verifier.c 168.7 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
Y
Yonghong Song 已提交
25
#include <linux/perf_event.h>
A
Alexei Starovoitov 已提交
26

27 28
#include "disasm.h"

29 30 31 32 33 34 35 36 37
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
38 39 40 41 42 43 44 45 46 47 48 49
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
50
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
78
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
79
 * means the register has some value, but it's not a valid pointer.
80
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
81 82
 *
 * When verifier sees load or store instructions the type of base register
83
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

145
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
146
struct bpf_verifier_stack_elem {
147 148 149 150
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
151
	struct bpf_verifier_state st;
152 153
	int insn_idx;
	int prev_insn_idx;
154
	struct bpf_verifier_stack_elem *next;
155 156
};

157
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 159
#define BPF_COMPLEXITY_LIMIT_STACK	1024

160 161
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

162 163
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
164
	bool raw_mode;
165
	bool pkt_access;
166 167
	int regno;
	int access_size;
168 169
	s64 msize_smax_value;
	u64 msize_umax_value;
170 171
};

172 173
static DEFINE_MUTEX(bpf_verifier_lock);

174 175
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
176
{
177
	unsigned int n;
178

179 180 181 182 183 184 185 186 187 188 189 190
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
191
}
192 193 194 195

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
196
 */
197 198 199 200 201
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

202 203 204
	if (!bpf_verifier_log_needed(&env->log))
		return;

205
	va_start(args, fmt);
206
	bpf_verifier_vlog(&env->log, fmt, args);
207 208 209 210 211 212
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
213
	struct bpf_verifier_env *env = private_data;
214 215
	va_list args;

216 217 218
	if (!bpf_verifier_log_needed(&env->log))
		return;

219
	va_start(args, fmt);
220
	bpf_verifier_vlog(&env->log, fmt, args);
221 222
	va_end(args);
}
223

224 225 226 227 228 229
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

230 231 232
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
233
	[SCALAR_VALUE]		= "inv",
234 235 236 237 238
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
239
	[PTR_TO_PACKET]		= "pkt",
240
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
241
	[PTR_TO_PACKET_END]	= "pkt_end",
242 243
};

244 245 246 247 248 249 250 251 252 253 254
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

255 256 257 258 259 260 261 262
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

263
static void print_verifier_state(struct bpf_verifier_env *env,
264
				 const struct bpf_func_state *state)
265
{
266
	const struct bpf_reg_state *reg;
267 268 269
	enum bpf_reg_type t;
	int i;

270 271
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
272
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
273 274
		reg = &state->regs[i];
		t = reg->type;
275 276
		if (t == NOT_INIT)
			continue;
277 278 279
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
280 281 282
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
283
			verbose(env, "%lld", reg->var_off.value + reg->off);
284 285
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
286
		} else {
287
			verbose(env, "(id=%d", reg->id);
288
			if (t != SCALAR_VALUE)
289
				verbose(env, ",off=%d", reg->off);
290
			if (type_is_pkt_pointer(t))
291
				verbose(env, ",r=%d", reg->range);
292 293 294
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
295
				verbose(env, ",ks=%d,vs=%d",
296 297
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
298 299 300 301 302
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
303
				verbose(env, ",imm=%llx", reg->var_off.value);
304 305 306
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
307
					verbose(env, ",smin_value=%lld",
308 309 310
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
311
					verbose(env, ",smax_value=%lld",
312 313
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
314
					verbose(env, ",umin_value=%llu",
315 316
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
317
					verbose(env, ",umax_value=%llu",
318 319 320
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
321

322
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323
					verbose(env, ",var_off=%s", tn_buf);
324
				}
325
			}
326
			verbose(env, ")");
327
		}
328
	}
329
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 331 332 333 334
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
335
				reg_type_str[state->stack[i].spilled_ptr.type]);
336
		}
337 338
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
339
	}
340
	verbose(env, "\n");
341 342
}

343 344
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
345
{
346 347 348 349 350 351 352 353 354 355 356 357 358 359
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
360
 * the program calls into realloc_func_state() to grow the stack size.
361 362 363 364
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
365 366
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

399 400
static void free_func_state(struct bpf_func_state *state)
{
401 402
	if (!state)
		return;
403 404 405 406
	kfree(state->stack);
	kfree(state);
}

407 408
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
409
{
410 411 412 413 414 415
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
416 417
	if (free_self)
		kfree(state);
418 419 420 421 422
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
423 424
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
425 426 427
{
	int err;

428
	err = realloc_func_state(dst, src->allocated_stack, false);
429 430
	if (err)
		return err;
431
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 433 434
	return copy_stack_state(dst, src);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

463 464 465 466 467 468
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
469 470

	if (env->head == NULL)
471
		return -ENOENT;
472

473 474 475 476 477 478 479
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
480
	if (prev_insn_idx)
481 482
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
483
	free_verifier_state(&head->st, false);
484
	kfree(head);
485 486
	env->head = elem;
	env->stack_size--;
487
	return 0;
488 489
}

490 491
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
492
{
493
	struct bpf_verifier_state *cur = env->cur_state;
494
	struct bpf_verifier_stack_elem *elem;
495
	int err;
496

497
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 499 500 501 502 503 504 505
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
506 507 508
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
509
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510
		verbose(env, "BPF program is too complex\n");
511 512 513 514
		goto err;
	}
	return &elem->st;
err:
515 516
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
517
	/* pop all elements and return */
518
	while (!pop_stack(env, NULL, NULL));
519 520 521 522 523 524 525 526
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

527 528
static void __mark_reg_not_init(struct bpf_reg_state *reg);

529 530 531 532 533 534 535 536 537 538 539 540 541
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

542 543 544 545
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
546
{
547
	__mark_reg_known(reg, 0);
548
}
549

550 551 552 553 554 555 556
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

557 558
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
559 560
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
561
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 563 564 565 566 567 568 569
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

661 662 663 664 665 666 667
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
668
	reg->frameno = 0;
669
	__mark_reg_unbounded(reg);
670 671
}

672 673
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
674 675
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
676
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 678
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
679 680 681 682 683 684 685 686 687 688 689 690
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

691 692
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
693 694
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
695
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 697
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
698 699 700 701
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
702 703
}

704
static void init_reg_state(struct bpf_verifier_env *env,
705
			   struct bpf_func_state *state)
706
{
707
	struct bpf_reg_state *regs = state->regs;
708 709
	int i;

710
	for (i = 0; i < MAX_BPF_REG; i++) {
711
		mark_reg_not_init(env, regs, i);
712 713
		regs[i].live = REG_LIVE_NONE;
	}
714 715

	/* frame pointer */
716
	regs[BPF_REG_FP].type = PTR_TO_STACK;
717
	mark_reg_known_zero(env, regs, BPF_REG_FP);
718
	regs[BPF_REG_FP].frameno = state->frameno;
719 720 721

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
722
	mark_reg_known_zero(env, regs, BPF_REG_1);
723 724
}

725 726 727 728 729 730 731 732 733 734 735
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

736 737 738 739 740 741
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static int cmp_subprogs(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
	u32 *p;

	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
		    sizeof(env->subprog_starts[0]), cmp_subprogs);
	if (!p)
		return -ENOENT;
	return p - env->subprog_starts;

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
	env->subprog_starts[env->subprog_cnt++] = off;
	sort(env->subprog_starts, env->subprog_cnt,
	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
798
			verbose(env, "function calls in offloaded programs are not supported yet\n");
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);

	/* now check that all jumps are within the same subprog */
	subprog_start = 0;
	if (env->subprog_cnt == cur_subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[cur_subprog++];
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
			if (env->subprog_cnt == cur_subprog)
				subprog_end = insn_cnt;
			else
				subprog_end = env->subprog_starts[cur_subprog++];
		}
	}
	return 0;
}

849
static
850 851 852 853
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
854
{
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
894
	return NULL;
895 896 897 898 899 900 901 902
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
903

A
Alexei Starovoitov 已提交
904 905
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
906
		return 0;
A
Alexei Starovoitov 已提交
907

908 909
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
910
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
911
			break;
912 913 914
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
915
		/* ... then we depend on parent's value */
916
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
917 918
		state = parent;
		parent = state->parent;
919
		writes = true;
920
	}
921
	return 0;
922 923 924
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
925 926
			 enum reg_arg_type t)
{
927 928 929
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
930

931
	if (regno >= MAX_BPF_REG) {
932
		verbose(env, "R%d is invalid\n", regno);
933 934 935 936 937 938
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
939
			verbose(env, "R%d !read_ok\n", regno);
940 941
			return -EACCES;
		}
942
		return mark_reg_read(env, vstate, vstate->parent, regno);
943 944 945
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
946
			verbose(env, "frame pointer is read only\n");
947 948
			return -EACCES;
		}
949
		regs[regno].live |= REG_LIVE_WRITTEN;
950
		if (t == DST_OP)
951
			mark_reg_unknown(env, regs, regno);
952 953 954 955
	}
	return 0;
}

