verifier.c 167.1 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
A
Alexei Starovoitov 已提交
25

26 27
#include "disasm.h"

28 29 30 31 32 33 34 35 36
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
49
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
77
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
78
 * means the register has some value, but it's not a valid pointer.
79
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
80 81
 *
 * When verifier sees load or store instructions the type of base register
82
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

144
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
145
struct bpf_verifier_stack_elem {
146 147 148 149
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
150
	struct bpf_verifier_state st;
151 152
	int insn_idx;
	int prev_insn_idx;
153
	struct bpf_verifier_stack_elem *next;
154 155
};

156
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
157 158
#define BPF_COMPLEXITY_LIMIT_STACK	1024

159 160
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

161 162
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
163
	bool raw_mode;
164
	bool pkt_access;
165 166
	int regno;
	int access_size;
167 168
};

169 170
static DEFINE_MUTEX(bpf_verifier_lock);

171 172
static void log_write(struct bpf_verifier_env *env, const char *fmt,
		      va_list args)
173
{
174
	struct bpf_verifer_log *log = &env->log;
175
	unsigned int n;
176

177
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
178 179
		return;

180 181 182 183 184 185 186 187 188 189 190 191
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
192
}
193 194 195 196

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
197
 */
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

	va_start(args, fmt);
	log_write(env, fmt, args);
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
	va_list args;

	va_start(args, fmt);
	log_write(private_data, fmt, args);
	va_end(args);
}
217

218 219 220 221 222 223
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

224 225 226
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
227
	[SCALAR_VALUE]		= "inv",
228 229 230 231 232
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
233
	[PTR_TO_PACKET]		= "pkt",
234
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
235
	[PTR_TO_PACKET_END]	= "pkt_end",
236 237
};

238 239 240 241 242 243 244 245 246 247 248
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

249 250 251 252 253 254 255 256
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

257
static void print_verifier_state(struct bpf_verifier_env *env,
258
				 const struct bpf_func_state *state)
259
{
260
	const struct bpf_reg_state *reg;
261 262 263
	enum bpf_reg_type t;
	int i;

264 265
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
266
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
267 268
		reg = &state->regs[i];
		t = reg->type;
269 270
		if (t == NOT_INIT)
			continue;
271 272 273
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
274 275 276
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
277
			verbose(env, "%lld", reg->var_off.value + reg->off);
278 279
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
280
		} else {
281
			verbose(env, "(id=%d", reg->id);
282
			if (t != SCALAR_VALUE)
283
				verbose(env, ",off=%d", reg->off);
284
			if (type_is_pkt_pointer(t))
285
				verbose(env, ",r=%d", reg->range);
286 287 288
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
289
				verbose(env, ",ks=%d,vs=%d",
290 291
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
292 293 294 295 296
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
297
				verbose(env, ",imm=%llx", reg->var_off.value);
298 299 300
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
301
					verbose(env, ",smin_value=%lld",
302 303 304
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
305
					verbose(env, ",smax_value=%lld",
306 307
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
308
					verbose(env, ",umin_value=%llu",
309 310
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
311
					verbose(env, ",umax_value=%llu",
312 313 314
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
315

316
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
317
					verbose(env, ",var_off=%s", tn_buf);
318
				}
319
			}
320
			verbose(env, ")");
321
		}
322
	}
323
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
324 325 326 327 328
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
329
				reg_type_str[state->stack[i].spilled_ptr.type]);
330
		}
331 332
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
333
	}
334
	verbose(env, "\n");
335 336
}

337 338
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
339
{
340 341 342 343 344 345 346 347 348 349 350 351 352 353
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
354
 * the program calls into realloc_func_state() to grow the stack size.
355 356 357 358
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
359 360
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

393 394
static void free_func_state(struct bpf_func_state *state)
{
395 396
	if (!state)
		return;
397 398 399 400
	kfree(state->stack);
	kfree(state);
}

401 402
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
403
{
404 405 406 407 408 409
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
410 411
	if (free_self)
		kfree(state);
412 413 414 415 416
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
417 418
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
419 420 421
{
	int err;

422
	err = realloc_func_state(dst, src->allocated_stack, false);
423 424
	if (err)
		return err;
425
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
426 427 428
	return copy_stack_state(dst, src);
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

457 458 459 460 461 462
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
463 464

	if (env->head == NULL)
465
		return -ENOENT;
466

467 468 469 470 471 472 473
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
474
	if (prev_insn_idx)
475 476
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
477
	free_verifier_state(&head->st, false);
478
	kfree(head);
479 480
	env->head = elem;
	env->stack_size--;
481
	return 0;
482 483
}

484 485
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
486
{
487
	struct bpf_verifier_state *cur = env->cur_state;
488
	struct bpf_verifier_stack_elem *elem;
489
	int err;
490

491
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
492 493 494 495 496 497 498 499
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
500 501 502
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
503
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
504
		verbose(env, "BPF program is too complex\n");
505 506 507 508
		goto err;
	}
	return &elem->st;
err:
509 510
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
511
	/* pop all elements and return */
512
	while (!pop_stack(env, NULL, NULL));
513 514 515 516 517 518 519 520
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

521 522
static void __mark_reg_not_init(struct bpf_reg_state *reg);

523 524 525 526 527 528 529 530 531 532 533 534 535
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

536 537 538 539
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
540
{
541
	__mark_reg_known(reg, 0);
542
}
543

544 545 546 547 548 549 550
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

551 552
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
553 554
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
555
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
556 557 558 559 560 561 562 563
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

655 656 657 658 659 660 661
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
662
	reg->frameno = 0;
663
	__mark_reg_unbounded(reg);
664 665
}

666 667
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
668 669
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
670
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
671 672
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
673 674 675 676 677 678 679 680 681 682 683 684
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

685 686
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
687 688
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
689
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
690 691
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
692 693 694 695
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
696 697
}

698
static void init_reg_state(struct bpf_verifier_env *env,
699
			   struct bpf_func_state *state)
700
{
701
	struct bpf_reg_state *regs = state->regs;
702 703
	int i;

704
	for (i = 0; i < MAX_BPF_REG; i++) {
705
		mark_reg_not_init(env, regs, i);
706 707
		regs[i].live = REG_LIVE_NONE;
	}
708 709

	/* frame pointer */
710
	regs[BPF_REG_FP].type = PTR_TO_STACK;
711
	mark_reg_known_zero(env, regs, BPF_REG_FP);
712
	regs[BPF_REG_FP].frameno = state->frameno;
713 714 715

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
716
	mark_reg_known_zero(env, regs, BPF_REG_1);
717 718
}

719 720 721 722 723 724 725 726 727 728 729
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

730 731 732 733 734 735
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static int cmp_subprogs(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
	u32 *p;

	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
		    sizeof(env->subprog_starts[0]), cmp_subprogs);
	if (!p)
		return -ENOENT;
	return p - env->subprog_starts;

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
	env->subprog_starts[env->subprog_cnt++] = off;
	sort(env->subprog_starts, env->subprog_cnt,
	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
792
			verbose(env, "function calls in offloaded programs are not supported yet\n");
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);

	/* now check that all jumps are within the same subprog */
	subprog_start = 0;
	if (env->subprog_cnt == cur_subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[cur_subprog++];
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
			if (env->subprog_cnt == cur_subprog)
				subprog_end = insn_cnt;
			else
				subprog_end = env->subprog_starts[cur_subprog++];
		}
	}
	return 0;
}

843
static
844 845 846 847
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
848
{
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
888
	return NULL;
889 890 891 892 893 894 895 896
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
897

A
Alexei Starovoitov 已提交
898 899
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
900
		return 0;
A
Alexei Starovoitov 已提交
901

902 903
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
904
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
905
			break;
906 907 908
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
909
		/* ... then we depend on parent's value */
910
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
911 912
		state = parent;
		parent = state->parent;
913
		writes = true;
914
	}
915
	return 0;
916 917 918
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
919 920
			 enum reg_arg_type t)
{
921 922 923
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
924

925
	if (regno >= MAX_BPF_REG) {
926
		verbose(env, "R%d is invalid\n", regno);
927 928 929 930 931 932
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
933
			verbose(env, "R%d !read_ok\n", regno);
934 935
			return -EACCES;
		}
936
		return mark_reg_read(env, vstate, vstate->parent, regno);
937 938 939
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
940
			verbose(env, "frame pointer is read only\n");
941 942
			return -EACCES;
		}
943
		regs[regno].live |= REG_LIVE_WRITTEN;
944
		if (t == DST_OP)
945
			mark_reg_unknown(env, regs, regno);
946 947 948 949
	}
	return 0;
}

