verifier.c 137.4 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23

24 25
#include "disasm.h"

26 27 28 29 30 31 32 33 34
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
35 36 37 38 39 40 41 42 43 44 45 46
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
47
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
75
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
76
 * means the register has some value, but it's not a valid pointer.
77
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
78 79
 *
 * When verifier sees load or store instructions the type of base register
80
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

142
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
143
struct bpf_verifier_stack_elem {
144 145 146 147
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
148
	struct bpf_verifier_state st;
149 150
	int insn_idx;
	int prev_insn_idx;
151
	struct bpf_verifier_stack_elem *next;
152 153
};

154
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 156
#define BPF_COMPLEXITY_LIMIT_STACK	1024

157 158
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

159 160
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
161
	bool raw_mode;
162
	bool pkt_access;
163 164
	int regno;
	int access_size;
165 166
};

167 168 169 170 171 172
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
173 174
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
175
{
176
	struct bpf_verifer_log *log = &env->log;
177
	unsigned int n;
178 179
	va_list args;

180
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 182 183
		return;

	va_start(args, fmt);
184
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185
	va_end(args);
186 187 188 189 190 191 192 193 194 195 196

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
197 198
}

199 200 201 202 203 204
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

205 206 207
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
208
	[SCALAR_VALUE]		= "inv",
209 210 211 212 213
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
214
	[PTR_TO_PACKET]		= "pkt",
215
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET_END]	= "pkt_end",
217 218
};

219 220
static void print_verifier_state(struct bpf_verifier_env *env,
				 struct bpf_verifier_state *state)
221
{
222
	struct bpf_reg_state *reg;
223 224 225 226
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
227 228
		reg = &state->regs[i];
		t = reg->type;
229 230
		if (t == NOT_INIT)
			continue;
231
		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 233 234
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
235
			verbose(env, "%lld", reg->var_off.value + reg->off);
236
		} else {
237
			verbose(env, "(id=%d", reg->id);
238
			if (t != SCALAR_VALUE)
239
				verbose(env, ",off=%d", reg->off);
240
			if (type_is_pkt_pointer(t))
241
				verbose(env, ",r=%d", reg->range);
242 243 244
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
245
				verbose(env, ",ks=%d,vs=%d",
246 247
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
248 249 250 251 252
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
253
				verbose(env, ",imm=%llx", reg->var_off.value);
254 255 256
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
257
					verbose(env, ",smin_value=%lld",
258 259 260
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
261
					verbose(env, ",smax_value=%lld",
262 263
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
264
					verbose(env, ",umin_value=%llu",
265 266
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
267
					verbose(env, ",umax_value=%llu",
268 269 270
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
271

272
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273
					verbose(env, ",var_off=%s", tn_buf);
274
				}
275
			}
276
			verbose(env, ")");
277
		}
278
	}
279 280 281 282 283
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] == STACK_SPILL)
			verbose(env, " fp%d=%s",
				-MAX_BPF_STACK + i * BPF_REG_SIZE,
				reg_type_str[state->stack[i].spilled_ptr.type]);
284
	}
285
	verbose(env, "\n");
286 287
}

288 289
static int copy_stack_state(struct bpf_verifier_state *dst,
			    const struct bpf_verifier_state *src)
290
{
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
 * the program calls into realloc_verifier_state() to grow the stack size.
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
				  bool copy_old)
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

344 345
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
346 347
{
	kfree(state->stack);
348 349
	if (free_self)
		kfree(state);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
static int copy_verifier_state(struct bpf_verifier_state *dst,
			       const struct bpf_verifier_state *src)
{
	int err;

	err = realloc_verifier_state(dst, src->allocated_stack, false);
	if (err)
		return err;
	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
	return copy_stack_state(dst, src);
}

static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
373 374

	if (env->head == NULL)
375
		return -ENOENT;
376

377 378 379 380 381 382 383
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
384
	if (prev_insn_idx)
385 386
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
387
	free_verifier_state(&head->st, false);
388
	kfree(head);
389 390
	env->head = elem;
	env->stack_size--;
391
	return 0;
392 393
}

394 395
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
396
{
397
	struct bpf_verifier_state *cur = env->cur_state;
398
	struct bpf_verifier_stack_elem *elem;
399
	int err;
400

401
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 403 404 405 406 407 408 409
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
410 411 412
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
413
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414
		verbose(env, "BPF program is too complex\n");
415 416 417 418 419
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
420
	while (!pop_stack(env, NULL, NULL));
421 422 423 424 425 426 427 428
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

429 430
static void __mark_reg_not_init(struct bpf_reg_state *reg);

431 432 433 434 435 436 437 438 439 440 441 442 443
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

444 445 446 447
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448
{
449
	__mark_reg_known(reg, 0);
450
}
451

452 453
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
454 455
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
456
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 458 459 460 461 462 463 464
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

556 557 558 559 560 561 562
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
563
	__mark_reg_unbounded(reg);
564 565
}

566 567
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
568 569
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
570
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 572 573 574 575 576 577 578 579 580 581 582 583 584
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

585 586
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
587 588
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
589
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 591 592 593 594 595
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
596 597
}

598 599
static void init_reg_state(struct bpf_verifier_env *env,
			   struct bpf_reg_state *regs)
600 601 602
{
	int i;

603
	for (i = 0; i < MAX_BPF_REG; i++) {
604
		mark_reg_not_init(env, regs, i);
605 606
		regs[i].live = REG_LIVE_NONE;
	}
607 608

	/* frame pointer */
609
	regs[BPF_REG_FP].type = PTR_TO_STACK;
610
	mark_reg_known_zero(env, regs, BPF_REG_FP);
611 612 613

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
614
	mark_reg_known_zero(env, regs, BPF_REG_1);
615 616
}

617 618 619 620 621 622
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

623 624 625 626
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
627 628 629 630
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

631 632 633 634 635 636 637 638 639 640 641 642
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 644
			 enum reg_arg_type t)
{
645
	struct bpf_reg_state *regs = env->cur_state->regs;
646

647
	if (regno >= MAX_BPF_REG) {
648
		verbose(env, "R%d is invalid\n", regno);
649 650 651 652 653 654
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
655
			verbose(env, "R%d !read_ok\n", regno);
656 657
			return -EACCES;
		}
658
		mark_reg_read(env->cur_state, regno);
659 660 661
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
662
			verbose(env, "frame pointer is read only\n");
663 664
			return -EACCES;
		}
665
		regs[regno].live |= REG_LIVE_WRITTEN;
666
		if (t == DST_OP)
667
			mark_reg_unknown(env, regs, regno);
668 669 670 671
	}
	return 0;
}

672 673 674 675 676 677 678
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
679
	case PTR_TO_PACKET:
680
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
681
	case PTR_TO_PACKET_END:
682 683 684 685 686 687 688
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

689 690 691
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
692 693
static int check_stack_write(struct bpf_verifier_env *env,
			     struct bpf_verifier_state *state, int off,
694
			     int size, int value_regno)
695
{
696 697 698 699 700 701
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;

	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
				     true);
	if (err)
		return err;
702 703 704
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
705 706 707 708 709 710
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
711 712

	if (value_regno >= 0 &&
713
	    is_spillable_regtype(state->regs[value_regno].type)) {
714 715

		/* register containing pointer is being spilled into stack */
716
		if (size != BPF_REG_SIZE) {
717
			verbose(env, "invalid size of register spill\n");
718 719 720 721
			return -EACCES;
		}