956 957 958 959 960 961 962
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
963
	case PTR_TO_PACKET:
964
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
965
	case PTR_TO_PACKET_END:
966 967 968 969 970 971 972
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

973 974 975 976 977 978
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

979 980 981
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
982
static int check_stack_write(struct bpf_verifier_env *env,
983 984
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
985
{
986
	struct bpf_func_state *cur; /* state of the current function */
987
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
988
	enum bpf_reg_type type;
989

990 991
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
992 993
	if (err)
		return err;
994 995 996
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
997 998 999 1000 1001 1002
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
1003

1004
	cur = env->cur_state->frame[env->cur_state->curframe];
1005
	if (value_regno >= 0 &&
1006
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1007 1008

		/* register containing pointer is being spilled into stack */
1009
		if (size != BPF_REG_SIZE) {
1010
			verbose(env, "invalid size of register spill\n");
1011 1012 1013
			return -EACCES;
		}

1014 1015 1016 1017 1018
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1019
		/* save register state */
1020
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1021
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1022

1023
		for (i = 0; i < BPF_REG_SIZE; i++)
1024
			state->stack[spi].slot_type[i] = STACK_SPILL;
1025
	} else {
1026 1027
		u8 type = STACK_MISC;

1028
		/* regular write of data into stack */
1029
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1047
		for (i = 0; i < size; i++)
1048
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1049
				type;
1050 1051 1052 1053
	}
	return 0;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1086
{
1087
	bool writes = parent == state->parent; /* Observe write marks */
1088 1089

	while (parent) {
1090 1091 1092 1093 1094 1095 1096 1097
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1098
		/* if read wasn't screened by an earlier write ... */
1099
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1100 1101
			break;
		/* ... then we depend on parent's value */
1102
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1103 1104
		state = parent;
		parent = state->parent;
1105
		writes = true;
1106 1107 1108
	}
}

1109
static int check_stack_read(struct bpf_verifier_env *env,
1110 1111
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1112
{
1113 1114
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1115 1116
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1117

1118
	if (reg_state->allocated_stack <= slot) {
1119 1120 1121 1122
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1123
	stype = reg_state->stack[spi].slot_type;
1124

1125
	if (stype[0] == STACK_SPILL) {
1126
		if (size != BPF_REG_SIZE) {
1127
			verbose(env, "invalid size of register spill\n");
1128 1129
			return -EACCES;
		}
1130
		for (i = 1; i < BPF_REG_SIZE; i++) {
1131
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1132
				verbose(env, "corrupted spill memory\n");
1133 1134 1135 1136
				return -EACCES;
			}
		}

1137
		if (value_regno >= 0) {
1138
			/* restore register state from stack */
1139
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1140 1141 1142 1143 1144
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1145
		}
1146 1147
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1148 1149
		return 0;
	} else {
1150 1151
		int zeros = 0;

1152
		for (i = 0; i < size; i++) {
1153 1154 1155 1156 1157
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1158
			}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1176 1177 1178 1179 1180 1181
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1182
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1183
			      int size, bool zero_size_allowed)
1184
{
1185 1186
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1187

1188 1189
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1190
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1191 1192 1193 1194 1195 1196
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1197 1198
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1199
			    int off, int size, bool zero_size_allowed)
1200
{
1201 1202
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1203 1204 1205
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1206 1207 1208
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1209
	 */
1210 1211
	if (env->log.level)
		print_verifier_state(env, state);
1212 1213 1214 1215 1216 1217
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1218
	if (reg->smin_value < 0) {
1219
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1220 1221 1222
			regno);
		return -EACCES;
	}
1223 1224
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1225
	if (err) {
1226 1227
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1228 1229 1230
		return err;
	}

1231 1232 1233
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1234
	 */
1235
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1236
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1237 1238 1239
			regno);
		return -EACCES;
	}
1240 1241
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1242
	if (err)
1243 1244
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1245
	return err;
1246 1247
}

A
Alexei Starovoitov 已提交
1248 1249
#define MAX_PACKET_OFF 0xffff

1250
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1251 1252
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1253
{
1254
	switch (env->prog->type) {
1255 1256 1257 1258 1259
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1260
		/* fallthrough */
1261 1262
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1263
	case BPF_PROG_TYPE_XDP:
1264
	case BPF_PROG_TYPE_LWT_XMIT:
1265
	case BPF_PROG_TYPE_SK_SKB:
1266
	case BPF_PROG_TYPE_SK_MSG:
1267 1268 1269 1270
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1271 1272 1273 1274 1275 1276
		return true;
	default:
		return false;
	}
}

1277
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1278
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1279
{
1280
	struct bpf_reg_state *regs = cur_regs(env);
1281
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1282

1283 1284
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1285
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1286
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1287 1288 1289 1290 1291
		return -EACCES;
	}
	return 0;
}

1292
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1293
			       int size, bool zero_size_allowed)
1294
{
1295
	struct bpf_reg_state *regs = cur_regs(env);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1307
	if (reg->smin_value < 0) {
1308
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1309 1310 1311
			regno);
		return -EACCES;
	}
1312
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1313
	if (err) {
1314
		verbose(env, "R%d offset is outside of the packet\n", regno);
1315 1316 1317 1318 1319 1320
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1321
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1322
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1323
{
1324 1325 1326
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1327

1328
	if (env->ops->is_valid_access &&
1329
	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1330 1331 1332 1333 1334 1335
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1336
		 */
1337
		*reg_type = info.reg_type;
1338

1339
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1340 1341 1342
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1343
		return 0;
1344
	}
1345

1346
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1347 1348 1349
	return -EACCES;
}

1350 1351
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1352
{
1353
	if (allow_ptr_leaks)
1354 1355
		return false;

1356
	return reg->type != SCALAR_VALUE;
1357 1358
}

1359 1360
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1361
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1362 1363
}

1364 1365 1366 1367 1368 1369 1370
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1371 1372 1373 1374 1375 1376 1377
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1378 1379
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1380
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1381
{
1382
	struct tnum reg_off;
1383
	int ip_align;
1384 1385 1386 1387 1388

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1389 1390 1391 1392 1393 1394 1395
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1396
	 */
1397
	ip_align = 2;
1398 1399 1400 1401 1402 1403

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1404 1405
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1406
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1407 1408
		return -EACCES;
	}
1409

A
Alexei Starovoitov 已提交
1410 1411 1412
	return 0;
}

1413 1414
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1415 1416
				       const char *pointer_desc,
				       int off, int size, bool strict)
1417
{
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1429
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1430
			pointer_desc, tn_buf, reg->off, off, size);
1431 1432 1433
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1434 1435 1436
	return 0;
}

1437
static int check_ptr_alignment(struct bpf_verifier_env *env,
1438 1439
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1440
{
1441
	bool strict = env->strict_alignment || strict_alignment_once;
1442
	const char *pointer_desc = "";
1443

1444 1445
	switch (reg->type) {
	case PTR_TO_PACKET:
1446 1447 1448 1449
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1450
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1451 1452 1453 1454 1455 1456 1457 1458
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1459 1460 1461 1462 1463
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1464
		break;
1465
	default:
1466
		break;
1467
	}
1468 1469
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1470 1471
}

1472 1473 1474 1475
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1476
	u16 stack = env->subprog_stack_depth[func->subprogno];
1477 1478 1479 1480 1481 1482

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
	env->subprog_stack_depth[func->subprogno] = -off;
1483 1484
	return 0;
}
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
	int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1499

1500 1501 1502 1503 1504 1505
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
	depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	if (depth > MAX_BPF_STACK) {
1506
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1507
			frame + 1, depth);
1508 1509
		return -EACCES;
	}
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
continue_func:
	if (env->subprog_cnt == subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[subprog];
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
		ret_prog[frame] = subprog;

		/* find the callee */
		i = i + insn[i].imm + 1;
		subprog = find_subprog(env, i);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		subprog++;
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
	depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	frame--;
	i = ret_insn[frame];
	subprog = ret_prog[frame];
	goto continue_func;
1550 1551
}

1552
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
	subprog++;
	return env->subprog_stack_depth[subprog];
}
1567
#endif
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1592 1593 1594 1595 1596 1597
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1598 1599 1600
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1601
{
1602 1603
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1604
	struct bpf_func_state *state;
1605 1606 1607 1608 1609 1610
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1611
	/* alignment checks will add in reg->off themselves */
1612
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1613 1614
	if (err)
		return err;
1615

1616 1617 1618 1619
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1620 1621
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1622
			verbose(env, "R%d leaks addr into map\n", value_regno);
1623 1624
			return -EACCES;
		}
1625

