicit sequence of BPF instructions
4305 4306 4307
 *
 * this function is called after eBPF program passed verification
 */
4308
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4309
{
4310 4311
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4312
	const struct bpf_func_proto *fn;
4313
	const int insn_cnt = prog->len;
4314 4315 4316 4317
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4318

4319 4320 4321
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4322

4323 4324 4325 4326 4327
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4328 4329 4330 4331 4332 4333
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4334
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4335

4336 4337 4338 4339
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4340
			 */
4341
			insn->imm = 0;
4342
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4343 4344
			continue;
		}
4345

4346 4347 4348 4349 4350
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4351
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4352 4353
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4354 4355 4356 4357
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4358
				verbose(env, "bpf verifier is misconfigured\n");
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4375
		if (insn->imm == BPF_FUNC_redirect_map) {
4376 4377 4378 4379 4380 4381
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4396
patch_call_imm:
4397
		fn = env->ops->get_func_proto(insn->imm);
4398 4399 4400 4401
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
4402 4403
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
4404 4405
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4406
		}
4407
		insn->imm = fn->func - __bpf_call_base;
4408 4409
	}

4410 4411
	return 0;
}
4412

4413
static void free_states(struct bpf_verifier_env *env)
4414
{
4415
	struct bpf_verifier_state_list *sl, *sln;
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4435
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4436
{
4437
	struct bpf_verifier_env *env;
4438
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
4439 4440
	int ret = -EINVAL;

4441
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4442 4443
	 * allocate/free it every time bpf_check() is called
	 */
4444
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4445 4446
	if (!env)
		return -ENOMEM;
4447
	log = &env->log;
4448

4449 4450 4451 4452 4453
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4454
	env->prog = *prog;
4455
	env->ops = bpf_verifier_ops[env->prog->type];
4456

4457 4458 4459 4460 4461 4462 4463
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
4464 4465 4466
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
4467 4468

		ret = -EINVAL;
4469 4470 4471
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
4472
			goto err_unlock;
4473
	}
4474 4475 4476

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4477
		env->strict_alignment = true;
4478

4479 4480 4481 4482
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4483
	env->explored_states = kcalloc(env->prog->len,
4484
				       sizeof(struct bpf_verifier_state_list *),
4485 4486 4487 4488 4489
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4490 4491 4492 4493
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4494 4495
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4496
	ret = do_check(env);
4497 4498
	free_verifier_state(env->cur_state);
	env->cur_state = NULL;
4499

4500
skip_full_check:
4501
	while (!pop_stack(env, NULL, NULL));
4502
	free_states(env);
4503

4504 4505 4506 4507
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4508
	if (ret == 0)
4509
		ret = fixup_bpf_calls(env);
4510

4511
	if (log->level && bpf_verifier_log_full(log))
4512
		ret = -ENOSPC;
4513
	if (log->level && !log->ubuf) {
4514
		ret = -EFAULT;
4515
		goto err_release_maps;
4516 4517
	}

4518 4519
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4520 4521 4522
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4523

4524
		if (!env->prog->aux->used_maps) {
4525
			ret = -ENOMEM;
4526
			goto err_release_maps;
4527 4528
		}

4529
		memcpy(env->prog->aux->used_maps, env->used_maps,
4530
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4531
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4532 4533 4534 4535 4536 4537

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4538

4539
err_release_maps:
4540
	if (!env->prog->aux->used_maps)
4541 4542 4543 4544
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4545
	*prog = env->prog;
4546
err_unlock:
4547
	mutex_unlock(&bpf_verifier_lock);
4548 4549 4550
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4551 4552
	return ret;
}
4553

4554 4555 4556 4557 4558
static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
	[BPF_PROG_TYPE_XDP]		= &xdp_analyzer_ops,
	[BPF_PROG_TYPE_SCHED_CLS]	= &tc_cls_act_analyzer_ops,
};

4559 4560 4561 4562 4563 4564
int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

4565 4566 4567 4568
	if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
	    !bpf_analyzer_ops[prog->type])
		return -EOPNOTSUPP;

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
4579
	env->ops = bpf_analyzer_ops[env->prog->type];
4580 4581 4582 4583 4584 4585
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

4586
	env->strict_alignment = false;
4587 4588
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);
4604 4605
	free_verifier_state(env->cur_state);
	env->cur_state = NULL;
4606 4607

skip_full_check:
4608
	while (!pop_stack(env, NULL, NULL));
4609 4610 4611 4612 4613 4614 4615 4616 4617
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);