		/* save register state */
722 723
		state->stack[spi].spilled_ptr = state->regs[value_regno];
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724

725
		for (i = 0; i < BPF_REG_SIZE; i++)
726
			state->stack[spi].slot_type[i] = STACK_SPILL;
727
	} else {
728
		/* regular write of data into stack */
729
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730 731

		for (i = 0; i < size; i++)
732 733
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
				STACK_MISC;
734 735 736 737
	}
	return 0;
}

738 739 740 741 742 743
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
744
		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 746
			break;
		/* ... then we depend on parent's value */
747
		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 749 750 751 752
		state = parent;
		parent = state->parent;
	}
}

753 754
static int check_stack_read(struct bpf_verifier_env *env,
			    struct bpf_verifier_state *state, int off, int size,
755 756
			    int value_regno)
{
757 758
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
759

760 761 762 763 764 765
	if (state->allocated_stack <= slot) {
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
	stype = state->stack[spi].slot_type;
766

767
	if (stype[0] == STACK_SPILL) {
768
		if (size != BPF_REG_SIZE) {
769
			verbose(env, "invalid size of register spill\n");
770 771
			return -EACCES;
		}
772
		for (i = 1; i < BPF_REG_SIZE; i++) {
773
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774
				verbose(env, "corrupted spill memory\n");
775 776 777 778
				return -EACCES;
			}
		}

779
		if (value_regno >= 0) {
780
			/* restore register state from stack */
781
			state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 783
			mark_stack_slot_read(state, spi);
		}
784 785 786
		return 0;
	} else {
		for (i = 0; i < size; i++) {
787
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788
				verbose(env, "invalid read from stack off %d+%d size %d\n",
789 790 791 792 793 794
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
795
			mark_reg_unknown(env, state->regs, value_regno);
796 797 798 799 800
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
801
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802
			      int size, bool zero_size_allowed)
803
{
804 805
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
806

807 808
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
809
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 811 812 813 814 815
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

816 817
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818
			    int off, int size, bool zero_size_allowed)
819
{
820
	struct bpf_verifier_state *state = env->cur_state;
821 822 823
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

824 825 826
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
827
	 */
828 829
	if (env->log.level)
		print_verifier_state(env, state);
830 831 832 833 834 835
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
836
	if (reg->smin_value < 0) {
837
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 839 840
			regno);
		return -EACCES;
	}
841 842
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
843
	if (err) {
844 845
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
846 847 848
		return err;
	}

849 850 851
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
852
	 */
853
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 856 857
			regno);
		return -EACCES;
	}
858 859
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
860
	if (err)
861 862
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
863
	return err;
864 865
}

A
Alexei Starovoitov 已提交
866 867
#define MAX_PACKET_OFF 0xffff

868
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 870
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
871
{
872
	switch (env->prog->type) {
873 874 875 876 877
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
878
		/* fallthrough */
879 880
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
881
	case BPF_PROG_TYPE_XDP:
882
	case BPF_PROG_TYPE_LWT_XMIT:
883
	case BPF_PROG_TYPE_SK_SKB:
884 885 886 887
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
888 889 890 891 892 893
		return true;
	default:
		return false;
	}
}

894
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
896
{
897
	struct bpf_reg_state *regs = cur_regs(env);
898
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
899

900 901
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
902
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
904 905 906 907 908
		return -EACCES;
	}
	return 0;
}

909
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910
			       int size, bool zero_size_allowed)
911
{
912
	struct bpf_reg_state *regs = cur_regs(env);
913 914 915 916 917 918 919 920 921 922 923
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
924
	if (reg->smin_value < 0) {
925
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 927 928
			regno);
		return -EACCES;
	}
929
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930
	if (err) {
931
		verbose(env, "R%d offset is outside of the packet\n", regno);
932 933 934 935 936 937
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
938
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
940
{
941 942 943
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
944

945 946
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
947 948 949 950 951 952
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
953
		 */
954
		*reg_type = info.reg_type;
955

956
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 958 959
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
960
		return 0;
961
	}
962

963
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 965 966
	return -EACCES;
}

967 968
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
969
{
970
	if (allow_ptr_leaks)
971 972
		return false;

973
	return reg->type != SCALAR_VALUE;
974 975
}

976 977
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
978
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 980
}

981 982
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
983
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
984
{
985
	struct tnum reg_off;
986
	int ip_align;
987 988 989 990 991

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

992 993 994 995 996 997 998
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
999
	 */
1000
	ip_align = 2;
1001 1002 1003 1004 1005 1006

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1007 1008
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1009
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1010 1011
		return -EACCES;
	}
1012

A
Alexei Starovoitov 已提交
1013 1014 1015
	return 0;
}

1016 1017
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1018 1019
				       const char *pointer_desc,
				       int off, int size, bool strict)
1020
{
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033
			pointer_desc, tn_buf, reg->off, off, size);
1034 1035 1036
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1037 1038 1039
	return 0;
}

1040 1041
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1042 1043
			       int off, int size)
{
1044
	bool strict = env->strict_alignment;
1045
	const char *pointer_desc = "";
1046

1047 1048
	switch (reg->type) {
	case PTR_TO_PACKET:
1049 1050 1051 1052
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1053
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 1055 1056 1057 1058 1059 1060 1061
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1062 1063 1064 1065 1066
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1067
		break;
1068
	default:
1069
		break;
1070
	}
1071 1072
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1098 1099 1100 1101 1102 1103
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1104
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1105 1106 1107
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1108 1109 1110
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1111 1112 1113 1114 1115 1116
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1117
	/* alignment checks will add in reg->off themselves */
1118
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1119 1120
	if (err)
		return err;
1121

1122 1123 1124 1125
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1126 1127
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1128
			verbose(env, "R%d leaks addr into map\n", value_regno);
1129 1130
			return -EACCES;
		}
1131

1132
		err = check_map_access(env, regno, off, size, false);
1133
		if (!err && t == BPF_READ && value_regno >= 0)
1134
			mark_reg_unknown(env, regs, value_regno);
1135

A
Alexei Starovoitov 已提交
1136
	} else if (reg->type == PTR_TO_CTX) {
1137
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1138

1139 1140
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1141
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1142 1143
			return -EACCES;
		}
1144 1145 1146
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1147
		if (reg->off) {
1148 1149
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1150 1151 1152 1153
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1154 1155 1156
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1157 1158
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1159 1160 1161
				tn_buf, off, size);
			return -EACCES;
		}
1162
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1163
		if (!err && t == BPF_READ && value_regno >= 0) {
1164
			/* ctx access returns either a scalar, or a
1165 1166
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1167 1168
			 */
			if (reg_type == SCALAR_VALUE)
1169
				mark_reg_unknown(env, regs, value_regno);
1170
			else
1171
				mark_reg_known_zero(env, regs,
1172
						    value_regno);
1173 1174 1175 1176
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1177
		}
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1188
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1189 1190 1191 1192
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1193
		if (off >= 0 || off < -MAX_BPF_STACK) {
1194 1195
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1196 1197
			return -EACCES;
		}
1198 1199 1200 1201

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1202
		if (t == BPF_WRITE)
1203 1204
			err = check_stack_write(env, state, off, size,
						value_regno);
1205
		else
1206 1207
			err = check_stack_read(env, state, off, size,
					       value_regno);
1208
	} else if (reg_is_pkt_pointer(reg)) {
1209
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1210
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1211 1212
			return -EACCES;
		}
1213 1214
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1215 1216
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1217 1218
			return -EACCES;
		}
1219
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1220
		if (!err && t == BPF_READ && value_regno >= 0)
1221
			mark_reg_unknown(env, regs, value_regno);
1222
	} else {
1223 1224
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1225 1226
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1227