1626
		err = check_map_access(env, regno, off, size, false);
1627
		if (!err && t == BPF_READ && value_regno >= 0)
1628
			mark_reg_unknown(env, regs, value_regno);
1629

A
Alexei Starovoitov 已提交
1630
	} else if (reg->type == PTR_TO_CTX) {
1631
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1632

1633 1634
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1635
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1636 1637
			return -EACCES;
		}
1638 1639 1640
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1641
		if (reg->off) {
1642 1643
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1644 1645 1646 1647
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1648 1649 1650
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1651 1652
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1653 1654 1655
				tn_buf, off, size);
			return -EACCES;
		}
1656
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1657
		if (!err && t == BPF_READ && value_regno >= 0) {
1658
			/* ctx access returns either a scalar, or a
1659 1660
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1661 1662
			 */
			if (reg_type == SCALAR_VALUE)
1663
				mark_reg_unknown(env, regs, value_regno);
1664
			else
1665
				mark_reg_known_zero(env, regs,
1666
						    value_regno);
1667 1668 1669 1670
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1671
		}
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1682
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1683 1684 1685 1686
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1687
		if (off >= 0 || off < -MAX_BPF_STACK) {
1688 1689
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1690 1691
			return -EACCES;
		}
1692

1693 1694 1695 1696
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1697

1698
		if (t == BPF_WRITE)
1699 1700
			err = check_stack_write(env, state, off, size,
						value_regno);
1701
		else
1702 1703
			err = check_stack_read(env, state, off, size,
					       value_regno);
1704
	} else if (reg_is_pkt_pointer(reg)) {
1705
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1706
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1707 1708
			return -EACCES;
		}
1709 1710
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1711 1712
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1713 1714
			return -EACCES;
		}
1715
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1716
		if (!err && t == BPF_READ && value_regno >= 0)
1717
			mark_reg_unknown(env, regs, value_regno);
1718
	} else {
1719 1720
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1721 1722
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1723

1724
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1725
	    regs[value_regno].type == SCALAR_VALUE) {
1726
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1727
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1728
	}
1729 1730 1731
	return err;
}

1732
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1733 1734 1735 1736 1737
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1738
		verbose(env, "BPF_XADD uses reserved fields\n");
1739 1740 1741 1742
		return -EINVAL;
	}

	/* check src1 operand */
1743
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1744 1745 1746 1747
	if (err)
		return err;

	/* check src2 operand */
1748
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1749 1750 1751
	if (err)
		return err;

1752
	if (is_pointer_value(env, insn->src_reg)) {
1753
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1754 1755 1756
		return -EACCES;
	}

1757 1758 1759 1760 1761
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1762 1763 1764
		return -EACCES;
	}

1765
	/* check whether atomic_add can read the memory */
1766
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1767
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1768 1769 1770 1771
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1772
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1773
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1774 1775 1776 1777
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1778 1779 1780
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1781
 */
1782
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1783 1784
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1785
{
1786
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1787
	struct bpf_func_state *state = func(env, reg);
1788
	int off, i, slot, spi;
1789

1790
	if (reg->type != PTR_TO_STACK) {
1791
		/* Allow zero-byte read from NULL, regardless of pointer type */
1792
		if (zero_size_allowed && access_size == 0 &&
1793
		    register_is_null(reg))
1794 1795
			return 0;

1796
		verbose(env, "R%d type=%s expected=%s\n", regno,
1797
			reg_type_str[reg->type],
1798
			reg_type_str[PTR_TO_STACK]);
1799
		return -EACCES;
1800
	}
1801

1802
	/* Only allow fixed-offset stack reads */
1803
	if (!tnum_is_const(reg->var_off)) {
1804 1805
		char tn_buf[48];

1806
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1807
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1808
			regno, tn_buf);
1809
		return -EACCES;
1810
	}
1811
	off = reg->off + reg->var_off.value;
1812
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1813
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1814
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1815 1816 1817 1818
			regno, off, access_size);
		return -EACCES;
	}

1819 1820 1821 1822 1823 1824
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1825
	for (i = 0; i < access_size; i++) {
1826 1827
		u8 *stype;

1828 1829
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1830 1831 1832 1833 1834 1835 1836 1837 1838
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1839
		}
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1850
	}
1851
	return update_stack_depth(env, state, off);
1852 1853
}

1854 1855 1856 1857
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1858
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1859

1860
	switch (reg->type) {
1861
	case PTR_TO_PACKET:
1862
	case PTR_TO_PACKET_META:
1863 1864
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1865
	case PTR_TO_MAP_VALUE:
1866 1867
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1868
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1869 1870 1871 1872 1873
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1887
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1888 1889
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1890
{
1891
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1892
	enum bpf_reg_type expected_type, type = reg->type;
1893 1894
	int err = 0;

1895
	if (arg_type == ARG_DONTCARE)
1896 1897
		return 0;

1898 1899 1900
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1901

1902 1903
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1904 1905
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1906 1907
			return -EACCES;
		}
1908
		return 0;
1909
	}
1910

1911
	if (type_is_pkt_pointer(type) &&
1912
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1913
		verbose(env, "helper access to the packet is not allowed\n");
1914 1915 1916
		return -EACCES;
	}

1917
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1918 1919
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1920
		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1921
		    type != expected_type)
1922
			goto err_type;
1923 1924
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1925 1926
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1927
			goto err_type;
1928 1929
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1930 1931
		if (type != expected_type)
			goto err_type;
1932 1933
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1934 1935
		if (type != expected_type)
			goto err_type;
1936
	} else if (arg_type_is_mem_ptr(arg_type)) {
1937 1938
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1939
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1940 1941
		 * happens during stack boundary checking.
		 */
1942
		if (register_is_null(reg) &&
1943
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1944
			/* final test in check_stack_boundary() */;
1945 1946
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1947
			 type != expected_type)
1948
			goto err_type;
1949
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1950
	} else {
1951
		verbose(env, "unsupported arg_type %d\n", arg_type);
1952 1953 1954 1955 1956
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1957
		meta->map_ptr = reg->map_ptr;
1958 1959 1960 1961 1962
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1963
		if (!meta->map_ptr) {
1964 1965 1966 1967 1968
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1969
			verbose(env, "invalid map_ptr to access map->key\n");
1970 1971
			return -EACCES;
		}
1972 1973 1974
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->key_size, false,
					      NULL);
1975 1976 1977 1978
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1979
		if (!meta->map_ptr) {
1980
			/* kernel subsystem misconfigured verifier */
1981
			verbose(env, "invalid map_ptr to access map->value\n");
1982 1983
			return -EACCES;
		}
1984 1985 1986
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->value_size, false,
					      NULL);
1987
	} else if (arg_type_is_mem_size(arg_type)) {
1988
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1989

1990 1991 1992 1993 1994 1995
		/* remember the mem_size which may be used later
		 * to refine return values.
		 */
		meta->msize_smax_value = reg->smax_value;
		meta->msize_umax_value = reg->umax_value;

1996 1997
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1998
		 */
1999
		if (!tnum_is_const(reg->var_off))
2000 2001 2002 2003 2004 2005 2006
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

2007
		if (reg->smin_value < 0) {
2008
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2009 2010 2011
				regno);
			return -EACCES;
		}
2012

2013
		if (reg->umin_value == 0) {
2014 2015 2016
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2017 2018 2019
			if (err)
				return err;
		}
2020

2021
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2022
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2023 2024 2025 2026
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2027
					      reg->umax_value,
2028
					      zero_size_allowed, meta);
2029 2030 2031
	}

	return err;
2032
err_type:
2033
	verbose(env, "R%d type=%s expected=%s\n", regno,
2034 2035
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2036 2037
}

2038 2039
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2040 2041 2042 2043
{
	if (!map)
		return 0;

2044 2045 2046 2047 2048 2049 2050 2051
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2052 2053
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2054 2055 2056 2057 2058 2059
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2060
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2061
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2062
		    func_id != BPF_FUNC_current_task_under_cgroup)
2063 2064
			goto error;
		break;
2065 2066 2067 2068 2069
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2070
		if (func_id != BPF_FUNC_redirect_map)
2071 2072
			goto error;
		break;
2073 2074 2075
	/* Restrict bpf side of cpumap and xskmap, open when use-cases
	 * appear.
	 */
2076
	case BPF_MAP_TYPE_CPUMAP:
2077
	case BPF_MAP_TYPE_XSKMAP:
2078 2079 2080
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2081
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2082
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2083 2084
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2085
		break;
2086 2087 2088
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2089 2090
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2091 2092
			goto error;
		break;
2093 2094 2095 2096 2097 2098 2099 2100 2101
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
2102 2103 2104 2105
		if (env->subprog_cnt) {
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2106 2107 2108
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2109
	case BPF_FUNC_perf_event_read_value:
2110 2111 2112 2113 2114 2115 2116
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2117
	case BPF_FUNC_current_task_under_cgroup:
2118
	case BPF_FUNC_skb_under_cgroup:
2119 2120 2121
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2122
	case BPF_FUNC_redirect_map:
2123
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2124 2125
		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2126 2127
			goto error;
		break;
2128
	case BPF_FUNC_sk_redirect_map:
2129
	case BPF_FUNC_msg_redirect_map:
2130 2131 2132 2133 2134 2135 2136
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2137 2138
	default:
		break;
2139 2140 2141
	}

	return 0;
2142
error:
2143
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2144
		map->map_type, func_id_name(func_id), func_id);
2145
	return -EINVAL;
2146 2147
}