950 951 952 953 954 955 956
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
957
	case PTR_TO_PACKET:
958
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
959
	case PTR_TO_PACKET_END:
960 961 962 963 964 965 966
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

967 968 969 970 971 972
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

973 974 975
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
976
static int check_stack_write(struct bpf_verifier_env *env,
977 978
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
979
{
980
	struct bpf_func_state *cur; /* state of the current function */
981
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
982
	enum bpf_reg_type type;
983

984 985
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
986 987
	if (err)
		return err;
988 989 990
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
991 992 993 994 995 996
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
997

998
	cur = env->cur_state->frame[env->cur_state->curframe];
999
	if (value_regno >= 0 &&
1000
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1001 1002

		/* register containing pointer is being spilled into stack */
1003
		if (size != BPF_REG_SIZE) {
1004
			verbose(env, "invalid size of register spill\n");
1005 1006 1007
			return -EACCES;
		}

1008 1009 1010 1011 1012
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1013
		/* save register state */
1014
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1015
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1016

1017
		for (i = 0; i < BPF_REG_SIZE; i++)
1018
			state->stack[spi].slot_type[i] = STACK_SPILL;
1019
	} else {
1020 1021
		u8 type = STACK_MISC;

1022
		/* regular write of data into stack */
1023
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1041
		for (i = 0; i < size; i++)
1042
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1043
				type;
1044 1045 1046 1047
	}
	return 0;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1080
{
1081
	bool writes = parent == state->parent; /* Observe write marks */
1082 1083

	while (parent) {
1084 1085 1086 1087 1088 1089 1090 1091
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1092
		/* if read wasn't screened by an earlier write ... */
1093
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1094 1095
			break;
		/* ... then we depend on parent's value */
1096
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1097 1098
		state = parent;
		parent = state->parent;
1099
		writes = true;
1100 1101 1102
	}
}

1103
static int check_stack_read(struct bpf_verifier_env *env,
1104 1105
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1106
{
1107 1108
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1109 1110
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1111

1112
	if (reg_state->allocated_stack <= slot) {
1113 1114 1115 1116
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1117
	stype = reg_state->stack[spi].slot_type;
1118

1119
	if (stype[0] == STACK_SPILL) {
1120
		if (size != BPF_REG_SIZE) {
1121
			verbose(env, "invalid size of register spill\n");
1122 1123
			return -EACCES;
		}
1124
		for (i = 1; i < BPF_REG_SIZE; i++) {
1125
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1126
				verbose(env, "corrupted spill memory\n");
1127 1128 1129 1130
				return -EACCES;
			}
		}

1131
		if (value_regno >= 0) {
1132
			/* restore register state from stack */
1133
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1134 1135 1136 1137 1138
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1139
		}
1140 1141
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1142 1143
		return 0;
	} else {
1144 1145
		int zeros = 0;

1146
		for (i = 0; i < size; i++) {
1147 1148 1149 1150 1151
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1152
			}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1170 1171 1172 1173 1174 1175
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1176
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1177
			      int size, bool zero_size_allowed)
1178
{
1179 1180
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1181

1182 1183
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1184
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1185 1186 1187 1188 1189 1190
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1191 1192
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1193
			    int off, int size, bool zero_size_allowed)
1194
{
1195 1196
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1197 1198 1199
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1200 1201 1202
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1203
	 */
1204 1205
	if (env->log.level)
		print_verifier_state(env, state);
1206 1207 1208 1209 1210 1211
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1212
	if (reg->smin_value < 0) {
1213
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1214 1215 1216
			regno);
		return -EACCES;
	}
1217 1218
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1219
	if (err) {
1220 1221
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1222 1223 1224
		return err;
	}

1225 1226 1227
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1228
	 */
1229
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1230
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1231 1232 1233
			regno);
		return -EACCES;
	}
1234 1235
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1236
	if (err)
1237 1238
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1239
	return err;
1240 1241
}

A
Alexei Starovoitov 已提交
1242 1243
#define MAX_PACKET_OFF 0xffff

1244
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1245 1246
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1247
{
1248
	switch (env->prog->type) {
1249 1250 1251 1252 1253
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1254
		/* fallthrough */
1255 1256
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1257
	case BPF_PROG_TYPE_XDP:
1258
	case BPF_PROG_TYPE_LWT_XMIT:
1259
	case BPF_PROG_TYPE_SK_SKB:
1260
	case BPF_PROG_TYPE_SK_MSG:
1261 1262 1263 1264
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1265 1266 1267 1268 1269 1270
		return true;
	default:
		return false;
	}
}

1271
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1272
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1273
{
1274
	struct bpf_reg_state *regs = cur_regs(env);
1275
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1276

1277 1278
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1279
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1280
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1281 1282 1283 1284 1285
		return -EACCES;
	}
	return 0;
}

1286
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1287
			       int size, bool zero_size_allowed)
1288
{
1289
	struct bpf_reg_state *regs = cur_regs(env);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1301
	if (reg->smin_value < 0) {
1302
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1303 1304 1305
			regno);
		return -EACCES;
	}
1306
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1307
	if (err) {
1308
		verbose(env, "R%d offset is outside of the packet\n", regno);
1309 1310 1311 1312 1313 1314
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1315
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1316
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1317
{
1318 1319 1320
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1321

1322 1323
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
1324 1325 1326 1327 1328 1329
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1330
		 */
1331
		*reg_type = info.reg_type;
1332

1333
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1334 1335 1336
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1337
		return 0;
1338
	}
1339

1340
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1341 1342 1343
	return -EACCES;
}

1344 1345
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1346
{
1347
	if (allow_ptr_leaks)
1348 1349
		return false;

1350
	return reg->type != SCALAR_VALUE;
1351 1352
}

1353 1354
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1355
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1356 1357
}

1358 1359 1360 1361 1362 1363 1364
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1365 1366 1367 1368 1369 1370 1371
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1372 1373
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1374
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1375
{
1376
	struct tnum reg_off;
1377
	int ip_align;
1378 1379 1380 1381 1382

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1383 1384 1385 1386 1387 1388 1389
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1390
	 */
1391
	ip_align = 2;
1392 1393 1394 1395 1396 1397

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1398 1399
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1400
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1401 1402
		return -EACCES;
	}
1403

A
Alexei Starovoitov 已提交
1404 1405 1406
	return 0;
}

1407 1408
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1409 1410
				       const char *pointer_desc,
				       int off, int size, bool strict)
1411
{
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1423
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1424
			pointer_desc, tn_buf, reg->off, off, size);
1425 1426 1427
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1428 1429 1430
	return 0;
}

1431
static int check_ptr_alignment(struct bpf_verifier_env *env,
1432 1433
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1434
{
1435
	bool strict = env->strict_alignment || strict_alignment_once;
1436
	const char *pointer_desc = "";
1437

1438 1439
	switch (reg->type) {
	case PTR_TO_PACKET:
1440 1441 1442 1443
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1444
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1445 1446 1447 1448 1449 1450 1451 1452
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1453 1454 1455 1456 1457
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1458
		break;
1459
	default:
1460
		break;
1461
	}
1462 1463
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1464 1465
}

1466 1467 1468 1469
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1470
	u16 stack = env->subprog_stack_depth[func->subprogno];
1471 1472 1473 1474 1475 1476

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
	env->subprog_stack_depth[func->subprogno] = -off;
1477 1478
	return 0;
}
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
	int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1493

1494 1495 1496 1497 1498 1499
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
	depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	if (depth > MAX_BPF_STACK) {
1500
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1501
			frame + 1, depth);
1502 1503
		return -EACCES;
	}
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
continue_func:
	if (env->subprog_cnt == subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[subprog];
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
		ret_prog[frame] = subprog;

		/* find the callee */
		i = i + insn[i].imm + 1;
		subprog = find_subprog(env, i);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		subprog++;
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
	depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	frame--;
	i = ret_insn[frame];
	subprog = ret_prog[frame];
	goto continue_func;
1544 1545
}

1546
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
	subprog++;
	return env->subprog_stack_depth[subprog];
}
1561
#endif
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1586 1587 1588 1589 1590 1591
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1592 1593 1594
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1595
{
1596 1597
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1598
	struct bpf_func_state *state;
1599 1600 1601 1602 1603 1604
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1605
	/* alignment checks will add in reg->off themselves */
1606
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1607 1608
	if (err)
		return err;
1609