1228
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1229
	    regs[value_regno].type == SCALAR_VALUE) {
1230
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1231
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1232
	}
1233 1234 1235
	return err;
}

1236
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1237 1238 1239 1240 1241
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1242
		verbose(env, "BPF_XADD uses reserved fields\n");
1243 1244 1245 1246
		return -EINVAL;
	}

	/* check src1 operand */
1247
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1248 1249 1250 1251
	if (err)
		return err;

	/* check src2 operand */
1252
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1253 1254 1255
	if (err)
		return err;

1256
	if (is_pointer_value(env, insn->src_reg)) {
1257
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1258 1259 1260
		return -EACCES;
	}

1261
	/* check whether atomic_add can read the memory */
1262
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1263 1264 1265 1266 1267
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1268
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1269 1270 1271
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1272 1273 1274 1275 1276 1277
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1278 1279
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1280 1281 1282
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1283
 */
1284
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1285 1286
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1287
{
1288
	struct bpf_verifier_state *state = env->cur_state;
1289
	struct bpf_reg_state *regs = state->regs;
1290
	int off, i, slot, spi;
1291

1292
	if (regs[regno].type != PTR_TO_STACK) {
1293
		/* Allow zero-byte read from NULL, regardless of pointer type */
1294
		if (zero_size_allowed && access_size == 0 &&
1295
		    register_is_null(regs[regno]))
1296 1297
			return 0;

1298
		verbose(env, "R%d type=%s expected=%s\n", regno,
1299 1300
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1301
		return -EACCES;
1302
	}
1303

1304 1305 1306 1307 1308
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1309
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1310
			regno, tn_buf);
1311
		return -EACCES;
1312 1313
	}
	off = regs[regno].off + regs[regno].var_off.value;
1314
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1315
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1316
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1317 1318 1319 1320
			regno, off, access_size);
		return -EACCES;
	}

1321 1322 1323
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1324 1325 1326 1327 1328 1329
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1330
	for (i = 0; i < access_size; i++) {
1331 1332 1333 1334 1335
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
		if (state->allocated_stack <= slot ||
		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
			STACK_MISC) {
1336
			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1337 1338 1339 1340 1341 1342 1343
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1344 1345 1346 1347
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1348
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1349

1350
	switch (reg->type) {
1351
	case PTR_TO_PACKET:
1352
	case PTR_TO_PACKET_META:
1353 1354
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1355
	case PTR_TO_MAP_VALUE:
1356 1357
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1358
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1359 1360 1361 1362 1363
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1364
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1365 1366
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1367
{
1368
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1369
	enum bpf_reg_type expected_type, type = reg->type;
1370 1371
	int err = 0;

1372
	if (arg_type == ARG_DONTCARE)
1373 1374
		return 0;

1375 1376 1377
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1378

1379 1380
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1381 1382
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1383 1384
			return -EACCES;
		}
1385
		return 0;
1386
	}
1387

1388
	if (type_is_pkt_pointer(type) &&
1389
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1390
		verbose(env, "helper access to the packet is not allowed\n");
1391 1392 1393
		return -EACCES;
	}

1394
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1395 1396
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1397 1398
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1399
			goto err_type;
1400 1401
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1402 1403
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1404
			goto err_type;
1405 1406
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1407 1408
		if (type != expected_type)
			goto err_type;
1409 1410
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1411 1412
		if (type != expected_type)
			goto err_type;
1413
	} else if (arg_type == ARG_PTR_TO_MEM ||
1414
		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1415
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1416 1417
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1418
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1419 1420
		 * happens during stack boundary checking.
		 */
1421 1422
		if (register_is_null(*reg) &&
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1423
			/* final test in check_stack_boundary() */;
1424 1425
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1426
			 type != expected_type)
1427
			goto err_type;
1428
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1429
	} else {
1430
		verbose(env, "unsupported arg_type %d\n", arg_type);
1431 1432 1433 1434 1435
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1436
		meta->map_ptr = reg->map_ptr;
1437 1438 1439 1440 1441
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1442
		if (!meta->map_ptr) {
1443 1444 1445 1446 1447
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1448
			verbose(env, "invalid map_ptr to access map->key\n");
1449 1450
			return -EACCES;
		}
1451
		if (type_is_pkt_pointer(type))
1452
			err = check_packet_access(env, regno, reg->off,
1453 1454
						  meta->map_ptr->key_size,
						  false);
1455 1456 1457 1458
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1459 1460 1461 1462
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1463
		if (!meta->map_ptr) {
1464
			/* kernel subsystem misconfigured verifier */
1465
			verbose(env, "invalid map_ptr to access map->value\n");
1466 1467
			return -EACCES;
		}
1468
		if (type_is_pkt_pointer(type))
1469
			err = check_packet_access(env, regno, reg->off,
1470 1471
						  meta->map_ptr->value_size,
						  false);
1472 1473 1474 1475
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1476 1477 1478
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1479 1480 1481 1482 1483 1484 1485

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1486 1487
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1488 1489
			return -EACCES;
		}
1490

1491 1492
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1493
		 */
1494 1495

		if (!tnum_is_const(reg->var_off))
1496 1497 1498 1499 1500 1501 1502
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1503
		if (reg->smin_value < 0) {
1504
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1505 1506 1507
				regno);
			return -EACCES;
		}
1508

1509
		if (reg->umin_value == 0) {
1510 1511 1512
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1513 1514 1515
			if (err)
				return err;
		}
1516

1517
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1518
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1519 1520 1521 1522
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1523
					      reg->umax_value,
1524
					      zero_size_allowed, meta);
1525 1526 1527
	}

	return err;
1528
err_type:
1529
	verbose(env, "R%d type=%s expected=%s\n", regno,
1530 1531
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1532 1533
}

1534 1535
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1536 1537 1538 1539
{
	if (!map)
		return 0;

1540 1541 1542 1543 1544 1545 1546 1547
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1548 1549
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1550 1551 1552 1553 1554 1555
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1556
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1557
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1558
		    func_id != BPF_FUNC_current_task_under_cgroup)
1559 1560
			goto error;
		break;
1561 1562 1563 1564 1565
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1566
		if (func_id != BPF_FUNC_redirect_map)
1567 1568
			goto error;
		break;
1569 1570 1571 1572 1573
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1574
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1575
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1576 1577
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1578
		break;
1579 1580 1581 1582 1583 1584
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1597
	case BPF_FUNC_perf_event_read_value:
1598 1599 1600 1601 1602 1603 1604
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1605
	case BPF_FUNC_current_task_under_cgroup:
1606
	case BPF_FUNC_skb_under_cgroup:
1607 1608 1609
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1610
	case BPF_FUNC_redirect_map:
1611 1612
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1613 1614
			goto error;
		break;
1615 1616 1617 1618 1619 1620 1621 1622
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1623 1624
	default:
		break;
1625 1626 1627
	}

	return 0;
1628
error:
1629
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1630
		map->map_type, func_id_name(func_id), func_id);
1631
	return -EINVAL;
1632 1633
}