2148
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2149 2150 2151
{
	int count = 0;

2152
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2153
		count++;
2154
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2155
		count++;
2156
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2157
		count++;
2158
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2159
		count++;
2160
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2161 2162
		count++;

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2201 2202
}

2203 2204
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2205
 */
2206 2207
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2208
{
2209
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2210 2211 2212
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2213
		if (reg_is_pkt_pointer_any(&regs[i]))
2214
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2215

2216 2217
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2218
			continue;
2219
		reg = &state->stack[i].spilled_ptr;
2220 2221
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2222 2223 2224
	}
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2241
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2242
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2243
			state->curframe + 2);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
			subprog + 1 /* subprog number within this prog */);

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
				   int func_id,
				   struct bpf_call_arg_meta *meta)
{
	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];

	if (ret_type != RET_INTEGER ||
	    (func_id != BPF_FUNC_get_stack &&
	     func_id != BPF_FUNC_probe_read_str))
		return;

	ret_reg->smax_value = meta->msize_smax_value;
	ret_reg->umax_value = meta->msize_umax_value;
	__reg_deduce_bounds(ret_reg);
	__reg_bound_offset(ret_reg);
}

2356
static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2357 2358
{
	const struct bpf_func_proto *fn = NULL;
2359
	struct bpf_reg_state *regs;
2360
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2361
	bool changes_data;
2362 2363 2364 2365
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2366 2367
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2368 2369 2370
		return -EINVAL;
	}

2371
	if (env->ops->get_func_proto)
2372
		fn = env->ops->get_func_proto(func_id, env->prog);
2373
	if (!fn) {
2374 2375
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2376 2377 2378 2379
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2380
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2381
		verbose(env, "cannot call GPL only function from proprietary program\n");
2382 2383 2384
		return -EINVAL;
	}

2385
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2386
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2387 2388 2389 2390 2391
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2392

2393
	memset(&meta, 0, sizeof(meta));
2394
	meta.pkt_access = fn->pkt_access;
2395

2396
	err = check_func_proto(fn);
2397
	if (err) {
2398
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2399
			func_id_name(func_id), func_id);
2400 2401 2402
		return err;
	}

2403
	/* check args */
2404
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2405 2406
	if (err)
		return err;
2407
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2408 2409
	if (err)
		return err;
2410 2411 2412 2413 2414 2415 2416
	if (func_id == BPF_FUNC_tail_call) {
		if (meta.map_ptr == NULL) {
			verbose(env, "verifier bug\n");
			return -EINVAL;
		}
		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
	}
2417
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2418 2419
	if (err)
		return err;
2420
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2421 2422
	if (err)
		return err;
2423
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2424 2425 2426
	if (err)
		return err;

2427 2428 2429 2430
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2431 2432
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2433 2434 2435 2436
		if (err)
			return err;
	}

2437
	regs = cur_regs(env);
2438
	/* reset caller saved regs */
2439
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2440
		mark_reg_not_init(env, regs, caller_saved[i]);
2441 2442
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2443

2444
	/* update return register (already marked as written above) */
2445
	if (fn->ret_type == RET_INTEGER) {
2446
		/* sets type to SCALAR_VALUE */
2447
		mark_reg_unknown(env, regs, BPF_REG_0);
2448 2449 2450
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2451 2452
		struct bpf_insn_aux_data *insn_aux;

2453
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2454
		/* There is no offset yet applied, variable or fixed */
2455
		mark_reg_known_zero(env, regs, BPF_REG_0);
2456
		regs[BPF_REG_0].off = 0;
2457 2458 2459 2460
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2461
		if (meta.map_ptr == NULL) {
2462 2463
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2464 2465
			return -EINVAL;
		}
2466
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2467
		regs[BPF_REG_0].id = ++env->id_gen;
2468 2469 2470 2471 2472
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2473
	} else {
2474
		verbose(env, "unknown return type %d of func %s#%d\n",
2475
			fn->ret_type, func_id_name(func_id), func_id);
2476 2477
		return -EINVAL;
	}
2478

2479 2480
	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);

2481
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2482 2483
	if (err)
		return err;
2484

Y
Yonghong Song 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
		const char *err_str;

#ifdef CONFIG_PERF_EVENTS
		err = get_callchain_buffers(sysctl_perf_event_max_stack);
		err_str = "cannot get callchain buffer for func %s#%d\n";
#else
		err = -ENOTSUPP;
		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
		if (err) {
			verbose(env, err_str, func_id_name(func_id), func_id);
			return err;
		}

		env->prog->has_callchain_buf = true;
	}

A
Alexei Starovoitov 已提交
2503 2504 2505 2506 2507
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2526 2527
}

A
Alexei Starovoitov 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2563 2564 2565 2566 2567 2568 2569 2570 2571
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2572
{
2573 2574 2575
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2576
	bool known = tnum_is_const(off_reg->var_off);
2577 2578 2579 2580
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2581
	u8 opcode = BPF_OP(insn->code);
2582
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2583

2584
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2585

2586 2587 2588 2589 2590 2591 2592
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2593 2594 2595 2596
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2597 2598 2599
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2600
		return -EACCES;
A
Alexei Starovoitov 已提交
2601 2602
	}

2603
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2604 2605
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2606 2607 2608
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2609 2610
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2611 2612 2613
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2614 2615
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2616 2617 2618 2619 2620
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2621
	 */
2622 2623
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2624

A
Alexei Starovoitov 已提交
2625 2626 2627 2628
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2629 2630 2631 2632
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2633
		 */
2634 2635
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2636
			/* pointer += K.  Accumulate it into fixed offset */
2637 2638 2639 2640
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2641
			dst_reg->var_off = ptr_reg->var_off;
2642
			dst_reg->off = ptr_reg->off + smin_val;
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2654
		 */
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2671 2672
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2673
		if (reg_is_pkt_pointer(ptr_reg)) {
2674 2675 2676 2677 2678 2679 2680 2681
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2682 2683
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2684 2685 2686 2687 2688
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2689
		 */
2690
		if (ptr_reg->type == PTR_TO_STACK) {
2691 2692
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2693 2694
			return -EACCES;
		}
2695 2696
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2697
			/* pointer -= K.  Subtract it from fixed offset */
2698 2699 2700 2701
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2702 2703
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2704
			dst_reg->off = ptr_reg->off - smin_val;
2705 2706 2707 2708 2709
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2710
		 */
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2729 2730
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2731
		if (reg_is_pkt_pointer(ptr_reg)) {
2732 2733
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2734
			if (smin_val < 0)
2735
				dst_reg->range = 0;
2736
		}
2737 2738 2739 2740
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2741 2742 2743
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2744 2745 2746
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2747 2748
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2749
		return -EACCES;
2750 2751
	}

A
Alexei Starovoitov 已提交
2752 2753 2754
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2755 2756 2757
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2758 2759 2760
	return 0;
}

J
Jann Horn 已提交
2761 2762 2763 2764
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2765 2766 2767 2768
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2769
{
2770
	struct bpf_reg_state *regs = cur_regs(env);
2771
	u8 opcode = BPF_OP(insn->code);
2772
	bool src_known, dst_known;
2773 2774
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2775
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2776

2777 2778 2779 2780
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2781 2782
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2793 2794 2795 2796 2797 2798
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2799 2800
	switch (opcode) {
	case BPF_ADD:
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2817
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2818 2819
		break;
	case BPF_SUB:
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2838
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2839 2840
		break;
	case BPF_MUL:
2841 2842
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2843
			/* Ain't nobody got time to multiply that sign */
2844 2845
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2846 2847
			break;
		}
2848 2849
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2850
		 */
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2868 2869
		break;
	case BPF_AND:
2870
		if (src_known && dst_known) {
2871 2872
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2873 2874
			break;
		}
2875 2876
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2877
		 */
2878
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2896 2897 2898
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2899 2900
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2901 2902
			break;
		}
2903 2904
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2905 2906
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2907 2908 2909 2910 2911 2912 2913 2914 2915
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2916
		} else {
2917 2918 2919 2920 2921
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2922
		}
2923 2924
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2925 2926
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2927 2928 2929
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2930
			 */
2931
			mark_reg_unknown(env, regs, insn->dst_reg);
2932 2933
			break;
		}
2934 2935
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2936
		 */
2937 2938 2939 2940 2941 2942
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2943
		} else {
2944 2945
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2946
		}
2947
		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2948 2949
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2950 2951
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2952 2953 2954
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2955
			 */
2956
			mark_reg_unknown(env, regs, insn->dst_reg);
2957 2958
			break;
		}
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2975
		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2976 2977 2978 2979
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2980
		break;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	case BPF_ARSH:
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
			 */
			mark_reg_unknown(env, regs, insn->dst_reg);
			break;
		}