1610 1611 1612 1613
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1614 1615
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1616
			verbose(env, "R%d leaks addr into map\n", value_regno);
1617 1618
			return -EACCES;
		}
1619

1620
		err = check_map_access(env, regno, off, size, false);
1621
		if (!err && t == BPF_READ && value_regno >= 0)
1622
			mark_reg_unknown(env, regs, value_regno);
1623

A
Alexei Starovoitov 已提交
1624
	} else if (reg->type == PTR_TO_CTX) {
1625
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1626

1627 1628
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1629
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1630 1631
			return -EACCES;
		}
1632 1633 1634
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1635
		if (reg->off) {
1636 1637
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1638 1639 1640 1641
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1642 1643 1644
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1645 1646
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1647 1648 1649
				tn_buf, off, size);
			return -EACCES;
		}
1650
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1651
		if (!err && t == BPF_READ && value_regno >= 0) {
1652
			/* ctx access returns either a scalar, or a
1653 1654
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1655 1656
			 */
			if (reg_type == SCALAR_VALUE)
1657
				mark_reg_unknown(env, regs, value_regno);
1658
			else
1659
				mark_reg_known_zero(env, regs,
1660
						    value_regno);
1661 1662 1663 1664
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1665
		}
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1676
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1677 1678 1679 1680
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1681
		if (off >= 0 || off < -MAX_BPF_STACK) {
1682 1683
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1684 1685
			return -EACCES;
		}
1686

1687 1688 1689 1690
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1691

1692
		if (t == BPF_WRITE)
1693 1694
			err = check_stack_write(env, state, off, size,
						value_regno);
1695
		else
1696 1697
			err = check_stack_read(env, state, off, size,
					       value_regno);
1698
	} else if (reg_is_pkt_pointer(reg)) {
1699
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1700
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1701 1702
			return -EACCES;
		}
1703 1704
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1705 1706
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1707 1708
			return -EACCES;
		}
1709
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1710
		if (!err && t == BPF_READ && value_regno >= 0)
1711
			mark_reg_unknown(env, regs, value_regno);
1712
	} else {
1713 1714
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1715 1716
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1717

1718
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1719
	    regs[value_regno].type == SCALAR_VALUE) {
1720
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1721
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1722
	}
1723 1724 1725
	return err;
}

1726
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1727 1728 1729 1730 1731
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1732
		verbose(env, "BPF_XADD uses reserved fields\n");
1733 1734 1735 1736
		return -EINVAL;
	}

	/* check src1 operand */
1737
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1738 1739 1740 1741
	if (err)
		return err;

	/* check src2 operand */
1742
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1743 1744 1745
	if (err)
		return err;

1746
	if (is_pointer_value(env, insn->src_reg)) {
1747
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1748 1749 1750
		return -EACCES;
	}

1751 1752 1753 1754 1755
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1756 1757 1758
		return -EACCES;
	}

1759
	/* check whether atomic_add can read the memory */
1760
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1761
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1762 1763 1764 1765
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1766
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1767
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1768 1769 1770 1771
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1772 1773 1774
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1775
 */
1776
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1777 1778
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1779
{
1780
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1781
	struct bpf_func_state *state = func(env, reg);
1782
	int off, i, slot, spi;
1783

1784
	if (reg->type != PTR_TO_STACK) {
1785
		/* Allow zero-byte read from NULL, regardless of pointer type */
1786
		if (zero_size_allowed && access_size == 0 &&
1787
		    register_is_null(reg))
1788 1789
			return 0;

1790
		verbose(env, "R%d type=%s expected=%s\n", regno,
1791
			reg_type_str[reg->type],
1792
			reg_type_str[PTR_TO_STACK]);
1793
		return -EACCES;
1794
	}
1795

1796
	/* Only allow fixed-offset stack reads */
1797
	if (!tnum_is_const(reg->var_off)) {
1798 1799
		char tn_buf[48];

1800
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1801
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1802
			regno, tn_buf);
1803
		return -EACCES;
1804
	}
1805
	off = reg->off + reg->var_off.value;
1806
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1807
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1808
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1809 1810 1811 1812
			regno, off, access_size);
		return -EACCES;
	}

1813 1814 1815 1816 1817 1818
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1819
	for (i = 0; i < access_size; i++) {
1820 1821
		u8 *stype;

1822 1823
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1824 1825 1826 1827 1828 1829 1830 1831 1832
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1833
		}
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1844
	}
1845
	return update_stack_depth(env, state, off);
1846 1847
}

1848 1849 1850 1851
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1852
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1853

1854
	switch (reg->type) {
1855
	case PTR_TO_PACKET:
1856
	case PTR_TO_PACKET_META:
1857 1858
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1859
	case PTR_TO_MAP_VALUE:
1860 1861
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1862
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1863 1864 1865 1866 1867
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1881
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1882 1883
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1884
{
1885
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1886
	enum bpf_reg_type expected_type, type = reg->type;
1887 1888
	int err = 0;

1889
	if (arg_type == ARG_DONTCARE)
1890 1891
		return 0;

1892 1893 1894
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1895

1896 1897
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1898 1899
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1900 1901
			return -EACCES;
		}
1902
		return 0;
1903
	}
1904

1905
	if (type_is_pkt_pointer(type) &&
1906
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1907
		verbose(env, "helper access to the packet is not allowed\n");
1908 1909 1910
		return -EACCES;
	}

1911
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1912 1913
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1914 1915
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1916
			goto err_type;
1917 1918
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1919 1920
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1921
			goto err_type;
1922 1923
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1924 1925
		if (type != expected_type)
			goto err_type;
1926 1927
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1928 1929
		if (type != expected_type)
			goto err_type;
1930
	} else if (arg_type_is_mem_ptr(arg_type)) {
1931 1932
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1933
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1934 1935
		 * happens during stack boundary checking.
		 */
1936
		if (register_is_null(reg) &&
1937
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1938
			/* final test in check_stack_boundary() */;
1939 1940
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1941
			 type != expected_type)
1942
			goto err_type;
1943
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1944
	} else {
1945
		verbose(env, "unsupported arg_type %d\n", arg_type);
1946 1947 1948 1949 1950
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1951
		meta->map_ptr = reg->map_ptr;
1952 1953 1954 1955 1956
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1957
		if (!meta->map_ptr) {
1958 1959 1960 1961 1962
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1963
			verbose(env, "invalid map_ptr to access map->key\n");
1964 1965
			return -EACCES;
		}
1966
		if (type_is_pkt_pointer(type))
1967
			err = check_packet_access(env, regno, reg->off,
1968 1969
						  meta->map_ptr->key_size,
						  false);
1970 1971 1972 1973
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1974 1975 1976 1977
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1978
		if (!meta->map_ptr) {
1979
			/* kernel subsystem misconfigured verifier */
1980
			verbose(env, "invalid map_ptr to access map->value\n");
1981 1982
			return -EACCES;
		}
1983
		if (type_is_pkt_pointer(type))
1984
			err = check_packet_access(env, regno, reg->off,
1985 1986
						  meta->map_ptr->value_size,
						  false);
1987 1988 1989 1990
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1991
	} else if (arg_type_is_mem_size(arg_type)) {
1992
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1993

1994 1995
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1996
		 */
1997
		if (!tnum_is_const(reg->var_off))
1998 1999 2000 2001 2002 2003 2004
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

2005
		if (reg->smin_value < 0) {
2006
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2007 2008 2009
				regno);
			return -EACCES;
		}
2010

2011
		if (reg->umin_value == 0) {
2012 2013 2014
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2015 2016 2017
			if (err)
				return err;
		}
2018

2019
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2020
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2021 2022 2023 2024
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2025
					      reg->umax_value,
2026
					      zero_size_allowed, meta);
2027 2028 2029
	}

	return err;
2030
err_type:
2031
	verbose(env, "R%d type=%s expected=%s\n", regno,
2032 2033
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2034 2035
}

2036 2037
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2038 2039 2040 2041
{
	if (!map)
		return 0;