1634 1635 1636 1637
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1638
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1639
		count++;
1640
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1641
		count++;
1642
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1643
		count++;
1644
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1645
		count++;
1646
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1647 1648 1649 1650 1651
		count++;

	return count > 1 ? -EINVAL : 0;
}

1652 1653
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
1654
 */
1655
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1656
{
1657
	struct bpf_verifier_state *state = env->cur_state;
1658
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1659 1660 1661
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1662
		if (reg_is_pkt_pointer_any(&regs[i]))
1663
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
1664

1665 1666
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
1667
			continue;
1668
		reg = &state->stack[i].spilled_ptr;
1669 1670
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1671 1672 1673
	}
}

1674
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1675 1676
{
	const struct bpf_func_proto *fn = NULL;
1677
	struct bpf_reg_state *regs;
1678
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1679
	bool changes_data;
1680 1681 1682 1683
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1684 1685
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
1686 1687 1688
		return -EINVAL;
	}

1689 1690
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
1691 1692

	if (!fn) {
1693 1694
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
1695 1696 1697 1698
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1699
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1700
		verbose(env, "cannot call GPL only function from proprietary program\n");
1701 1702 1703
		return -EINVAL;
	}

1704
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
1705
	changes_data = bpf_helper_changes_pkt_data(fn->func);
1706 1707 1708 1709 1710
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
1711

1712
	memset(&meta, 0, sizeof(meta));
1713
	meta.pkt_access = fn->pkt_access;
1714

1715 1716 1717 1718 1719
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1720
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1721
			func_id_name(func_id), func_id);
1722 1723 1724
		return err;
	}

1725
	/* check args */
1726
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1727 1728
	if (err)
		return err;
1729
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1730 1731
	if (err)
		return err;
1732
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1733 1734
	if (err)
		return err;
1735
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1736 1737
	if (err)
		return err;
1738
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1739 1740 1741
	if (err)
		return err;

1742 1743 1744 1745
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1746
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1747 1748 1749 1750
		if (err)
			return err;
	}

1751
	regs = cur_regs(env);
1752
	/* reset caller saved regs */
1753
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1754
		mark_reg_not_init(env, regs, caller_saved[i]);
1755 1756
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1757

1758
	/* update return register (already marked as written above) */
1759
	if (fn->ret_type == RET_INTEGER) {
1760
		/* sets type to SCALAR_VALUE */
1761
		mark_reg_unknown(env, regs, BPF_REG_0);
1762 1763 1764
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1765 1766
		struct bpf_insn_aux_data *insn_aux;

1767
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1768
		/* There is no offset yet applied, variable or fixed */
1769
		mark_reg_known_zero(env, regs, BPF_REG_0);
1770
		regs[BPF_REG_0].off = 0;
1771 1772 1773 1774
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1775
		if (meta.map_ptr == NULL) {
1776 1777
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
1778 1779
			return -EINVAL;
		}
1780
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1781
		regs[BPF_REG_0].id = ++env->id_gen;
1782 1783 1784 1785 1786
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1787
	} else {
1788
		verbose(env, "unknown return type %d of func %s#%d\n",
1789
			fn->ret_type, func_id_name(func_id), func_id);
1790 1791
		return -EINVAL;
	}
1792

1793
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1794 1795
	if (err)
		return err;
1796

A
Alexei Starovoitov 已提交
1797 1798 1799 1800 1801
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1820 1821
}

A
Alexei Starovoitov 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

1857 1858 1859 1860 1861 1862 1863 1864 1865
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1866
{
1867
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1868
	bool known = tnum_is_const(off_reg->var_off);
1869 1870 1871 1872
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1873
	u8 opcode = BPF_OP(insn->code);
1874
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1875

1876
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1877

1878
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1879
		print_verifier_state(env, env->cur_state);
1880 1881
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
1882 1883 1884
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1885
		print_verifier_state(env, env->cur_state);
1886 1887
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
1888 1889 1890 1891 1892 1893
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
1894 1895
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
1896 1897
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1898 1899
	}

1900 1901
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
1902
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1903 1904 1905 1906 1907
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
1908
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1909 1910 1911 1912 1913
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
1914
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1915 1916 1917 1918 1919 1920
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1921
	 */
1922 1923
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1924

A
Alexei Starovoitov 已提交
1925 1926 1927 1928
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

1929 1930 1931 1932
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1933
		 */
1934 1935
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1936
			/* pointer += K.  Accumulate it into fixed offset */
1937 1938 1939 1940
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1941
			dst_reg->var_off = ptr_reg->var_off;
1942
			dst_reg->off = ptr_reg->off + smin_val;
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1954
		 */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1971 1972
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1973
		if (reg_is_pkt_pointer(ptr_reg)) {
1974 1975 1976 1977 1978 1979 1980 1981 1982
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
1983
				verbose(env, "R%d tried to subtract pointer from scalar\n",
1984 1985 1986 1987 1988 1989
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1990
		 */
1991 1992
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
1993
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1994 1995 1996
					dst);
			return -EACCES;
		}
1997 1998
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1999
			/* pointer -= K.  Subtract it from fixed offset */
2000 2001 2002 2003
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2004 2005
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2006
			dst_reg->off = ptr_reg->off - smin_val;
2007 2008 2009 2010 2011
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2012
		 */
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2031 2032
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2033
		if (reg_is_pkt_pointer(ptr_reg)) {
2034 2035
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2036
			if (smin_val < 0)
2037
				dst_reg->range = 0;
2038
		}
2039 2040 2041 2042 2043 2044 2045 2046 2047
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
2048
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2049 2050 2051 2052 2053
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
2054
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2055 2056
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
2057 2058
	}

A
Alexei Starovoitov 已提交
2059 2060 2061
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2062 2063 2064
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2065 2066 2067
	return 0;
}

J
Jann Horn 已提交
2068 2069 2070 2071
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2072 2073 2074 2075
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2076
{
2077
	struct bpf_reg_state *regs = cur_regs(env);
2078
	u8 opcode = BPF_OP(insn->code);
2079
	bool src_known, dst_known;
2080 2081
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2082
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2083

2084 2085 2086 2087
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2088 2089
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2090

A
Alexei Starovoitov 已提交
2091 2092 2093 2094 2095 2096
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2097 2098
	switch (opcode) {
	case BPF_ADD:
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2115
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2116 2117
		break;
	case BPF_SUB:
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2136
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2137 2138
		break;
	case BPF_MUL:
2139 2140
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2141
			/* Ain't nobody got time to multiply that sign */
2142 2143
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2144 2145
			break;
		}
2146 2147
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2148
		 */
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2166 2167
		break;
	case BPF_AND:
2168
		if (src_known && dst_known) {
2169 2170
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2171 2172
			break;
		}
2173 2174
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2175
		 */
2176
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2194 2195 2196
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2197 2198
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2199 2200
			break;
		}
2201 2202
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2203 2204
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2205 2206 2207 2208 2209 2210 2211 2212 2213
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2214
		} else {
2215 2216 2217 2218 2219
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2220
		}
2221 2222
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2223 2224
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2225 2226 2227
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2228
			 */
2229
			mark_reg_unknown(env, regs, insn->dst_reg);
2230 2231
			break;
		}
2232 2233
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2234
		 */
2235 2236 2237 2238 2239 2240
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2241
		} else {
2242 2243
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2244
		}
2245 2246 2247 2248 2249 2250
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2251 2252
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2253 2254 2255
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2256
			 */
2257
			mark_reg_unknown(env, regs, insn->dst_reg);
2258 2259
			break;
		}
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2276
		if (src_known)
2277 2278
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2279
		else
2280 2281 2282 2283 2284
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2285 2286
		break;
	default:
2287
		mark_reg_unknown(env, regs, insn->dst_reg);
2288 2289 2290
		break;
	}