		/* Upon reaching here, src_known is true and
		 * umax_val is equal to umin_val.
		 */
		dst_reg->smin_value >>= umin_val;
		dst_reg->smax_value >>= umin_val;
		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);

		/* blow away the dst_reg umin_value/umax_value and rely on
		 * dst_reg var_off to refine the result.
		 */
		dst_reg->umin_value = 0;
		dst_reg->umax_value = U64_MAX;
		__update_reg_bounds(dst_reg);
		break;
3004
	default:
3005
		mark_reg_unknown(env, regs, insn->dst_reg);
3006 3007 3008
		break;
	}

J
Jann Horn 已提交
3009 3010 3011 3012 3013 3014
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

3015 3016
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
3017 3018 3019 3020 3021 3022 3023 3024 3025
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
3026 3027 3028
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
3041 3042
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
3043
				 */
3044 3045 3046
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
3047
				}
3048 3049 3050 3051
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
3052 3053 3054 3055 3056
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
3057 3058
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3059 3060 3061
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3062 3063
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3064 3065 3066 3067 3068 3069
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3070
		__mark_reg_known(&off_reg, insn->imm);
3071
		src_reg = &off_reg;
3072 3073 3074
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3075 3076 3077 3078
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3079
		print_verifier_state(env, state);
3080
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3081 3082 3083
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3084
		print_verifier_state(env, state);
3085
		verbose(env, "verifier internal error: no src_reg\n");
3086 3087 3088
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3089 3090
}

3091
/* check validity of 32-bit and 64-bit arithmetic operations */
3092
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3093
{
3094
	struct bpf_reg_state *regs = cur_regs(env);
3095 3096 3097 3098 3099 3100 3101 3102
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3103
				verbose(env, "BPF_NEG uses reserved fields\n");
3104 3105 3106 3107
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3108 3109
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3110
				verbose(env, "BPF_END uses reserved fields\n");
3111 3112 3113 3114 3115
				return -EINVAL;
			}
		}

		/* check src operand */
3116
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3117 3118 3119
		if (err)
			return err;

3120
		if (is_pointer_value(env, insn->dst_reg)) {
3121
			verbose(env, "R%d pointer arithmetic prohibited\n",
3122 3123 3124 3125
				insn->dst_reg);
			return -EACCES;
		}

3126
		/* check dest operand */
3127
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3128 3129 3130 3131 3132 3133 3134
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3135
				verbose(env, "BPF_MOV uses reserved fields\n");
3136 3137 3138 3139
				return -EINVAL;
			}

			/* check src operand */
3140
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3141 3142 3143 3144
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3145
				verbose(env, "BPF_MOV uses reserved fields\n");
3146 3147 3148 3149 3150
				return -EINVAL;
			}
		}

		/* check dest operand */
3151
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3152 3153 3154 3155 3156 3157 3158 3159 3160
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3161
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3162
			} else {
3163
				/* R1 = (u32) R2 */
3164
				if (is_pointer_value(env, insn->src_reg)) {
3165 3166
					verbose(env,
						"R%d partial copy of pointer\n",
3167 3168 3169
						insn->src_reg);
					return -EACCES;
				}
3170
				mark_reg_unknown(env, regs, insn->dst_reg);
3171
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3172 3173 3174 3175 3176
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3177
			regs[insn->dst_reg].type = SCALAR_VALUE;
3178 3179 3180 3181 3182 3183 3184
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3185 3186 3187
		}

	} else if (opcode > BPF_END) {
3188
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3189 3190 3191 3192 3193 3194
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3195
				verbose(env, "BPF_ALU uses reserved fields\n");
3196 3197 3198
				return -EINVAL;
			}
			/* check src1 operand */
3199
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3200 3201 3202 3203
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3204
				verbose(env, "BPF_ALU uses reserved fields\n");
3205 3206 3207 3208 3209
				return -EINVAL;
			}
		}

		/* check src2 operand */
3210
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3211 3212 3213 3214 3215
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3216
			verbose(env, "div by zero\n");
3217 3218 3219
			return -EINVAL;
		}

3220 3221 3222 3223 3224
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3225 3226 3227 3228 3229
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3230
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3231 3232 3233 3234
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3235
		/* check dest operand */
3236
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3237 3238 3239
		if (err)
			return err;

3240
		return adjust_reg_min_max_vals(env, insn);
3241 3242 3243 3244 3245
	}

	return 0;
}

3246
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3247
				   struct bpf_reg_state *dst_reg,
3248
				   enum bpf_reg_type type,
3249
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3250
{
3251
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3252
	struct bpf_reg_state *regs = state->regs, *reg;
3253
	u16 new_range;
3254
	int i, j;
3255

3256 3257
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3258 3259 3260
		/* This doesn't give us any range */
		return;

3261 3262
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3263 3264 3265 3266 3267
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3268 3269 3270 3271 3272
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3273
	 *
3274
	 * pkt_data in dst register:
3275 3276 3277 3278 3279 3280
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3281 3282 3283 3284 3285
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3286 3287 3288 3289 3290
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3291
	 * pkt_data in src register:
3292 3293 3294 3295 3296 3297
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3298 3299 3300 3301 3302
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3303 3304 3305 3306 3307 3308
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3309 3310 3311
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3312
	 */
3313

3314 3315 3316 3317 3318
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3319
	for (i = 0; i < MAX_BPF_REG; i++)
3320
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3321
			/* keep the maximum range already checked */
3322
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3323

3324 3325 3326 3327 3328 3329 3330 3331 3332
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3333 3334 3335
	}
}

3336 3337 3338
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3339
 * In JEQ/JNE cases we also adjust the var_off values.
3340 3341 3342 3343 3344
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3345 3346 3347 3348 3349 3350 3351 3352
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3353

3354 3355 3356 3357 3358
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3359
		__mark_reg_known(true_reg, val);
3360 3361 3362 3363 3364
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3365
		__mark_reg_known(false_reg, val);
3366 3367
		break;
	case BPF_JGT:
3368 3369 3370
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3371
	case BPF_JSGT:
3372 3373
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3374
		break;
3375 3376 3377 3378 3379 3380 3381 3382
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3383
	case BPF_JGE:
3384 3385 3386
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3387
	case BPF_JSGE:
3388 3389
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3390
		break;
3391 3392 3393 3394 3395 3396 3397 3398
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3399 3400 3401 3402
	default:
		break;
	}

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3414 3415
}

3416 3417
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3418 3419 3420 3421 3422
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3423 3424
	if (__is_pointer_value(false, false_reg))
		return;
3425

3426 3427 3428 3429 3430
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3431
		__mark_reg_known(true_reg, val);
3432 3433 3434 3435 3436
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3437
		__mark_reg_known(false_reg, val);
3438 3439
		break;
	case BPF_JGT:
3440 3441 3442
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3443
	case BPF_JSGT:
3444 3445
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3446
		break;
3447 3448 3449 3450 3451 3452 3453 3454
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3455
	case BPF_JGE:
3456 3457 3458
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3459
	case BPF_JSGE:
3460 3461
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3462
		break;
3463 3464 3465 3466 3467 3468 3469 3470
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3471 3472 3473 3474
	default:
		break;
	}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3486 3487 3488 3489 3490 3491
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3492 3493 3494 3495 3496 3497 3498 3499
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3500 3501
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3531
		break;
3532
	}
3533 3534
}

3535
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3536
			 bool is_null)
3537 3538 3539 3540
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3541 3542 3543 3544
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3545 3546
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3547
				 reg->off)) {
3548 3549
			__mark_reg_known_zero(reg);
			reg->off = 0;
3550 3551 3552
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3553 3554 3555 3556
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3557
			reg->type = PTR_TO_MAP_VALUE;
3558
		}
3559 3560 3561 3562 3563
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3564 3565 3566 3567 3568 3569
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3570
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3571
			  bool is_null)
3572
{
3573
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3574
	struct bpf_reg_state *regs = state->regs;
3575
	u32 id = regs[regno].id;
3576
	int i, j;
3577 3578

	for (i = 0; i < MAX_BPF_REG; i++)
3579
		mark_map_reg(regs, i, id, is_null);
3580