2042 2043 2044 2045 2046 2047 2048 2049
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2050 2051
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2052 2053 2054 2055 2056 2057
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2058
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2059
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2060
		    func_id != BPF_FUNC_current_task_under_cgroup)
2061 2062
			goto error;
		break;
2063 2064 2065 2066 2067
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2068
		if (func_id != BPF_FUNC_redirect_map)
2069 2070
			goto error;
		break;
2071 2072 2073 2074 2075
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2076
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2077
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2078 2079
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2080
		break;
2081 2082 2083
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2084 2085
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2086 2087
			goto error;
		break;
2088 2089 2090 2091 2092 2093 2094 2095 2096
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
2097 2098 2099 2100
		if (env->subprog_cnt) {
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2101 2102 2103
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2104
	case BPF_FUNC_perf_event_read_value:
2105 2106 2107 2108 2109 2110 2111
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2112
	case BPF_FUNC_current_task_under_cgroup:
2113
	case BPF_FUNC_skb_under_cgroup:
2114 2115 2116
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2117
	case BPF_FUNC_redirect_map:
2118 2119
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
2120 2121
			goto error;
		break;
2122
	case BPF_FUNC_sk_redirect_map:
2123
	case BPF_FUNC_msg_redirect_map:
2124 2125 2126 2127 2128 2129 2130
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2131 2132
	default:
		break;
2133 2134 2135
	}

	return 0;
2136
error:
2137
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2138
		map->map_type, func_id_name(func_id), func_id);
2139
	return -EINVAL;
2140 2141
}

2142
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2143 2144 2145
{
	int count = 0;

2146
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2147
		count++;
2148
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2149
		count++;
2150
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2151
		count++;
2152
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2153
		count++;
2154
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2155 2156
		count++;

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2195 2196
}

2197 2198
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2199
 */
2200 2201
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2202
{
2203
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2204 2205 2206
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2207
		if (reg_is_pkt_pointer_any(&regs[i]))
2208
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2209

2210 2211
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2212
			continue;
2213
		reg = &state->stack[i].spilled_ptr;
2214 2215
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2216 2217 2218
	}
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2235
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2236
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2237
			state->curframe + 2);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
			subprog + 1 /* subprog number within this prog */);

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2334 2335
{
	const struct bpf_func_proto *fn = NULL;
2336
	struct bpf_reg_state *regs;
2337
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2338
	bool changes_data;
2339 2340 2341 2342
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2343 2344
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2345 2346 2347
		return -EINVAL;
	}

2348 2349
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
2350
	if (!fn) {
2351 2352
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2353 2354 2355 2356
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2357
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2358
		verbose(env, "cannot call GPL only function from proprietary program\n");
2359 2360 2361
		return -EINVAL;
	}

2362
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2363
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2364 2365 2366 2367 2368
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2369

2370
	memset(&meta, 0, sizeof(meta));
2371
	meta.pkt_access = fn->pkt_access;
2372

2373
	err = check_func_proto(fn);
2374
	if (err) {
2375
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2376
			func_id_name(func_id), func_id);
2377 2378 2379
		return err;
	}

2380
	/* check args */
2381
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2382 2383
	if (err)
		return err;
2384
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2385 2386
	if (err)
		return err;
2387 2388 2389 2390 2391 2392 2393
	if (func_id == BPF_FUNC_tail_call) {
		if (meta.map_ptr == NULL) {
			verbose(env, "verifier bug\n");
			return -EINVAL;
		}
		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
	}
2394
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2395 2396
	if (err)
		return err;
2397
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2398 2399
	if (err)
		return err;
2400
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2401 2402 2403
	if (err)
		return err;

2404 2405 2406 2407
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2408 2409
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2410 2411 2412 2413
		if (err)
			return err;
	}

2414
	regs = cur_regs(env);
2415
	/* reset caller saved regs */
2416
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2417
		mark_reg_not_init(env, regs, caller_saved[i]);
2418 2419
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2420

2421
	/* update return register (already marked as written above) */
2422
	if (fn->ret_type == RET_INTEGER) {
2423
		/* sets type to SCALAR_VALUE */
2424
		mark_reg_unknown(env, regs, BPF_REG_0);
2425 2426 2427
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2428 2429
		struct bpf_insn_aux_data *insn_aux;

2430
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2431
		/* There is no offset yet applied, variable or fixed */
2432
		mark_reg_known_zero(env, regs, BPF_REG_0);
2433
		regs[BPF_REG_0].off = 0;
2434 2435 2436 2437
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2438
		if (meta.map_ptr == NULL) {
2439 2440
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2441 2442
			return -EINVAL;
		}
2443
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2444
		regs[BPF_REG_0].id = ++env->id_gen;
2445 2446 2447 2448 2449
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2450
	} else {
2451
		verbose(env, "unknown return type %d of func %s#%d\n",
2452
			fn->ret_type, func_id_name(func_id), func_id);
2453 2454
		return -EINVAL;
	}
2455

2456
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2457 2458
	if (err)
		return err;
2459

A
Alexei Starovoitov 已提交
2460 2461 2462 2463 2464
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2483 2484
}

A
Alexei Starovoitov 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2520 2521 2522 2523 2524 2525 2526 2527 2528
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2529
{
2530 2531 2532
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2533
	bool known = tnum_is_const(off_reg->var_off);
2534 2535 2536 2537
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2538
	u8 opcode = BPF_OP(insn->code);
2539
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2540

2541
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2542

2543 2544 2545 2546 2547 2548 2549
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2550 2551 2552 2553
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2554 2555 2556
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2557
		return -EACCES;
A
Alexei Starovoitov 已提交
2558 2559
	}

2560
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2561 2562
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2563 2564 2565
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2566 2567
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2568 2569 2570
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2571 2572
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2573 2574 2575 2576 2577
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2578
	 */
2579 2580
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2581

A
Alexei Starovoitov 已提交
2582 2583 2584 2585
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2586 2587 2588 2589
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2590
		 */
2591 2592
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2593
			/* pointer += K.  Accumulate it into fixed offset */
2594 2595 2596 2597
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2598
			dst_reg->var_off = ptr_reg->var_off;
2599
			dst_reg->off = ptr_reg->off + smin_val;
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2611
		 */
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2628 2629
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2630
		if (reg_is_pkt_pointer(ptr_reg)) {
2631 2632 2633 2634 2635 2636 2637 2638
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2639 2640
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2641 2642 2643 2644 2645
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2646
		 */
2647
		if (ptr_reg->type == PTR_TO_STACK) {
2648 2649
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2650 2651
			return -EACCES;
		}
2652 2653
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2654
			/* pointer -= K.  Subtract it from fixed offset */
2655 2656 2657 2658
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2659 2660
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2661
			dst_reg->off = ptr_reg->off - smin_val;
2662 2663 2664 2665 2666
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2667
		 */
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2686 2687
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2688
		if (reg_is_pkt_pointer(ptr_reg)) {
2689 2690
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2691
			if (smin_val < 0)
2692
				dst_reg->range = 0;
2693
		}
2694 2695 2696 2697
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2698 2699 2700
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2701 2702 2703
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2704 2705
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2706
		return -EACCES;
2707 2708
	}

A
Alexei Starovoitov 已提交
2709 2710 2711
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2712 2713 2714
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2715 2716 2717
	return 0;
}

J
Jann Horn 已提交
2718 2719 2720 2721
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2722 2723 2724 2725
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2726
{
2727
	struct bpf_reg_state *regs = cur_regs(env);
2728
	u8 opcode = BPF_OP(insn->code);
2729
	bool src_known, dst_known;
2730 2731
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2732
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2733

2734 2735 2736 2737
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2738 2739
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2750 2751 2752 2753 2754 2755
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2756 2757
	switch (opcode) {
	case BPF_ADD:
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2774
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2775 2776
		break;
	case BPF_SUB:
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2795
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2796 2797
		break;
	case BPF_MUL:
2798 2799
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2800
			/* Ain't nobody got time to multiply that sign */
2801 2802
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2803 2804
			break;
		}
2805 2806
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2807
		 */
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2825 2826
		break;
	case BPF_AND:
2827
		if (src_known && dst_known) {
2828 2829
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2830 2831
			break;
		}
2832 2833
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2834
		 */
2835
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2853 2854 2855
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2856 2857
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2858 2859
			break;
		}
2860 2861
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2862 2863
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2864 2865 2866 2867 2868 2869 2870 2871 2872
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2873
		} else {
2874 2875 2876 2877 2878
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2879
		}
2880 2881
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2882 2883
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2884 2885 2886
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2887
			 */
2888
			mark_reg_unknown(env, regs, insn->dst_reg);
2889 2890
			break;
		}
2891 2892
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2893
		 */
2894 2895 2896 2897 2898 2899
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2900
		} else {
2901 2902
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2903
		}
2904 2905 2906 2907 2908 2909
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2910 2911
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2912 2913 2914
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2915
			 */
2916
			mark_reg_unknown(env, regs, insn->dst_reg);
2917 2918
			break;
		}
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2935
		if (src_known)
2936 2937
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2938
		else
2939 2940 2941 2942 2943
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2944 2945
		break;
	default:
2946
		mark_reg_unknown(env, regs, insn->dst_reg);
2947 2948 2949
		break;
	}