J
Jann Horn 已提交
2291 2292 2293 2294 2295 2296
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

2297 2298
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2299 2300 2301 2302 2303 2304 2305 2306 2307
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2308
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2325
					verbose(env, "R%d pointer %s pointer prohibited\n",
2326 2327 2328 2329
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2330
				mark_reg_unknown(env, regs, insn->dst_reg);
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2365
		__mark_reg_known(&off_reg, insn->imm);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2382
		print_verifier_state(env, env->cur_state);
2383
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2384 2385 2386
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2387
		print_verifier_state(env, env->cur_state);
2388
		verbose(env, "verifier internal error: no src_reg\n");
2389 2390 2391
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2392 2393
}

2394
/* check validity of 32-bit and 64-bit arithmetic operations */
2395
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2396
{
2397
	struct bpf_reg_state *regs = cur_regs(env);
2398 2399 2400 2401 2402 2403 2404 2405
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2406
				verbose(env, "BPF_NEG uses reserved fields\n");
2407 2408 2409 2410
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2411 2412
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2413
				verbose(env, "BPF_END uses reserved fields\n");
2414 2415 2416 2417 2418
				return -EINVAL;
			}
		}

		/* check src operand */
2419
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2420 2421 2422
		if (err)
			return err;

2423
		if (is_pointer_value(env, insn->dst_reg)) {
2424
			verbose(env, "R%d pointer arithmetic prohibited\n",
2425 2426 2427 2428
				insn->dst_reg);
			return -EACCES;
		}

2429
		/* check dest operand */
2430
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2431 2432 2433 2434 2435 2436 2437
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2438
				verbose(env, "BPF_MOV uses reserved fields\n");
2439 2440 2441 2442
				return -EINVAL;
			}

			/* check src operand */
2443
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2444 2445 2446 2447
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2448
				verbose(env, "BPF_MOV uses reserved fields\n");
2449 2450 2451 2452 2453
				return -EINVAL;
			}
		}

		/* check dest operand */
2454
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2455 2456 2457 2458 2459 2460 2461 2462 2463
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2464
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2465
			} else {
2466
				/* R1 = (u32) R2 */
2467
				if (is_pointer_value(env, insn->src_reg)) {
2468 2469
					verbose(env,
						"R%d partial copy of pointer\n",
2470 2471 2472
						insn->src_reg);
					return -EACCES;
				}
2473
				mark_reg_unknown(env, regs, insn->dst_reg);
2474
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
2475 2476 2477 2478 2479
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2480
			regs[insn->dst_reg].type = SCALAR_VALUE;
2481 2482 2483 2484 2485 2486 2487
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
2488 2489 2490
		}

	} else if (opcode > BPF_END) {
2491
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2492 2493 2494 2495 2496 2497
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2498
				verbose(env, "BPF_ALU uses reserved fields\n");
2499 2500 2501
				return -EINVAL;
			}
			/* check src1 operand */
2502
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2503 2504 2505 2506
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2507
				verbose(env, "BPF_ALU uses reserved fields\n");
2508 2509 2510 2511 2512
				return -EINVAL;
			}
		}

		/* check src2 operand */
2513
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2514 2515 2516 2517 2518
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2519
			verbose(env, "div by zero\n");
2520 2521 2522
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2523 2524 2525 2526 2527
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2528
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2529 2530 2531 2532
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2533
		/* check dest operand */
2534
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2535 2536 2537
		if (err)
			return err;

2538
		return adjust_reg_min_max_vals(env, insn);
2539 2540 2541 2542 2543
	}

	return 0;
}

2544
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2545
				   struct bpf_reg_state *dst_reg,
2546
				   enum bpf_reg_type type,
2547
				   bool range_right_open)
A
Alexei Starovoitov 已提交
2548
{
2549
	struct bpf_reg_state *regs = state->regs, *reg;
2550
	u16 new_range;
A
Alexei Starovoitov 已提交
2551
	int i;
2552

2553 2554
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
2555 2556 2557
		/* This doesn't give us any range */
		return;

2558 2559
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2560 2561 2562 2563 2564
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2565 2566 2567 2568 2569
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
2570
	 *
2571
	 * pkt_data in dst register:
2572 2573 2574 2575 2576 2577
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2578 2579 2580 2581 2582
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2583 2584 2585 2586 2587
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2588
	 * pkt_data in src register:
2589 2590 2591 2592 2593 2594
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2595 2596 2597 2598 2599
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2600 2601 2602 2603 2604 2605
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2606 2607 2608
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
2609
	 */
2610

2611 2612 2613 2614 2615
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2616
	for (i = 0; i < MAX_BPF_REG; i++)
2617
		if (regs[i].type == type && regs[i].id == dst_reg->id)
2618
			/* keep the maximum range already checked */
2619
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
2620

2621 2622
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2623
			continue;
2624
		reg = &state->stack[i].spilled_ptr;
2625
		if (reg->type == type && reg->id == dst_reg->id)
D
Daniel Borkmann 已提交
2626
			reg->range = max(reg->range, new_range);
A
Alexei Starovoitov 已提交
2627 2628 2629
	}
}

2630 2631 2632
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2633
 * In JEQ/JNE cases we also adjust the var_off values.
2634 2635 2636 2637 2638
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2639 2640 2641 2642 2643 2644 2645 2646
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2647

2648 2649 2650 2651 2652
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2653
		__mark_reg_known(true_reg, val);
2654 2655 2656 2657 2658
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2659
		__mark_reg_known(false_reg, val);
2660 2661
		break;
	case BPF_JGT:
2662 2663 2664
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2665
	case BPF_JSGT:
2666 2667
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2668
		break;
2669 2670 2671 2672 2673 2674 2675 2676
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2677
	case BPF_JGE:
2678 2679 2680
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2681
	case BPF_JSGE:
2682 2683
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2684
		break;
2685 2686 2687 2688 2689 2690 2691 2692
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2693 2694 2695 2696
	default:
		break;
	}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2708 2709
}

2710 2711
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2712 2713 2714 2715 2716
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2717 2718
	if (__is_pointer_value(false, false_reg))
		return;
2719

2720 2721 2722 2723 2724
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2725
		__mark_reg_known(true_reg, val);
2726 2727 2728 2729 2730
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2731
		__mark_reg_known(false_reg, val);
2732 2733
		break;
	case BPF_JGT:
2734 2735 2736
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2737
	case BPF_JSGT:
2738 2739
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2740
		break;
2741 2742 2743 2744 2745 2746 2747 2748
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2749
	case BPF_JGE:
2750 2751 2752
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2753
	case BPF_JSGE:
2754 2755
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2756
		break;
2757 2758 2759 2760 2761 2762 2763 2764
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2765 2766 2767 2768
	default:
		break;
	}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2780 2781 2782 2783 2784 2785
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2786 2787 2788 2789 2790 2791 2792 2793
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2794 2795
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2825
		break;
2826
	}
2827 2828
}

2829
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2830
			 bool is_null)
2831 2832 2833 2834
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2835 2836 2837 2838
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2839 2840
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2841
				 reg->off)) {
2842 2843
			__mark_reg_known_zero(reg);
			reg->off = 0;
2844 2845 2846
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2847 2848 2849 2850
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2851
			reg->type = PTR_TO_MAP_VALUE;
2852
		}
2853 2854 2855 2856 2857
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2858 2859 2860 2861 2862 2863 2864
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2865
			  bool is_null)
2866 2867
{
	struct bpf_reg_state *regs = state->regs;
2868
	u32 id = regs[regno].id;
2869 2870 2871
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2872
		mark_map_reg(regs, i, id, is_null);
2873