3581 3582 3583 3584 3585 3586 3587
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3588 3589 3590
	}
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3684
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3685 3686
			     struct bpf_insn *insn, int *insn_idx)
{
3687 3688 3689 3690
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3691 3692 3693
	u8 opcode = BPF_OP(insn->code);
	int err;

3694
	if (opcode > BPF_JSLE) {
3695
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3696 3697 3698 3699 3700
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3701
			verbose(env, "BPF_JMP uses reserved fields\n");
3702 3703 3704 3705
			return -EINVAL;
		}

		/* check src1 operand */
3706
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3707 3708
		if (err)
			return err;
3709 3710

		if (is_pointer_value(env, insn->src_reg)) {
3711
			verbose(env, "R%d pointer comparison prohibited\n",
3712 3713 3714
				insn->src_reg);
			return -EACCES;
		}
3715 3716
	} else {
		if (insn->src_reg != BPF_REG_0) {
3717
			verbose(env, "BPF_JMP uses reserved fields\n");
3718 3719 3720 3721 3722
			return -EINVAL;
		}
	}

	/* check src2 operand */
3723
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3724 3725 3726
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3727 3728
	dst_reg = &regs[insn->dst_reg];

3729 3730 3731
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3732
	    dst_reg->type == SCALAR_VALUE &&
3733 3734 3735
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3753
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3754

3755 3756
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3757 3758 3759 3760
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3761 3762
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3763 3764 3765
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3766
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3767 3768 3769
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3770
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3771 3772 3773 3774
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3775 3776
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3777 3778 3779 3780
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3781
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3782 3783 3784
					dst_reg, insn->imm, opcode);
	}

3785
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3786
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3787 3788
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3789 3790 3791
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3792 3793
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3794 3795 3796
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3797 3798
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3799
		return -EACCES;
3800
	}
3801
	if (env->log.level)
3802
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3803 3804 3805
	return 0;
}

3806 3807 3808 3809 3810 3811 3812 3813
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3814
/* verify BPF_LD_IMM64 instruction */
3815
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3816
{
3817
	struct bpf_reg_state *regs = cur_regs(env);
3818 3819 3820
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3821
		verbose(env, "invalid BPF_LD_IMM insn\n");
3822 3823 3824
		return -EINVAL;
	}
	if (insn->off != 0) {
3825
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3826 3827 3828
		return -EINVAL;
	}

3829
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3830 3831 3832
	if (err)
		return err;

3833 3834 3835
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3836
		regs[insn->dst_reg].type = SCALAR_VALUE;
3837
		__mark_reg_known(&regs[insn->dst_reg], imm);
3838
		return 0;
3839
	}
3840 3841 3842 3843 3844 3845 3846 3847 3848

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3849 3850 3851 3852 3853
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3854
	case BPF_PROG_TYPE_SCHED_ACT:
3855 3856 3857 3858 3859 3860
		return true;
	default:
		return false;
	}
}

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3876
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3877
{
3878
	struct bpf_reg_state *regs = cur_regs(env);
3879 3880 3881
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3882
	if (!may_access_skb(env->prog->type)) {
3883
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3884 3885 3886
		return -EINVAL;
	}

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	if (env->subprog_cnt) {
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3899
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3900
	    BPF_SIZE(insn->code) == BPF_DW ||
3901
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3902
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3903 3904 3905 3906
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3907
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3908 3909 3910 3911
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3912 3913
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3914 3915 3916 3917 3918
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3919
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3920 3921 3922 3923 3924
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3925
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3926
		mark_reg_not_init(env, regs, caller_saved[i]);
3927 3928
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3929 3930

	/* mark destination R0 register as readable, since it contains
3931 3932
	 * the value fetched from the packet.
	 * Already marked as written above.
3933
	 */
3934
	mark_reg_unknown(env, regs, BPF_REG_0);
3935 3936 3937
	return 0;
}

3938 3939 3940 3941 3942 3943 3944 3945
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
A
Andrey Ignatov 已提交
3946
	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3947
	case BPF_PROG_TYPE_SOCK_OPS:
3948
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3949 3950 3951 3952 3953
		break;
	default:
		return 0;
	}

3954
	reg = cur_regs(env) + BPF_REG_0;
3955
	if (reg->type != SCALAR_VALUE) {
3956
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3957 3958 3959 3960 3961
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3962
		verbose(env, "At program exit the register R0 ");
3963 3964 3965 3966
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3967
			verbose(env, "has value %s", tn_buf);
3968
		} else {
3969
			verbose(env, "has unknown scalar value");
3970
		}
3971
		verbose(env, " should have been 0 or 1\n");
3972 3973 3974 3975 3976
		return -EINVAL;
	}
	return 0;
}

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

4017
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4018

4019 4020 4021 4022 4023 4024 4025 4026 4027
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
4028
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4029 4030 4031 4032 4033 4034 4035 4036
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
4037
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4038 4039 4040
		return -EINVAL;
	}

4041 4042 4043 4044
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

4045 4046 4047 4048 4049 4050 4051 4052 4053
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4054
		verbose(env, "back-edge from insn %d to %d\n", t, w);
4055 4056 4057 4058 4059
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4060
		verbose(env, "insn state internal bug\n");
4061 4062 4063 4064 4065 4066 4067 4068
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4069
static int check_cfg(struct bpf_verifier_env *env)
4070 4071 4072 4073 4074 4075
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4076 4077 4078 4079
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4110 4111
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4112 4113 4114 4115 4116 4117 4118 4119
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4132 4133 4134
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4135 4136
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4137 4138
		} else {
			/* conditional jump with two edges */
4139
			env->explored_states[t] = STATE_LIST_MARK;
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4166
		verbose(env, "pop stack internal bug\n");
4167 4168 4169 4170 4171 4172 4173 4174
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4175
			verbose(env, "unreachable insn %d\n", i);
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4188 4189 4190 4191
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4192 4193 4194 4195
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4214
 */
4215
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4216
{
4217
	unsigned int i;
A
Alexei Starovoitov 已提交
4218

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4235 4236
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4237
{
4238 4239
	bool equal;

4240 4241 4242 4243
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4244 4245 4246 4247 4248 4249 4250 4251 4252
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4253 4254
		return true;

4255 4256
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4257
		return true;
4258 4259 4260 4261 4262 4263 4264 4265 4266
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4267 4268 4269 4270 4271 4272
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4273
			 */
4274
			return false;
4275 4276
		}
	case PTR_TO_MAP_VALUE:
4277 4278 4279 4280 4281 4282 4283 4284
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4299
	case PTR_TO_PACKET_META:
4300
	case PTR_TO_PACKET:
4301
		if (rcur->type != rold->type)
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4332

4333 4334
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4335 4336 4337
	return false;
}

4338 4339
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4357 4358
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4359
			continue;
4360

4361 4362
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4363 4364 4365 4366 4367 4368 4369
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4426 4427
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4428
{
4429 4430
	struct idpair *idmap;
	bool ret = false;
4431 4432
	int i;

4433 4434 4435
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4436
		return false;
4437 4438

	for (i = 0; i < MAX_BPF_REG; i++) {
4439
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4440
			goto out_free;
4441 4442
	}

4443 4444
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4445 4446 4447 4448
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4449 4450
}

4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4472
/* A write screens off any subsequent reads; but write marks come from the
4473 4474 4475 4476 4477
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4478
 */
4479 4480 4481
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4482
{
4483 4484
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4485

4486 4487 4488 4489 4490
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4491 4492 4493 4494
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4495
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4496
			continue;
4497 4498 4499 4500
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4501 4502
		}
	}
4503

4504
	/* ... and stack slots */
4505 4506 4507 4508 4509 4510 4511 4512 4513
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4514 4515
		}
	}
4516
	return err;
4517 4518
}

4519
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4520
{
4521 4522
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4523
	struct bpf_verifier_state *cur = env->cur_state;
4524
	int i, j, err;
4525 4526 4527 4528 4529 4530 4531 4532 4533

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4534
		if (states_equal(env, &sl->state, cur)) {
4535
			/* reached equivalent register/stack state,
4536 4537
			 * prune the search.
			 * Registers read by the continuation are read by us.
4538 4539 4540 4541 4542 4543
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4544
			 */
4545 4546 4547
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4548
			return 1;
4549
		}
4550 4551 4552 4553 4554
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4555 4556 4557 4558
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4559
	 */
4560
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4561 4562 4563 4564
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4565 4566 4567 4568 4569 4570
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4571 4572
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4573
	/* connect new state to parentage chain */
4574
	cur->parent = &new_sl->state;
4575 4576 4577 4578 4579 4580
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4581
	for (i = 0; i < BPF_REG_FP; i++)
4582 4583 4584 4585 4586 4587 4588
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4589
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4590
	}
4591 4592 4593
	return 0;
}