J
Jann Horn 已提交
2950 2951 2952 2953 2954 2955
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

2956 2957
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2958 2959 2960 2961 2962 2963 2964 2965 2966
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2967 2968 2969
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
2982 2983
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
2984
				 */
2985 2986 2987
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
2988
				}
2989 2990 2991 2992
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
2993 2994 2995 2996 2997
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
2998 2999
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3000 3001 3002
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3003 3004
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3005 3006 3007 3008 3009 3010
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3011
		__mark_reg_known(&off_reg, insn->imm);
3012
		src_reg = &off_reg;
3013 3014 3015
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3016 3017 3018 3019
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3020
		print_verifier_state(env, state);
3021
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3022 3023 3024
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3025
		print_verifier_state(env, state);
3026
		verbose(env, "verifier internal error: no src_reg\n");
3027 3028 3029
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3030 3031
}

3032
/* check validity of 32-bit and 64-bit arithmetic operations */
3033
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3034
{
3035
	struct bpf_reg_state *regs = cur_regs(env);
3036 3037 3038 3039 3040 3041 3042 3043
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3044
				verbose(env, "BPF_NEG uses reserved fields\n");
3045 3046 3047 3048
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3049 3050
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3051
				verbose(env, "BPF_END uses reserved fields\n");
3052 3053 3054 3055 3056
				return -EINVAL;
			}
		}

		/* check src operand */
3057
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3058 3059 3060
		if (err)
			return err;

3061
		if (is_pointer_value(env, insn->dst_reg)) {
3062
			verbose(env, "R%d pointer arithmetic prohibited\n",
3063 3064 3065 3066
				insn->dst_reg);
			return -EACCES;
		}

3067
		/* check dest operand */
3068
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3069 3070 3071 3072 3073 3074 3075
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3076
				verbose(env, "BPF_MOV uses reserved fields\n");
3077 3078 3079 3080
				return -EINVAL;
			}

			/* check src operand */
3081
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3082 3083 3084 3085
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3086
				verbose(env, "BPF_MOV uses reserved fields\n");
3087 3088 3089 3090 3091
				return -EINVAL;
			}
		}

		/* check dest operand */
3092
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3093 3094 3095 3096 3097 3098 3099 3100 3101
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3102
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3103
			} else {
3104
				/* R1 = (u32) R2 */
3105
				if (is_pointer_value(env, insn->src_reg)) {
3106 3107
					verbose(env,
						"R%d partial copy of pointer\n",
3108 3109 3110
						insn->src_reg);
					return -EACCES;
				}
3111
				mark_reg_unknown(env, regs, insn->dst_reg);
3112
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3113 3114 3115 3116 3117
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3118
			regs[insn->dst_reg].type = SCALAR_VALUE;
3119 3120 3121 3122 3123 3124 3125
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3126 3127 3128
		}

	} else if (opcode > BPF_END) {
3129
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3130 3131 3132 3133 3134 3135
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3136
				verbose(env, "BPF_ALU uses reserved fields\n");
3137 3138 3139
				return -EINVAL;
			}
			/* check src1 operand */
3140
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3141 3142 3143 3144
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3145
				verbose(env, "BPF_ALU uses reserved fields\n");
3146 3147 3148 3149 3150
				return -EINVAL;
			}
		}

		/* check src2 operand */
3151
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3152 3153 3154 3155 3156
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3157
			verbose(env, "div by zero\n");
3158 3159 3160
			return -EINVAL;
		}

3161 3162 3163 3164 3165
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3166 3167 3168 3169 3170
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3171
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3172 3173 3174 3175
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3176
		/* check dest operand */
3177
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3178 3179 3180
		if (err)
			return err;

3181
		return adjust_reg_min_max_vals(env, insn);
3182 3183 3184 3185 3186
	}

	return 0;
}

3187
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3188
				   struct bpf_reg_state *dst_reg,
3189
				   enum bpf_reg_type type,
3190
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3191
{
3192
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3193
	struct bpf_reg_state *regs = state->regs, *reg;
3194
	u16 new_range;
3195
	int i, j;
3196

3197 3198
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3199 3200 3201
		/* This doesn't give us any range */
		return;

3202 3203
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3204 3205 3206 3207 3208
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3209 3210 3211 3212 3213
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3214
	 *
3215
	 * pkt_data in dst register:
3216 3217 3218 3219 3220 3221
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3222 3223 3224 3225 3226
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3227 3228 3229 3230 3231
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3232
	 * pkt_data in src register:
3233 3234 3235 3236 3237 3238
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3239 3240 3241 3242 3243
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3244 3245 3246 3247 3248 3249
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3250 3251 3252
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3253
	 */
3254

3255 3256 3257 3258 3259
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3260
	for (i = 0; i < MAX_BPF_REG; i++)
3261
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3262
			/* keep the maximum range already checked */
3263
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3274 3275 3276
	}
}

3277 3278 3279
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3280
 * In JEQ/JNE cases we also adjust the var_off values.
3281 3282 3283 3284 3285
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3286 3287 3288 3289 3290 3291 3292 3293
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3294

3295 3296 3297 3298 3299
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3300
		__mark_reg_known(true_reg, val);
3301 3302 3303 3304 3305
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3306
		__mark_reg_known(false_reg, val);
3307 3308
		break;
	case BPF_JGT:
3309 3310 3311
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3312
	case BPF_JSGT:
3313 3314
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3315
		break;
3316 3317 3318 3319 3320 3321 3322 3323
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3324
	case BPF_JGE:
3325 3326 3327
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3328
	case BPF_JSGE:
3329 3330
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3331
		break;
3332 3333 3334 3335 3336 3337 3338 3339
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3340 3341 3342 3343
	default:
		break;
	}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3355 3356
}

3357 3358
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3359 3360 3361 3362 3363
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3364 3365
	if (__is_pointer_value(false, false_reg))
		return;
3366

3367 3368 3369 3370 3371
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3372
		__mark_reg_known(true_reg, val);
3373 3374 3375 3376 3377
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3378
		__mark_reg_known(false_reg, val);
3379 3380
		break;
	case BPF_JGT:
3381 3382 3383
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3384
	case BPF_JSGT:
3385 3386
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3387
		break;
3388 3389 3390 3391 3392 3393 3394 3395
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3396
	case BPF_JGE:
3397 3398 3399
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3400
	case BPF_JSGE:
3401 3402
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3403
		break;
3404 3405 3406 3407 3408 3409 3410 3411
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3412 3413 3414 3415
	default:
		break;
	}

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3427 3428 3429 3430 3431 3432
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3433 3434 3435 3436 3437 3438 3439 3440
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3441 3442
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3472
		break;
3473
	}
3474 3475
}

3476
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3477
			 bool is_null)
3478 3479 3480 3481
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3482 3483 3484 3485
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3486 3487
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3488
				 reg->off)) {
3489 3490
			__mark_reg_known_zero(reg);
			reg->off = 0;
3491 3492 3493
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3494 3495 3496 3497
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3498
			reg->type = PTR_TO_MAP_VALUE;
3499
		}
3500 3501 3502 3503 3504
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3505 3506 3507 3508 3509 3510
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3511
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3512
			  bool is_null)
3513
{
3514
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3515
	struct bpf_reg_state *regs = state->regs;
3516
	u32 id = regs[regno].id;
3517
	int i, j;
3518 3519

	for (i = 0; i < MAX_BPF_REG; i++)
3520
		mark_map_reg(regs, i, id, is_null);
3521

3522 3523 3524 3525 3526 3527 3528
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3529 3530 3531
	}
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3625
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3626 3627
			     struct bpf_insn *insn, int *insn_idx)
{
3628 3629 3630 3631
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3632 3633 3634
	u8 opcode = BPF_OP(insn->code);
	int err;

3635
	if (opcode > BPF_JSLE) {
3636
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3637 3638 3639 3640 3641
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3642
			verbose(env, "BPF_JMP uses reserved fields\n");
3643 3644 3645 3646
			return -EINVAL;
		}