2874 2875
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
2876
			continue;
2877
		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2878 2879 2880
	}
}

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

2974
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2975 2976
			     struct bpf_insn *insn, int *insn_idx)
{
2977
	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2978
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2979 2980 2981
	u8 opcode = BPF_OP(insn->code);
	int err;

2982
	if (opcode > BPF_JSLE) {
2983
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2984 2985 2986 2987 2988
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
2989
			verbose(env, "BPF_JMP uses reserved fields\n");
2990 2991 2992 2993
			return -EINVAL;
		}

		/* check src1 operand */
2994
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2995 2996
		if (err)
			return err;
2997 2998

		if (is_pointer_value(env, insn->src_reg)) {
2999
			verbose(env, "R%d pointer comparison prohibited\n",
3000 3001 3002
				insn->src_reg);
			return -EACCES;
		}
3003 3004
	} else {
		if (insn->src_reg != BPF_REG_0) {
3005
			verbose(env, "BPF_JMP uses reserved fields\n");
3006 3007 3008 3009 3010
			return -EINVAL;
		}
	}

	/* check src2 operand */
3011
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3012 3013 3014
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3015 3016
	dst_reg = &regs[insn->dst_reg];

3017 3018 3019
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3020 3021
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

3041 3042
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3043 3044 3045 3046
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3047 3048
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3067 3068 3069 3070
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

3071
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3072
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3073 3074
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3075 3076 3077
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3078 3079
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3080 3081 3082
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3083 3084
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3085
		return -EACCES;
3086
	}
3087 3088
	if (env->log.level)
		print_verifier_state(env, this_branch);
3089 3090 3091
	return 0;
}

3092 3093 3094 3095 3096 3097 3098 3099
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3100
/* verify BPF_LD_IMM64 instruction */
3101
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3102
{
3103
	struct bpf_reg_state *regs = cur_regs(env);
3104 3105 3106
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3107
		verbose(env, "invalid BPF_LD_IMM insn\n");
3108 3109 3110
		return -EINVAL;
	}
	if (insn->off != 0) {
3111
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3112 3113 3114
		return -EINVAL;
	}

3115
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3116 3117 3118
	if (err)
		return err;

3119 3120 3121
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3122
		regs[insn->dst_reg].type = SCALAR_VALUE;
3123
		__mark_reg_known(&regs[insn->dst_reg], imm);
3124
		return 0;
3125
	}
3126 3127 3128 3129 3130 3131 3132 3133 3134

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3135 3136 3137 3138 3139
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3140
	case BPF_PROG_TYPE_SCHED_ACT:
3141 3142 3143 3144 3145 3146
		return true;
	default:
		return false;
	}
}

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3162
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3163
{
3164
	struct bpf_reg_state *regs = cur_regs(env);
3165 3166 3167
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3168
	if (!may_access_skb(env->prog->type)) {
3169
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3170 3171 3172 3173
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3174
	    BPF_SIZE(insn->code) == BPF_DW ||
3175
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3176
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3177 3178 3179 3180
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3181
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3182 3183 3184 3185
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3186 3187
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3188 3189 3190 3191 3192
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3193
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3194 3195 3196 3197 3198
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3199
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3200
		mark_reg_not_init(env, regs, caller_saved[i]);
3201 3202
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3203 3204

	/* mark destination R0 register as readable, since it contains
3205 3206
	 * the value fetched from the packet.
	 * Already marked as written above.
3207
	 */
3208
	mark_reg_unknown(env, regs, BPF_REG_0);
3209 3210 3211
	return 0;
}

3212 3213 3214 3215 3216 3217 3218 3219 3220
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
3221
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3222 3223 3224 3225 3226
		break;
	default:
		return 0;
	}

3227
	reg = cur_regs(env) + BPF_REG_0;
3228
	if (reg->type != SCALAR_VALUE) {
3229
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3230 3231 3232 3233 3234
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3235
		verbose(env, "At program exit the register R0 ");
3236 3237 3238 3239
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3240
			verbose(env, "has value %s", tn_buf);
3241
		} else {
3242
			verbose(env, "has unknown scalar value");
3243
		}
3244
		verbose(env, " should have been 0 or 1\n");
3245 3246 3247 3248 3249
		return -EINVAL;
	}
	return 0;
}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3290
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3291

3292 3293 3294 3295 3296 3297 3298 3299 3300
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3301
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3302 3303 3304 3305 3306 3307 3308 3309
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3310
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3311 3312 3313
		return -EINVAL;
	}

3314 3315 3316 3317
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3318 3319 3320 3321 3322 3323 3324 3325 3326
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3327
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3328 3329 3330 3331 3332
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3333
		verbose(env, "insn state internal bug\n");
3334 3335 3336 3337 3338 3339 3340 3341
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3342
static int check_cfg(struct bpf_verifier_env *env)
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3379 3380
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3393 3394 3395
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3396 3397
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3398 3399
		} else {
			/* conditional jump with two edges */
3400
			env->explored_states[t] = STATE_LIST_MARK;
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3427
		verbose(env, "pop stack internal bug\n");
3428 3429 3430 3431 3432 3433 3434 3435
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3436
			verbose(env, "unreachable insn %d\n", i);
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3449 3450 3451 3452
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3453 3454 3455 3456
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3475
 */
3476
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3477
{
3478
	unsigned int i;
A
Alexei Starovoitov 已提交
3479

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3496 3497
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3498
{
3499 3500 3501 3502 3503
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3504 3505
		return true;

3506 3507
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3508
		return true;
3509 3510 3511 3512 3513 3514 3515 3516 3517
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
3518 3519 3520 3521 3522 3523
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
3524
			 */
3525
			return false;
3526 3527
		}
	case PTR_TO_MAP_VALUE:
3528 3529 3530 3531 3532 3533 3534 3535
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
3550
	case PTR_TO_PACKET_META:
3551
	case PTR_TO_PACKET:
3552
		if (rcur->type != rold->type)
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3584

3585 3586
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3587 3588 3589
	return false;
}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static bool stacksafe(struct bpf_verifier_state *old,
		      struct bpf_verifier_state *cur,
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3667 3668
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3669
			 struct bpf_verifier_state *cur)
3670
{
3671 3672
	struct idpair *idmap;
	bool ret = false;
3673 3674
	int i;

3675 3676 3677
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3678
		return false;
3679 3680

	for (i = 0; i < MAX_BPF_REG; i++) {
3681
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3682
			goto out_free;
3683 3684
	}

3685 3686
	if (!stacksafe(old, cur, idmap))
		goto out_free;
3687 3688 3689 3690
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3691 3692
}

3693 3694 3695 3696 3697 3698
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3699 3700 3701
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3702
	bool writes = parent == state->parent; /* Observe write marks */
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3714 3715 3716
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3717 3718 3719 3720 3721
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
3722 3723 3724
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3725
			continue;
3726
		if (state->stack[i].slot_type[0] != STACK_SPILL)
3727
			continue;
3728
		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3729
			continue;
3730 3731
		if (writes &&
		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3732
			continue;
3733 3734
		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3735 3736 3737 3738 3739 3740
			touched = true;
		}
	}
	return touched;
}