4594
static int do_check(struct bpf_verifier_env *env)
4595
{
4596
	struct bpf_verifier_state *state;
4597
	struct bpf_insn *insns = env->prog->insnsi;
4598
	struct bpf_reg_state *regs;
4599
	int insn_cnt = env->prog->len, i;
4600 4601 4602 4603
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4604 4605 4606
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4607
	state->curframe = 0;
4608
	state->parent = NULL;
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4619 4620 4621 4622 4623 4624 4625
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4626
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4627 4628 4629 4630 4631 4632 4633
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4634
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4635 4636
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4637 4638 4639 4640
				insn_processed);
			return -E2BIG;
		}

4641 4642 4643 4644 4645
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4646
			if (env->log.level) {
4647
				if (do_print_state)
4648
					verbose(env, "\nfrom %d to %d: safe\n",
4649 4650
						prev_insn_idx, insn_idx);
				else
4651
					verbose(env, "%d: safe\n", insn_idx);
4652 4653 4654 4655
			}
			goto process_bpf_exit;
		}

4656 4657 4658
		if (need_resched())
			cond_resched();

4659 4660 4661
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4662
			else
4663
				verbose(env, "\nfrom %d to %d:",
4664
					prev_insn_idx, insn_idx);
4665
			print_verifier_state(env, state->frame[state->curframe]);
4666 4667 4668
			do_print_state = false;
		}

4669
		if (env->log.level) {
4670 4671
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4672
				.private_data	= env,
4673 4674
			};

4675
			verbose(env, "%d: ", insn_idx);
4676
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4677 4678
		}

4679 4680 4681 4682 4683 4684
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4685

4686
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4687
		env->insn_aux_data[insn_idx].seen = true;
4688
		if (class == BPF_ALU || class == BPF_ALU64) {
4689
			err = check_alu_op(env, insn);
4690 4691 4692 4693
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4694
			enum bpf_reg_type *prev_src_type, src_reg_type;
4695 4696 4697

			/* check for reserved fields is already done */

4698
			/* check src operand */
4699
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4700 4701 4702
			if (err)
				return err;

4703
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4704 4705 4706
			if (err)
				return err;

4707 4708
			src_reg_type = regs[insn->src_reg].type;

4709 4710 4711
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4712
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4713
					       BPF_SIZE(insn->code), BPF_READ,
4714
					       insn->dst_reg, false);
4715 4716 4717
			if (err)
				return err;

4718 4719 4720
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4721 4722
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4723
				 * save type to validate intersecting paths
4724
				 */
4725
				*prev_src_type = src_reg_type;
4726

4727
			} else if (src_reg_type != *prev_src_type &&
4728
				   (src_reg_type == PTR_TO_CTX ||
4729
				    *prev_src_type == PTR_TO_CTX)) {
4730 4731 4732 4733 4734 4735 4736
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4737
				verbose(env, "same insn cannot be used with different pointers\n");
4738 4739 4740
				return -EINVAL;
			}

4741
		} else if (class == BPF_STX) {
4742
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4743

4744
			if (BPF_MODE(insn->code) == BPF_XADD) {
4745
				err = check_xadd(env, insn_idx, insn);
4746 4747 4748 4749 4750 4751 4752
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4753
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4754 4755 4756
			if (err)
				return err;
			/* check src2 operand */
4757
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4758 4759 4760
			if (err)
				return err;

4761 4762
			dst_reg_type = regs[insn->dst_reg].type;

4763
			/* check that memory (dst_reg + off) is writeable */
4764
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4765
					       BPF_SIZE(insn->code), BPF_WRITE,
4766
					       insn->src_reg, false);
4767 4768 4769
			if (err)
				return err;

4770 4771 4772 4773 4774
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4775
				   (dst_reg_type == PTR_TO_CTX ||
4776
				    *prev_dst_type == PTR_TO_CTX)) {
4777
				verbose(env, "same insn cannot be used with different pointers\n");
4778 4779 4780
				return -EINVAL;
			}

4781 4782 4783
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4784
				verbose(env, "BPF_ST uses reserved fields\n");
4785 4786 4787
				return -EINVAL;
			}
			/* check src operand */
4788
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4789 4790 4791
			if (err)
				return err;

4792 4793 4794 4795 4796 4797
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4798
			/* check that memory (dst_reg + off) is writeable */
4799
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4800
					       BPF_SIZE(insn->code), BPF_WRITE,
4801
					       -1, false);
4802 4803 4804 4805 4806 4807 4808 4809 4810
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4811 4812
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4813
				    insn->dst_reg != BPF_REG_0) {
4814
					verbose(env, "BPF_CALL uses reserved fields\n");
4815 4816 4817
					return -EINVAL;
				}

4818 4819 4820 4821
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4822 4823 4824 4825 4826 4827 4828 4829
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4830
					verbose(env, "BPF_JA uses reserved fields\n");
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4842
					verbose(env, "BPF_EXIT uses reserved fields\n");
4843 4844 4845
					return -EINVAL;
				}

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4856 4857 4858 4859 4860 4861
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4862
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4863 4864 4865
				if (err)
					return err;

4866
				if (is_pointer_value(env, BPF_REG_0)) {
4867
					verbose(env, "R0 leaks addr as return value\n");
4868 4869 4870
					return -EACCES;
				}

4871 4872 4873
				err = check_return_code(env);
				if (err)
					return err;
4874
process_bpf_exit:
4875 4876 4877 4878
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4893 4894 4895 4896
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4897 4898 4899 4900 4901 4902
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4903
				env->insn_aux_data[insn_idx].seen = true;
4904
			} else {
4905
				verbose(env, "invalid BPF_LD mode\n");
4906 4907 4908
				return -EINVAL;
			}
		} else {
4909
			verbose(env, "unknown insn class %d\n", class);
4910 4911 4912 4913 4914 4915
			return -EINVAL;
		}

		insn_idx++;
	}

4916 4917
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4918 4919 4920 4921 4922 4923 4924 4925 4926
	for (i = 0; i < env->subprog_cnt + 1; i++) {
		u32 depth = env->subprog_stack_depth[i];

		verbose(env, "%d", depth);
		if (i + 1 < env->subprog_cnt + 1)
			verbose(env, "+");
	}
	verbose(env, "\n");
	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4927 4928 4929
	return 0;
}

4930 4931 4932
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4933 4934
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4935 4936 4937
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4938 4939
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4940 4941 4942
					struct bpf_prog *prog)

{
4943 4944 4945 4946 4947 4948 4949
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4950
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4951 4952 4953 4954
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4955
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4956 4957
			return -EINVAL;
		}
4958
	}
4959 4960 4961 4962 4963 4964 4965

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

4966 4967 4968
	return 0;
}

4969 4970 4971
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4972
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4973 4974 4975
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4976
	int i, j, err;
4977

4978
	err = bpf_prog_calc_tag(env->prog);
4979 4980 4981
	if (err)
		return err;

4982
	for (i = 0; i < insn_cnt; i++, insn++) {
4983
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4984
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4985
			verbose(env, "BPF_LDX uses reserved fields\n");
4986 4987 4988
			return -EINVAL;
		}

4989 4990 4991
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4992
			verbose(env, "BPF_STX uses reserved fields\n");
4993 4994 4995
			return -EINVAL;
		}

4996 4997 4998 4999 5000 5001 5002
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
5003
				verbose(env, "invalid bpf_ld_imm64 insn\n");
5004 5005 5006 5007 5008 5009 5010 5011
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5012 5013
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
5014 5015 5016 5017
				return -EINVAL;
			}

			f = fdget(insn->imm);
5018
			map = __bpf_map_get(f);
5019
			if (IS_ERR(map)) {
5020
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5021 5022 5023 5024
					insn->imm);
				return PTR_ERR(map);
			}

5025
			err = check_map_prog_compatibility(env, map, env->prog);
5026 5027 5028 5029 5030
			if (err) {
				fdput(f);
				return err;
			}

5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
5052 5053 5054 5055 5056 5057 5058
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

5059 5060 5061 5062
			fdput(f);
next_insn:
			insn++;
			i++;
5063 5064 5065 5066 5067 5068 5069
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5081
static void release_maps(struct bpf_verifier_env *env)
5082 5083 5084 5085 5086 5087 5088 5089
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5090
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5101 5102 5103 5104 5105 5106 5107 5108
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5109
	int i;
5110 5111 5112 5113 5114 5115 5116 5117 5118

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5119 5120
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5121 5122 5123 5124 5125
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
	for (i = 0; i < env->subprog_cnt; i++) {
		if (env->subprog_starts[i] < off)
			continue;
		env->subprog_starts[i] += len - 1;
	}
}

5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5149
	adjust_subprog_starts(env, off, len);
5150 5151 5152
	return new_prog;
}