		/* check src1 operand */
3647
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3648 3649
		if (err)
			return err;
3650 3651

		if (is_pointer_value(env, insn->src_reg)) {
3652
			verbose(env, "R%d pointer comparison prohibited\n",
3653 3654 3655
				insn->src_reg);
			return -EACCES;
		}
3656 3657
	} else {
		if (insn->src_reg != BPF_REG_0) {
3658
			verbose(env, "BPF_JMP uses reserved fields\n");
3659 3660 3661 3662 3663
			return -EINVAL;
		}
	}

	/* check src2 operand */
3664
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3665 3666 3667
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3668 3669
	dst_reg = &regs[insn->dst_reg];

3670 3671 3672
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3673
	    dst_reg->type == SCALAR_VALUE &&
3674 3675 3676
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3694
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3695

3696 3697
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3698 3699 3700 3701
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3702 3703
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3704 3705 3706
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3707
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3708 3709 3710
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3711
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3712 3713 3714 3715
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3716 3717
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3718 3719 3720 3721
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3722
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3723 3724 3725
					dst_reg, insn->imm, opcode);
	}

3726
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3727
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3728 3729
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3730 3731 3732
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3733 3734
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3735 3736 3737
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3738 3739
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3740
		return -EACCES;
3741
	}
3742
	if (env->log.level)
3743
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3744 3745 3746
	return 0;
}

3747 3748 3749 3750 3751 3752 3753 3754
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3755
/* verify BPF_LD_IMM64 instruction */
3756
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3757
{
3758
	struct bpf_reg_state *regs = cur_regs(env);
3759 3760 3761
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3762
		verbose(env, "invalid BPF_LD_IMM insn\n");
3763 3764 3765
		return -EINVAL;
	}
	if (insn->off != 0) {
3766
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3767 3768 3769
		return -EINVAL;
	}

3770
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3771 3772 3773
	if (err)
		return err;

3774 3775 3776
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3777
		regs[insn->dst_reg].type = SCALAR_VALUE;
3778
		__mark_reg_known(&regs[insn->dst_reg], imm);
3779
		return 0;
3780
	}
3781 3782 3783 3784 3785 3786 3787 3788 3789

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3790 3791 3792 3793 3794
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3795
	case BPF_PROG_TYPE_SCHED_ACT:
3796 3797 3798 3799 3800 3801
		return true;
	default:
		return false;
	}
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3817
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3818
{
3819
	struct bpf_reg_state *regs = cur_regs(env);
3820 3821 3822
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3823
	if (!may_access_skb(env->prog->type)) {
3824
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3825 3826 3827
		return -EINVAL;
	}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	if (env->subprog_cnt) {
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3840
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3841
	    BPF_SIZE(insn->code) == BPF_DW ||
3842
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3843
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3844 3845 3846 3847
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3848
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3849 3850 3851 3852
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3853 3854
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3855 3856 3857 3858 3859
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3860
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3861 3862 3863 3864 3865
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3866
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3867
		mark_reg_not_init(env, regs, caller_saved[i]);
3868 3869
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3870 3871

	/* mark destination R0 register as readable, since it contains
3872 3873
	 * the value fetched from the packet.
	 * Already marked as written above.
3874
	 */
3875
	mark_reg_unknown(env, regs, BPF_REG_0);
3876 3877 3878
	return 0;
}

3879 3880 3881 3882 3883 3884 3885 3886 3887
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
3888
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3889 3890 3891 3892 3893
		break;
	default:
		return 0;
	}

3894
	reg = cur_regs(env) + BPF_REG_0;
3895
	if (reg->type != SCALAR_VALUE) {
3896
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3897 3898 3899 3900 3901
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3902
		verbose(env, "At program exit the register R0 ");
3903 3904 3905 3906
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3907
			verbose(env, "has value %s", tn_buf);
3908
		} else {
3909
			verbose(env, "has unknown scalar value");
3910
		}
3911
		verbose(env, " should have been 0 or 1\n");
3912 3913 3914 3915 3916
		return -EINVAL;
	}
	return 0;
}

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3957
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3958

3959 3960 3961 3962 3963 3964 3965 3966 3967
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3968
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3969 3970 3971 3972 3973 3974 3975 3976
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3977
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3978 3979 3980
		return -EINVAL;
	}

3981 3982 3983 3984
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3985 3986 3987 3988 3989 3990 3991 3992 3993
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3994
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3995 3996 3997 3998 3999
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4000
		verbose(env, "insn state internal bug\n");
4001 4002 4003 4004 4005 4006 4007 4008
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4009
static int check_cfg(struct bpf_verifier_env *env)
4010 4011 4012 4013 4014 4015
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4016 4017 4018 4019
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4050 4051
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4052 4053 4054 4055 4056 4057 4058 4059
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4072 4073 4074
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4075 4076
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4077 4078
		} else {
			/* conditional jump with two edges */
4079
			env->explored_states[t] = STATE_LIST_MARK;
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4106
		verbose(env, "pop stack internal bug\n");
4107 4108 4109 4110 4111 4112 4113 4114
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4115
			verbose(env, "unreachable insn %d\n", i);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4128 4129 4130 4131
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4132 4133 4134 4135
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4154
 */
4155
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4156
{
4157
	unsigned int i;
A
Alexei Starovoitov 已提交
4158

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4175 4176
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4177
{
4178 4179
	bool equal;

4180 4181 4182 4183
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4184 4185 4186 4187 4188 4189 4190 4191 4192
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4193 4194
		return true;

4195 4196
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4197
		return true;
4198 4199 4200 4201 4202 4203 4204 4205 4206
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4207 4208 4209 4210 4211 4212
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4213
			 */
4214
			return false;
4215 4216
		}
	case PTR_TO_MAP_VALUE:
4217 4218 4219 4220 4221 4222 4223 4224
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4239
	case PTR_TO_PACKET_META:
4240
	case PTR_TO_PACKET:
4241
		if (rcur->type != rold->type)
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4272

4273 4274
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4275 4276 4277
	return false;
}

4278 4279
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4297 4298
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4299
			continue;
4300

4301 4302
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4303 4304 4305 4306 4307 4308 4309
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4366 4367
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4368
{
4369 4370
	struct idpair *idmap;
	bool ret = false;
4371 4372
	int i;

4373 4374 4375
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4376
		return false;
4377 4378

	for (i = 0; i < MAX_BPF_REG; i++) {
4379
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4380
			goto out_free;
4381 4382
	}

4383 4384
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4385 4386 4387 4388
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4389 4390
}

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4412
/* A write screens off any subsequent reads; but write marks come from the
4413 4414 4415 4416 4417
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4418
 */
4419 4420 4421
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4422
{
4423 4424
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4425

4426 4427 4428 4429 4430
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4431 4432 4433 4434
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4435
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4436
			continue;
4437 4438 4439 4440
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4441 4442
		}
	}
4443

4444
	/* ... and stack slots */
4445 4446 4447 4448 4449 4450 4451 4452 4453
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4454 4455
		}
	}
4456
	return err;
4457 4458
}

4459
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4460
{
4461 4462
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4463
	struct bpf_verifier_state *cur = env->cur_state;
4464
	int i, j, err;
4465 4466 4467 4468 4469 4470 4471 4472 4473

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4474
		if (states_equal(env, &sl->state, cur)) {
4475
			/* reached equivalent register/stack state,
4476 4477
			 * prune the search.
			 * Registers read by the continuation are read by us.
4478 4479 4480 4481 4482 4483
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4484
			 */
4485 4486 4487
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4488
			return 1;
4489
		}
4490 4491 4492 4493 4494
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4495 4496 4497 4498
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4499
	 */
4500
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4501 4502 4503 4504
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4505 4506 4507 4508 4509 4510
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4511 4512
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4513
	/* connect new state to parentage chain */
4514
	cur->parent = &new_sl->state;
4515 4516 4517 4518 4519 4520
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4521
	for (i = 0; i < BPF_REG_FP; i++)
4522 4523 4524 4525 4526 4527 4528
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4529
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4530
	}
4531 4532 4533
	return 0;
}

4534
static int do_check(struct bpf_verifier_env *env)
4535
{
4536
	struct bpf_verifier_state *state;
4537
	struct bpf_insn *insns = env->prog->insnsi;
4538
	struct bpf_reg_state *regs;
4539
	int insn_cnt = env->prog->len, i;
4540 4541 4542 4543
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4544 4545 4546
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4547
	state->curframe = 0;
4548
	state->parent = NULL;
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4559 4560 4561 4562 4563 4564 4565
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4566
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4567 4568 4569 4570 4571 4572 4573
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4574
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4575 4576
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4577 4578 4579 4580
				insn_processed);
			return -E2BIG;
		}