3741 3742 3743 3744 3745 3746 3747 3748 3749
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3760
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3761
{
3762 3763
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3764
	struct bpf_verifier_state *cur = env->cur_state;
3765
	int i, err;
3766 3767 3768 3769 3770 3771 3772 3773 3774

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3775
		if (states_equal(env, &sl->state, cur)) {
3776
			/* reached equivalent register/stack state,
3777 3778
			 * prune the search.
			 * Registers read by the continuation are read by us.
3779 3780 3781 3782 3783 3784
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3785
			 */
3786
			propagate_liveness(&sl->state, cur);
3787
			return 1;
3788
		}
3789 3790 3791 3792 3793 3794 3795 3796 3797
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3798
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3799 3800 3801 3802
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
3803 3804 3805 3806 3807 3808
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
3809 3810
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3811
	/* connect new state to parentage chain */
3812
	cur->parent = &new_sl->state;
3813 3814 3815 3816 3817 3818
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3819
	for (i = 0; i < BPF_REG_FP; i++)
3820 3821 3822 3823
		cur->regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
		if (cur->stack[i].slot_type[0] == STACK_SPILL)
			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3824 3825 3826
	return 0;
}

3827 3828 3829
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
3830 3831
	if (env->dev_ops && env->dev_ops->insn_hook)
		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3832

3833
	return 0;
3834 3835
}

3836
static int do_check(struct bpf_verifier_env *env)
3837
{
3838
	struct bpf_verifier_state *state;
3839
	struct bpf_insn *insns = env->prog->insnsi;
3840
	struct bpf_reg_state *regs;
3841 3842 3843 3844 3845
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

3846 3847 3848 3849 3850
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
	env->cur_state = state;
	init_reg_state(env, state->regs);
3851
	state->parent = NULL;
3852 3853 3854 3855 3856 3857 3858
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
3859
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3860 3861 3862 3863 3864 3865 3866
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3867
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3868 3869
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
3870 3871 3872 3873
				insn_processed);
			return -E2BIG;
		}

3874 3875 3876 3877 3878
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
3879
			if (env->log.level) {
3880
				if (do_print_state)
3881
					verbose(env, "\nfrom %d to %d: safe\n",
3882 3883
						prev_insn_idx, insn_idx);
				else
3884
					verbose(env, "%d: safe\n", insn_idx);
3885 3886 3887 3888
			}
			goto process_bpf_exit;
		}

3889 3890 3891
		if (need_resched())
			cond_resched();

3892 3893 3894
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
3895
			else
3896
				verbose(env, "\nfrom %d to %d:",
3897
					prev_insn_idx, insn_idx);
3898
			print_verifier_state(env, state);
3899 3900 3901
			do_print_state = false;
		}

3902 3903
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
3904 3905
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
3906 3907
		}

3908 3909 3910 3911
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3912
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
3913
		env->insn_aux_data[insn_idx].seen = true;
3914
		if (class == BPF_ALU || class == BPF_ALU64) {
3915
			err = check_alu_op(env, insn);
3916 3917 3918 3919
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3920
			enum bpf_reg_type *prev_src_type, src_reg_type;
3921 3922 3923

			/* check for reserved fields is already done */

3924
			/* check src operand */
3925
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3926 3927 3928
			if (err)
				return err;

3929
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3930 3931 3932
			if (err)
				return err;

3933 3934
			src_reg_type = regs[insn->src_reg].type;

3935 3936 3937
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3938
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3939 3940 3941 3942 3943
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3944 3945 3946
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3947 3948
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3949
				 * save type to validate intersecting paths
3950
				 */
3951
				*prev_src_type = src_reg_type;
3952

3953
			} else if (src_reg_type != *prev_src_type &&
3954
				   (src_reg_type == PTR_TO_CTX ||
3955
				    *prev_src_type == PTR_TO_CTX)) {
3956 3957 3958 3959 3960 3961 3962
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
3963
				verbose(env, "same insn cannot be used with different pointers\n");
3964 3965 3966
				return -EINVAL;
			}

3967
		} else if (class == BPF_STX) {
3968
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3969

3970
			if (BPF_MODE(insn->code) == BPF_XADD) {
3971
				err = check_xadd(env, insn_idx, insn);
3972 3973 3974 3975 3976 3977 3978
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3979
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3980 3981 3982
			if (err)
				return err;
			/* check src2 operand */
3983
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3984 3985 3986
			if (err)
				return err;

3987 3988
			dst_reg_type = regs[insn->dst_reg].type;

3989
			/* check that memory (dst_reg + off) is writeable */
3990
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3991 3992 3993 3994 3995
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3996 3997 3998 3999 4000
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4001
				   (dst_reg_type == PTR_TO_CTX ||
4002
				    *prev_dst_type == PTR_TO_CTX)) {
4003
				verbose(env, "same insn cannot be used with different pointers\n");
4004 4005 4006
				return -EINVAL;
			}

4007 4008 4009
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4010
				verbose(env, "BPF_ST uses reserved fields\n");
4011 4012 4013
				return -EINVAL;
			}
			/* check src operand */
4014
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4015 4016 4017 4018
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
4019
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4033
					verbose(env, "BPF_CALL uses reserved fields\n");
4034 4035 4036
					return -EINVAL;
				}

4037
				err = check_call(env, insn->imm, insn_idx);
4038 4039 4040 4041 4042 4043 4044 4045
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4046
					verbose(env, "BPF_JA uses reserved fields\n");
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4058
					verbose(env, "BPF_EXIT uses reserved fields\n");
4059 4060 4061 4062 4063 4064 4065 4066 4067
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4068
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4069 4070 4071
				if (err)
					return err;

4072
				if (is_pointer_value(env, BPF_REG_0)) {
4073
					verbose(env, "R0 leaks addr as return value\n");
4074 4075 4076
					return -EACCES;
				}

4077 4078 4079
				err = check_return_code(env);
				if (err)
					return err;
4080
process_bpf_exit:
4081 4082 4083 4084
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4099 4100 4101 4102
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4103 4104 4105 4106 4107 4108
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4109
				env->insn_aux_data[insn_idx].seen = true;
4110
			} else {
4111
				verbose(env, "invalid BPF_LD mode\n");
4112 4113 4114
				return -EINVAL;
			}
		} else {
4115
			verbose(env, "unknown insn class %d\n", class);
4116 4117 4118 4119 4120 4121
			return -EINVAL;
		}

		insn_idx++;
	}

4122 4123
	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
		env->prog->aux->stack_depth);
4124 4125 4126
	return 0;
}

4127 4128 4129
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4130 4131
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4132 4133 4134
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4135 4136
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4137 4138 4139
					struct bpf_prog *prog)

{
4140 4141 4142 4143 4144 4145 4146
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4147
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4148 4149 4150 4151
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4152
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4153 4154
			return -EINVAL;
		}
4155 4156 4157 4158
	}
	return 0;
}

4159 4160 4161
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4162
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4163 4164 4165
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4166
	int i, j, err;
4167

4168
	err = bpf_prog_calc_tag(env->prog);
4169 4170 4171
	if (err)
		return err;

4172
	for (i = 0; i < insn_cnt; i++, insn++) {
4173
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4174
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4175
			verbose(env, "BPF_LDX uses reserved fields\n");
4176 4177 4178
			return -EINVAL;
		}

4179 4180 4181
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4182
			verbose(env, "BPF_STX uses reserved fields\n");
4183 4184 4185
			return -EINVAL;
		}