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5163 5164 5165 5166
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5167
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5168 5169 5170 5171 5172 5173 5174
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5175
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5176 5177 5178
	}
}

5179 5180 5181
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5182
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5183
{
5184
	const struct bpf_verifier_ops *ops = env->ops;
5185
	int i, cnt, size, ctx_field_size, delta = 0;
5186
	const int insn_cnt = env->prog->len;
5187
	struct bpf_insn insn_buf[16], *insn;
5188
	struct bpf_prog *new_prog;
5189
	enum bpf_access_type type;
5190 5191
	bool is_narrower_load;
	u32 target_size;
5192

5193 5194 5195 5196
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5197
			verbose(env, "bpf verifier is misconfigured\n");
5198 5199
			return -EINVAL;
		} else if (cnt) {
5200
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5201 5202
			if (!new_prog)
				return -ENOMEM;
5203

5204
			env->prog = new_prog;
5205
			delta += cnt - 1;
5206 5207 5208 5209
		}
	}

	if (!ops->convert_ctx_access)
5210 5211
		return 0;

5212
	insn = env->prog->insnsi + delta;
5213

5214
	for (i = 0; i < insn_cnt; i++, insn++) {
5215 5216 5217
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5218
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5219
			type = BPF_READ;
5220 5221 5222
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5223
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5224 5225
			type = BPF_WRITE;
		else
5226 5227
			continue;

5228
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5229 5230
			continue;

5231
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5232
		size = BPF_LDST_BYTES(insn);
5233 5234 5235 5236 5237 5238

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5239
		is_narrower_load = size < ctx_field_size;
5240
		if (is_narrower_load) {
5241 5242 5243 5244
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5245
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5246 5247
				return -EINVAL;
			}
5248

5249
			size_code = BPF_H;
5250 5251 5252 5253
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5254

5255 5256 5257
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5258 5259 5260 5261 5262 5263

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5264
			verbose(env, "bpf verifier is misconfigured\n");
5265 5266
			return -EINVAL;
		}
5267 5268

		if (is_narrower_load && size < target_size) {
5269 5270
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5271
								(1 << size * 8) - 1);
5272 5273
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5274
								(1 << size * 8) - 1);
5275
		}
5276

5277
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5278 5279 5280
		if (!new_prog)
			return -ENOMEM;

5281
		delta += cnt - 1;
5282 5283 5284

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5285
		insn      = new_prog->insnsi + i + delta;
5286 5287 5288 5289 5290
	}

	return 0;
}

5291 5292 5293 5294
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5295
	struct bpf_insn *insn;
5296 5297 5298 5299 5300 5301
	void *old_bpf_func;
	int err = -ENOMEM;

	if (env->subprog_cnt == 0)
		return 0;

5302
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
		insn->off = subprog + 1;
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

	func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
	if (!func)
		return -ENOMEM;

	for (i = 0; i <= env->subprog_cnt; i++) {
		subprog_start = subprog_end;
		if (env->subprog_cnt == i)
			subprog_end = prog->len;
		else
			subprog_end = env->subprog_starts[i];

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5341
		func[i]->type = prog->type;
5342
		func[i]->len = len;
5343 5344
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
		func[i]->aux->stack_depth = env->subprog_stack_depth[i];
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->off = 0;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
	}
	for (i = 0; i <= env->subprog_cnt; i++) {
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		unsigned long addr;

		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
		addr  = (unsigned long)func[subprog + 1]->bpf_func;
		addr &= PAGE_MASK;
		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
			    addr - __bpf_call_base;
	}

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
	prog->aux->func_cnt = env->subprog_cnt + 1;
	return 0;
out_free:
	for (i = 0; i <= env->subprog_cnt; i++)
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5435 5436
static int fixup_call_args(struct bpf_verifier_env *env)
{
5437
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5438 5439 5440
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5441 5442
#endif
	int err;
5443

5444 5445 5446 5447
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5448
			return 0;
5449 5450
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5451 5452 5453 5454 5455 5456 5457 5458 5459
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5460 5461 5462
	err = 0;
#endif
	return err;
5463 5464
}

5465
/* fixup insn->imm field of bpf_call instructions
5466
 * and inline eligible helpers as explicit sequence of BPF instructions
5467 5468 5469
 *
 * this function is called after eBPF program passed verification
 */
5470
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5471
{
5472 5473
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5474
	const struct bpf_func_proto *fn;
5475
	const int insn_cnt = prog->len;
5476 5477 5478 5479
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5480

5481
	for (i = 0; i < insn_cnt; i++, insn++) {
5482 5483 5484
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5485
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5513 5514 5515 5516 5517 5518 5519 5520 5521
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5522 5523
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5524 5525
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5526

5527 5528 5529 5530
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5531 5532
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5533
		if (insn->imm == BPF_FUNC_tail_call) {
5534 5535 5536 5537 5538 5539
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5540
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5541

5542 5543 5544 5545
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5546
			 */
5547
			insn->imm = 0;
5548
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5549 5550 5551 5552 5553 5554 5555 5556 5557

			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
			if (map_ptr == BPF_MAP_PTR_POISON) {
5558
				verbose(env, "tail_call abusing map_ptr\n");
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
				return -EINVAL;
			}
			if (!map_ptr->unpriv_array)
				continue;
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5578 5579
			continue;
		}
5580

5581 5582 5583
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
5584
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5585
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5586
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5587 5588
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5589 5590 5591 5592
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5593
				verbose(env, "bpf verifier is misconfigured\n");
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5610
		if (insn->imm == BPF_FUNC_redirect_map) {
5611 5612 5613 5614 5615 5616
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5631
patch_call_imm:
5632
		fn = env->ops->get_func_proto(insn->imm, env->prog);
5633 5634 5635 5636
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5637 5638
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5639 5640
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5641
		}
5642
		insn->imm = fn->func - __bpf_call_base;
5643 5644
	}

5645 5646
	return 0;
}
5647

5648
static void free_states(struct bpf_verifier_env *env)
5649
{
5650
	struct bpf_verifier_state_list *sl, *sln;
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5662
				free_verifier_state(&sl->state, false);
5663 5664 5665 5666 5667 5668 5669 5670
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5671
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5672
{
5673
	struct bpf_verifier_env *env;
M
Martin KaFai Lau 已提交
5674
	struct bpf_verifier_log *log;
A
Alexei Starovoitov 已提交
5675 5676
	int ret = -EINVAL;

5677 5678 5679 5680
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5681
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5682 5683
	 * allocate/free it every time bpf_check() is called
	 */
5684
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5685 5686
	if (!env)
		return -ENOMEM;
5687
	log = &env->log;
5688

5689 5690 5691 5692 5693
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5694
	env->prog = *prog;
5695
	env->ops = bpf_verifier_ops[env->prog->type];
5696

5697 5698 5699 5700 5701 5702 5703
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5704 5705 5706
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5707 5708

		ret = -EINVAL;
5709 5710 5711
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5712
			goto err_unlock;
5713
	}
5714 5715 5716

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5717
		env->strict_alignment = true;
5718

5719
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5720 5721 5722 5723 5724
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5725 5726 5727 5728
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5729
	env->explored_states = kcalloc(env->prog->len,
5730
				       sizeof(struct bpf_verifier_state_list *),
5731 5732 5733 5734 5735
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5736 5737
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5738 5739 5740 5741
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5742
	ret = do_check(env);
5743 5744 5745 5746
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5747

5748
skip_full_check:
5749
	while (!pop_stack(env, NULL, NULL));
5750
	free_states(env);
5751

A
Alexei Starovoitov 已提交
5752 5753 5754
	if (ret == 0)
		sanitize_dead_code(env);

5755 5756 5757
	if (ret == 0)
		ret = check_max_stack_depth(env);

5758 5759 5760 5761
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5762
	if (ret == 0)
5763
		ret = fixup_bpf_calls(env);
5764

5765 5766 5767
	if (ret == 0)
		ret = fixup_call_args(env);

5768
	if (log->level && bpf_verifier_log_full(log))
5769
		ret = -ENOSPC;
5770
	if (log->level && !log->ubuf) {
5771
		ret = -EFAULT;
5772
		goto err_release_maps;
5773 5774
	}

5775 5776
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5777 5778 5779
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5780

5781
		if (!env->prog->aux->used_maps) {
5782
			ret = -ENOMEM;
5783
			goto err_release_maps;
5784 5785
		}

5786
		memcpy(env->prog->aux->used_maps, env->used_maps,
5787
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5788
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5789 5790 5791 5792 5793 5794

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5795

5796
err_release_maps:
5797
	if (!env->prog->aux->used_maps)
5798 5799 5800 5801
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5802
	*prog = env->prog;
5803
err_unlock:
5804
	mutex_unlock(&bpf_verifier_lock);
5805 5806 5807
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5808 5809
	return ret;
}