4581 4582 4583 4584 4585
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4586
			if (env->log.level) {
4587
				if (do_print_state)
4588
					verbose(env, "\nfrom %d to %d: safe\n",
4589 4590
						prev_insn_idx, insn_idx);
				else
4591
					verbose(env, "%d: safe\n", insn_idx);
4592 4593 4594 4595
			}
			goto process_bpf_exit;
		}

4596 4597 4598
		if (need_resched())
			cond_resched();

4599 4600 4601
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4602
			else
4603
				verbose(env, "\nfrom %d to %d:",
4604
					prev_insn_idx, insn_idx);
4605
			print_verifier_state(env, state->frame[state->curframe]);
4606 4607 4608
			do_print_state = false;
		}

4609
		if (env->log.level) {
4610 4611
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4612
				.private_data	= env,
4613 4614
			};

4615
			verbose(env, "%d: ", insn_idx);
4616
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4617 4618
		}

4619 4620 4621 4622 4623 4624
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4625

4626
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4627
		env->insn_aux_data[insn_idx].seen = true;
4628
		if (class == BPF_ALU || class == BPF_ALU64) {
4629
			err = check_alu_op(env, insn);
4630 4631 4632 4633
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4634
			enum bpf_reg_type *prev_src_type, src_reg_type;
4635 4636 4637

			/* check for reserved fields is already done */

4638
			/* check src operand */
4639
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4640 4641 4642
			if (err)
				return err;

4643
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4644 4645 4646
			if (err)
				return err;

4647 4648
			src_reg_type = regs[insn->src_reg].type;

4649 4650 4651
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4652
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4653
					       BPF_SIZE(insn->code), BPF_READ,
4654
					       insn->dst_reg, false);
4655 4656 4657
			if (err)
				return err;

4658 4659 4660
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4661 4662
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4663
				 * save type to validate intersecting paths
4664
				 */
4665
				*prev_src_type = src_reg_type;
4666

4667
			} else if (src_reg_type != *prev_src_type &&
4668
				   (src_reg_type == PTR_TO_CTX ||
4669
				    *prev_src_type == PTR_TO_CTX)) {
4670 4671 4672 4673 4674 4675 4676
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4677
				verbose(env, "same insn cannot be used with different pointers\n");
4678 4679 4680
				return -EINVAL;
			}

4681
		} else if (class == BPF_STX) {
4682
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4683

4684
			if (BPF_MODE(insn->code) == BPF_XADD) {
4685
				err = check_xadd(env, insn_idx, insn);
4686 4687 4688 4689 4690 4691 4692
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4693
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4694 4695 4696
			if (err)
				return err;
			/* check src2 operand */
4697
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4698 4699 4700
			if (err)
				return err;

4701 4702
			dst_reg_type = regs[insn->dst_reg].type;

4703
			/* check that memory (dst_reg + off) is writeable */
4704
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4705
					       BPF_SIZE(insn->code), BPF_WRITE,
4706
					       insn->src_reg, false);
4707 4708 4709
			if (err)
				return err;

4710 4711 4712 4713 4714
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4715
				   (dst_reg_type == PTR_TO_CTX ||
4716
				    *prev_dst_type == PTR_TO_CTX)) {
4717
				verbose(env, "same insn cannot be used with different pointers\n");
4718 4719 4720
				return -EINVAL;
			}

4721 4722 4723
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4724
				verbose(env, "BPF_ST uses reserved fields\n");
4725 4726 4727
				return -EINVAL;
			}
			/* check src operand */
4728
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4729 4730 4731
			if (err)
				return err;

4732 4733 4734 4735 4736 4737
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4738
			/* check that memory (dst_reg + off) is writeable */
4739
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4740
					       BPF_SIZE(insn->code), BPF_WRITE,
4741
					       -1, false);
4742 4743 4744 4745 4746 4747 4748 4749 4750
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4751 4752
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4753
				    insn->dst_reg != BPF_REG_0) {
4754
					verbose(env, "BPF_CALL uses reserved fields\n");
4755 4756 4757
					return -EINVAL;
				}

4758 4759 4760 4761
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4762 4763 4764 4765 4766 4767 4768 4769
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4770
					verbose(env, "BPF_JA uses reserved fields\n");
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4782
					verbose(env, "BPF_EXIT uses reserved fields\n");
4783 4784 4785
					return -EINVAL;
				}

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4796 4797 4798 4799 4800 4801
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4802
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4803 4804 4805
				if (err)
					return err;

4806
				if (is_pointer_value(env, BPF_REG_0)) {
4807
					verbose(env, "R0 leaks addr as return value\n");
4808 4809 4810
					return -EACCES;
				}

4811 4812 4813
				err = check_return_code(env);
				if (err)
					return err;
4814
process_bpf_exit:
4815 4816 4817 4818
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4833 4834 4835 4836
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4837 4838 4839 4840 4841 4842
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4843
				env->insn_aux_data[insn_idx].seen = true;
4844
			} else {
4845
				verbose(env, "invalid BPF_LD mode\n");
4846 4847 4848
				return -EINVAL;
			}
		} else {
4849
			verbose(env, "unknown insn class %d\n", class);
4850 4851 4852 4853 4854 4855
			return -EINVAL;
		}

		insn_idx++;
	}

4856 4857
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4858 4859 4860 4861 4862 4863 4864 4865 4866
	for (i = 0; i < env->subprog_cnt + 1; i++) {
		u32 depth = env->subprog_stack_depth[i];

		verbose(env, "%d", depth);
		if (i + 1 < env->subprog_cnt + 1)
			verbose(env, "+");
	}
	verbose(env, "\n");
	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4867 4868 4869
	return 0;
}

4870 4871 4872
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4873 4874
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4875 4876 4877
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4878 4879
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4880 4881 4882
					struct bpf_prog *prog)

{
4883 4884 4885 4886 4887 4888 4889
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4890
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4891 4892 4893 4894
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4895
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4896 4897
			return -EINVAL;
		}
4898
	}
4899 4900 4901 4902 4903 4904 4905

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

4906 4907 4908
	return 0;
}

4909 4910 4911
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4912
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4913 4914 4915
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4916
	int i, j, err;
4917

4918
	err = bpf_prog_calc_tag(env->prog);
4919 4920 4921
	if (err)
		return err;

4922
	for (i = 0; i < insn_cnt; i++, insn++) {
4923
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4924
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4925
			verbose(env, "BPF_LDX uses reserved fields\n");
4926 4927 4928
			return -EINVAL;
		}

4929 4930 4931
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4932
			verbose(env, "BPF_STX uses reserved fields\n");
4933 4934 4935
			return -EINVAL;
		}

4936 4937 4938 4939 4940 4941 4942
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4943
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4944 4945 4946 4947 4948 4949 4950 4951
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4952 4953
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4954 4955 4956 4957
				return -EINVAL;
			}

			f = fdget(insn->imm);
4958
			map = __bpf_map_get(f);
4959
			if (IS_ERR(map)) {
4960
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4961 4962 4963 4964
					insn->imm);
				return PTR_ERR(map);
			}

4965
			err = check_map_prog_compatibility(env, map, env->prog);
4966 4967 4968 4969 4970
			if (err) {
				fdput(f);
				return err;
			}

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4992 4993 4994 4995 4996 4997 4998
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4999 5000 5001 5002
			fdput(f);
next_insn:
			insn++;
			i++;
5003 5004 5005 5006 5007 5008 5009
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5021
static void release_maps(struct bpf_verifier_env *env)
5022 5023 5024 5025 5026 5027 5028 5029
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5030
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5041 5042 5043 5044 5045 5046 5047 5048
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5049
	int i;
5050 5051 5052 5053 5054 5055 5056 5057 5058

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5059 5060
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5061 5062 5063 5064 5065
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
	for (i = 0; i < env->subprog_cnt; i++) {
		if (env->subprog_starts[i] < off)
			continue;
		env->subprog_starts[i] += len - 1;
	}
}

5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5089
	adjust_subprog_starts(env, off, len);
5090 5091 5092
	return new_prog;
}

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5103 5104 5105 5106
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5107
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5108 5109 5110 5111 5112 5113 5114
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5115
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5116 5117 5118
	}
}