4186 4187 4188 4189 4190 4191 4192
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4193
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4194 4195 4196 4197 4198 4199 4200 4201
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4202 4203
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4204 4205 4206 4207
				return -EINVAL;
			}

			f = fdget(insn->imm);
4208
			map = __bpf_map_get(f);
4209
			if (IS_ERR(map)) {
4210
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4211 4212 4213 4214
					insn->imm);
				return PTR_ERR(map);
			}

4215
			err = check_map_prog_compatibility(env, map, env->prog);
4216 4217 4218 4219 4220
			if (err) {
				fdput(f);
				return err;
			}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4242 4243 4244 4245 4246 4247 4248
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4264
static void release_maps(struct bpf_verifier_env *env)
4265 4266 4267 4268 4269 4270 4271 4272
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4273
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4284 4285 4286 4287 4288 4289 4290 4291
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
4292
	int i;
4293 4294 4295 4296 4297 4298 4299 4300 4301

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
4302 4303
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

A
Alexei Starovoitov 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
/* The verifier does more data flow analysis than llvm and will not explore
 * branches that are dead at run time. Malicious programs can have dead code
 * too. Therefore replace all dead at-run-time code with nops.
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
		memcpy(insn + i, &nop, sizeof(nop));
	}
}

4341 4342 4343
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4344
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4345
{
4346
	const struct bpf_verifier_ops *ops = env->ops;
4347
	int i, cnt, size, ctx_field_size, delta = 0;
4348
	const int insn_cnt = env->prog->len;
4349
	struct bpf_insn insn_buf[16], *insn;
4350
	struct bpf_prog *new_prog;
4351
	enum bpf_access_type type;
4352 4353
	bool is_narrower_load;
	u32 target_size;
4354

4355 4356 4357 4358
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4359
			verbose(env, "bpf verifier is misconfigured\n");
4360 4361
			return -EINVAL;
		} else if (cnt) {
4362
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4363 4364
			if (!new_prog)
				return -ENOMEM;
4365

4366
			env->prog = new_prog;
4367
			delta += cnt - 1;
4368 4369 4370 4371
		}
	}

	if (!ops->convert_ctx_access)
4372 4373
		return 0;

4374
	insn = env->prog->insnsi + delta;
4375

4376
	for (i = 0; i < insn_cnt; i++, insn++) {
4377 4378 4379
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4380
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4381
			type = BPF_READ;
4382 4383 4384
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4385
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4386 4387
			type = BPF_WRITE;
		else
4388 4389
			continue;

4390
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4391 4392
			continue;

4393
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4394
		size = BPF_LDST_BYTES(insn);
4395 4396 4397 4398 4399 4400

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4401
		is_narrower_load = size < ctx_field_size;
4402
		if (is_narrower_load) {
4403 4404 4405 4406
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4407
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4408 4409
				return -EINVAL;
			}
4410

4411
			size_code = BPF_H;
4412 4413 4414 4415
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4416

4417 4418 4419
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4420 4421 4422 4423 4424 4425

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4426
			verbose(env, "bpf verifier is misconfigured\n");
4427 4428
			return -EINVAL;
		}
4429 4430

		if (is_narrower_load && size < target_size) {
4431 4432
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4433
								(1 << size * 8) - 1);
4434 4435
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4436
								(1 << size * 8) - 1);
4437
		}
4438

4439
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4440 4441 4442
		if (!new_prog)
			return -ENOMEM;

4443
		delta += cnt - 1;
4444 4445 4446

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4447
		insn      = new_prog->insnsi + i + delta;
4448 4449 4450 4451 4452
	}

	return 0;
}

4453
/* fixup insn->imm field of bpf_call instructions
4454
 * and inline eligible helpers as explicit sequence of BPF instructions
4455 4456 4457
 *
 * this function is called after eBPF program passed verification
 */
4458
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4459
{
4460 4461
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4462
	const struct bpf_func_proto *fn;
4463
	const int insn_cnt = prog->len;
4464 4465 4466 4467
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4468

4469 4470 4471
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4472

4473 4474 4475 4476 4477
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4478 4479 4480 4481 4482 4483
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4484
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4485

4486 4487 4488 4489
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4490
			 */
4491
			insn->imm = 0;
4492
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4493 4494
			continue;
		}
4495

4496 4497 4498 4499 4500
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4501
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4502 4503
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4504 4505 4506 4507
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4508
				verbose(env, "bpf verifier is misconfigured\n");
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4525
		if (insn->imm == BPF_FUNC_redirect_map) {
4526 4527 4528 4529 4530 4531
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4546
patch_call_imm:
4547
		fn = env->ops->get_func_proto(insn->imm);
4548 4549 4550 4551
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
4552 4553
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
4554 4555
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4556
		}
4557
		insn->imm = fn->func - __bpf_call_base;
4558 4559
	}

4560 4561
	return 0;
}
4562

4563
static void free_states(struct bpf_verifier_env *env)
4564
{
4565
	struct bpf_verifier_state_list *sl, *sln;
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
4577
				free_verifier_state(&sl->state, false);
4578 4579 4580 4581 4582 4583 4584 4585
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4586
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4587
{
4588
	struct bpf_verifier_env *env;
4589
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
4590 4591
	int ret = -EINVAL;

4592 4593 4594 4595
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

4596
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4597 4598
	 * allocate/free it every time bpf_check() is called
	 */
4599
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4600 4601
	if (!env)
		return -ENOMEM;
4602
	log = &env->log;
4603

4604 4605 4606 4607 4608
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4609
	env->prog = *prog;
4610
	env->ops = bpf_verifier_ops[env->prog->type];
4611

4612 4613 4614 4615 4616 4617 4618
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
4619 4620 4621
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
4622 4623

		ret = -EINVAL;
4624 4625 4626
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
4627
			goto err_unlock;
4628
	}
4629 4630 4631

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4632
		env->strict_alignment = true;
4633

4634 4635 4636 4637 4638 4639
	if (env->prog->aux->offload) {
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

4640 4641 4642 4643
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4644
	env->explored_states = kcalloc(env->prog->len,
4645
				       sizeof(struct bpf_verifier_state_list *),
4646 4647 4648 4649 4650
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4651 4652 4653 4654
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4655 4656
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4657
	ret = do_check(env);
4658 4659 4660 4661
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
4662

4663
skip_full_check:
4664
	while (!pop_stack(env, NULL, NULL));
4665
	free_states(env);
4666

A
Alexei Starovoitov 已提交
4667 4668 4669
	if (ret == 0)
		sanitize_dead_code(env);

4670 4671 4672 4673
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4674
	if (ret == 0)
4675
		ret = fixup_bpf_calls(env);
4676

4677
	if (log->level && bpf_verifier_log_full(log))
4678
		ret = -ENOSPC;
4679
	if (log->level && !log->ubuf) {
4680
		ret = -EFAULT;
4681
		goto err_release_maps;
4682 4683
	}

4684 4685
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4686 4687 4688
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4689

4690
		if (!env->prog->aux->used_maps) {
4691
			ret = -ENOMEM;
4692
			goto err_release_maps;
4693 4694
		}

4695
		memcpy(env->prog->aux->used_maps, env->used_maps,
4696
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4697
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4698 4699 4700 4701 4702 4703

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4704

4705
err_release_maps:
4706
	if (!env->prog->aux->used_maps)
4707 4708 4709 4710
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4711
	*prog = env->prog;
4712
err_unlock:
4713
	mutex_unlock(&bpf_verifier_lock);
4714 4715 4716
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4717 4718
	return ret;
}