5119 5120 5121
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5122
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5123
{
5124
	const struct bpf_verifier_ops *ops = env->ops;
5125
	int i, cnt, size, ctx_field_size, delta = 0;
5126
	const int insn_cnt = env->prog->len;
5127
	struct bpf_insn insn_buf[16], *insn;
5128
	struct bpf_prog *new_prog;
5129
	enum bpf_access_type type;
5130 5131
	bool is_narrower_load;
	u32 target_size;
5132

5133 5134 5135 5136
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5137
			verbose(env, "bpf verifier is misconfigured\n");
5138 5139
			return -EINVAL;
		} else if (cnt) {
5140
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5141 5142
			if (!new_prog)
				return -ENOMEM;
5143

5144
			env->prog = new_prog;
5145
			delta += cnt - 1;
5146 5147 5148 5149
		}
	}

	if (!ops->convert_ctx_access)
5150 5151
		return 0;

5152
	insn = env->prog->insnsi + delta;
5153

5154
	for (i = 0; i < insn_cnt; i++, insn++) {
5155 5156 5157
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5158
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5159
			type = BPF_READ;
5160 5161 5162
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5163
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5164 5165
			type = BPF_WRITE;
		else
5166 5167
			continue;

5168
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5169 5170
			continue;

5171
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5172
		size = BPF_LDST_BYTES(insn);
5173 5174 5175 5176 5177 5178

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5179
		is_narrower_load = size < ctx_field_size;
5180
		if (is_narrower_load) {
5181 5182 5183 5184
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5185
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5186 5187
				return -EINVAL;
			}
5188

5189
			size_code = BPF_H;
5190 5191 5192 5193
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5194

5195 5196 5197
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5198 5199 5200 5201 5202 5203

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5204
			verbose(env, "bpf verifier is misconfigured\n");
5205 5206
			return -EINVAL;
		}
5207 5208

		if (is_narrower_load && size < target_size) {
5209 5210
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5211
								(1 << size * 8) - 1);
5212 5213
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5214
								(1 << size * 8) - 1);
5215
		}
5216

5217
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5218 5219 5220
		if (!new_prog)
			return -ENOMEM;

5221
		delta += cnt - 1;
5222 5223 5224

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5225
		insn      = new_prog->insnsi + i + delta;
5226 5227 5228 5229 5230
	}

	return 0;
}

5231 5232 5233 5234
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5235
	struct bpf_insn *insn;
5236 5237 5238 5239 5240 5241
	void *old_bpf_func;
	int err = -ENOMEM;

	if (env->subprog_cnt == 0)
		return 0;

5242
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
		insn->off = subprog + 1;
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

	func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
	if (!func)
		return -ENOMEM;

	for (i = 0; i <= env->subprog_cnt; i++) {
		subprog_start = subprog_end;
		if (env->subprog_cnt == i)
			subprog_end = prog->len;
		else
			subprog_end = env->subprog_starts[i];

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5281
		func[i]->type = prog->type;
5282
		func[i]->len = len;
5283 5284
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
		func[i]->aux->stack_depth = env->subprog_stack_depth[i];
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->off = 0;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
	}
	for (i = 0; i <= env->subprog_cnt; i++) {
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		unsigned long addr;

		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
		addr  = (unsigned long)func[subprog + 1]->bpf_func;
		addr &= PAGE_MASK;
		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
			    addr - __bpf_call_base;
	}

5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
	prog->aux->func_cnt = env->subprog_cnt + 1;
	return 0;
out_free:
	for (i = 0; i <= env->subprog_cnt; i++)
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5375 5376
static int fixup_call_args(struct bpf_verifier_env *env)
{
5377
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5378 5379 5380
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5381 5382
#endif
	int err;
5383

5384 5385 5386 5387
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5388
			return 0;
5389 5390
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5391 5392 5393 5394 5395 5396 5397 5398 5399
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5400 5401 5402
	err = 0;
#endif
	return err;
5403 5404
}

5405
/* fixup insn->imm field of bpf_call instructions
5406
 * and inline eligible helpers as explicit sequence of BPF instructions
5407 5408 5409
 *
 * this function is called after eBPF program passed verification
 */
5410
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5411
{
5412 5413
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5414
	const struct bpf_func_proto *fn;
5415
	const int insn_cnt = prog->len;
5416 5417 5418 5419
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5420

5421
	for (i = 0; i < insn_cnt; i++, insn++) {
5422 5423 5424
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5425
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5453 5454 5455 5456 5457 5458 5459 5460 5461
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5462 5463
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5464 5465
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5466

5467 5468 5469 5470
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5471 5472
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5473
		if (insn->imm == BPF_FUNC_tail_call) {
5474 5475 5476 5477 5478 5479
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5480
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5481

5482 5483 5484 5485
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5486
			 */
5487
			insn->imm = 0;
5488
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5489 5490 5491 5492 5493 5494 5495 5496 5497

			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
			if (map_ptr == BPF_MAP_PTR_POISON) {
5498
				verbose(env, "tail_call abusing map_ptr\n");
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
				return -EINVAL;
			}
			if (!map_ptr->unpriv_array)
				continue;
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5518 5519
			continue;
		}
5520

5521 5522 5523
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
5524
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5525
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5526
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5527 5528
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5529 5530 5531 5532
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5533
				verbose(env, "bpf verifier is misconfigured\n");
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5550
		if (insn->imm == BPF_FUNC_redirect_map) {
5551 5552 5553 5554 5555 5556
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5571
patch_call_imm:
5572
		fn = env->ops->get_func_proto(insn->imm);
5573 5574 5575 5576
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5577 5578
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5579 5580
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5581
		}
5582
		insn->imm = fn->func - __bpf_call_base;
5583 5584
	}

5585 5586
	return 0;
}
5587

5588
static void free_states(struct bpf_verifier_env *env)
5589
{
5590
	struct bpf_verifier_state_list *sl, *sln;
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5602
				free_verifier_state(&sl->state, false);
5603 5604 5605 5606 5607 5608 5609 5610
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5611
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5612
{
5613
	struct bpf_verifier_env *env;
5614
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
5615 5616
	int ret = -EINVAL;

5617 5618 5619 5620
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5621
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5622 5623
	 * allocate/free it every time bpf_check() is called
	 */
5624
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5625 5626
	if (!env)
		return -ENOMEM;
5627
	log = &env->log;
5628

5629 5630 5631 5632 5633
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5634
	env->prog = *prog;
5635
	env->ops = bpf_verifier_ops[env->prog->type];
5636

5637 5638 5639 5640 5641 5642 5643
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5644 5645 5646
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5647 5648

		ret = -EINVAL;
5649 5650 5651
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5652
			goto err_unlock;
5653
	}
5654 5655 5656

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5657
		env->strict_alignment = true;
5658

5659
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5660 5661 5662 5663 5664
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5665 5666 5667 5668
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5669
	env->explored_states = kcalloc(env->prog->len,
5670
				       sizeof(struct bpf_verifier_state_list *),
5671 5672 5673 5674 5675
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5676 5677
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5678 5679 5680 5681
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5682
	ret = do_check(env);
5683 5684 5685 5686
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5687

5688
skip_full_check:
5689
	while (!pop_stack(env, NULL, NULL));
5690
	free_states(env);
5691

A
Alexei Starovoitov 已提交
5692 5693 5694
	if (ret == 0)
		sanitize_dead_code(env);

5695 5696 5697
	if (ret == 0)
		ret = check_max_stack_depth(env);

5698 5699 5700 5701
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5702
	if (ret == 0)
5703
		ret = fixup_bpf_calls(env);
5704

5705 5706 5707
	if (ret == 0)
		ret = fixup_call_args(env);

5708
	if (log->level && bpf_verifier_log_full(log))
5709
		ret = -ENOSPC;
5710
	if (log->level && !log->ubuf) {
5711
		ret = -EFAULT;
5712
		goto err_release_maps;
5713 5714
	}

5715 5716
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5717 5718 5719
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5720

5721
		if (!env->prog->aux->used_maps) {
5722
			ret = -ENOMEM;
5723
			goto err_release_maps;
5724 5725
		}

5726
		memcpy(env->prog->aux->used_maps, env->used_maps,
5727
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5728
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5729 5730 5731 5732 5733 5734

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5735

5736
err_release_maps:
5737
	if (!env->prog->aux->used_maps)
5738 5739 5740 5741
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5742
	*prog = env->prog;
5743
err_unlock:
5744
	mutex_unlock(&bpf_verifier_lock);
5745 5746 5747
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5748 5749
	return ret;
}