verifier.c 131.1 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23

24 25
#include "disasm.h"

26 27 28 29 30 31 32 33 34
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
35 36 37 38 39 40 41 42 43 44 45 46
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
47
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
75
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
76
 * means the register has some value, but it's not a valid pointer.
77
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
78 79
 *
 * When verifier sees load or store instructions the type of base register
80
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

142
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
143
struct bpf_verifier_stack_elem {
144 145 146 147
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
148
	struct bpf_verifier_state st;
149 150
	int insn_idx;
	int prev_insn_idx;
151
	struct bpf_verifier_stack_elem *next;
152 153
};

154
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 156
#define BPF_COMPLEXITY_LIMIT_STACK	1024

157 158
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

159 160
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
161
	bool raw_mode;
162
	bool pkt_access;
163 164
	int regno;
	int access_size;
165 166
};

167 168 169 170 171 172
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
173 174
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
175
{
176
	struct bpf_verifer_log *log = &env->log;
177
	unsigned int n;
178 179
	va_list args;

180
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 182 183
		return;

	va_start(args, fmt);
184
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185
	va_end(args);
186 187 188 189 190 191 192 193 194 195 196

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
197 198
}

199 200 201 202 203 204
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

205 206 207
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
208
	[SCALAR_VALUE]		= "inv",
209 210 211 212 213
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
214
	[PTR_TO_PACKET]		= "pkt",
215
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET_END]	= "pkt_end",
217 218
};

219 220
static void print_verifier_state(struct bpf_verifier_env *env,
				 struct bpf_verifier_state *state)
221
{
222
	struct bpf_reg_state *reg;
223 224 225 226
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
227 228
		reg = &state->regs[i];
		t = reg->type;
229 230
		if (t == NOT_INIT)
			continue;
231
		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 233 234
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
235
			verbose(env, "%lld", reg->var_off.value + reg->off);
236
		} else {
237
			verbose(env, "(id=%d", reg->id);
238
			if (t != SCALAR_VALUE)
239
				verbose(env, ",off=%d", reg->off);
240
			if (type_is_pkt_pointer(t))
241
				verbose(env, ",r=%d", reg->range);
242 243 244
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
245
				verbose(env, ",ks=%d,vs=%d",
246 247
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
248 249 250 251 252
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
253
				verbose(env, ",imm=%llx", reg->var_off.value);
254 255 256
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
257
					verbose(env, ",smin_value=%lld",
258 259 260
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
261
					verbose(env, ",smax_value=%lld",
262 263
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
264
					verbose(env, ",umin_value=%llu",
265 266
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
267
					verbose(env, ",umax_value=%llu",
268 269 270
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
271

272
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273
					verbose(env, ",var_off=%s", tn_buf);
274
				}
275
			}
276
			verbose(env, ")");
277
		}
278
	}
279
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
280
		if (state->stack_slot_type[i] == STACK_SPILL)
281
			verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
282
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
283
	}
284
	verbose(env, "\n");
285 286
}

287
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
288
{
289
	struct bpf_verifier_stack_elem *elem;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

306 307
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
308
{
309
	struct bpf_verifier_stack_elem *elem;
310

311
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
312 313 314 315 316 317 318 319 320
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
321
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
322
		verbose(env, "BPF program is too complex\n");
323 324 325 326 327 328 329 330 331 332 333 334 335 336
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

337 338
static void __mark_reg_not_init(struct bpf_reg_state *reg);

339 340 341 342 343 344 345 346 347 348 349 350 351
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

352 353 354 355
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
356
{
357
	__mark_reg_known(reg, 0);
358
}
359

360 361
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
362 363
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
364
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
365 366 367 368 369 370 371 372
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

464 465 466 467 468 469 470
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
471
	__mark_reg_unbounded(reg);
472 473
}

474 475
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
476 477
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
478
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
479 480 481 482 483 484 485 486 487 488 489 490 491 492
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

493 494
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
495 496
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
497
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
498 499 500 501 502 503
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
504 505
}

506 507
static void init_reg_state(struct bpf_verifier_env *env,
			   struct bpf_reg_state *regs)
508 509 510
{
	int i;

511
	for (i = 0; i < MAX_BPF_REG; i++) {
512
		mark_reg_not_init(env, regs, i);
513 514
		regs[i].live = REG_LIVE_NONE;
	}
515 516

	/* frame pointer */
517
	regs[BPF_REG_FP].type = PTR_TO_STACK;
518
	mark_reg_known_zero(env, regs, BPF_REG_FP);
519 520 521

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
522
	mark_reg_known_zero(env, regs, BPF_REG_1);
523 524
}

525 526 527 528 529 530
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

531 532 533 534
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
535 536 537 538
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

539 540 541 542 543 544 545 546 547 548 549 550
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
551 552
			 enum reg_arg_type t)
{
553 554
	struct bpf_reg_state *regs = env->cur_state.regs;

555
	if (regno >= MAX_BPF_REG) {
556
		verbose(env, "R%d is invalid\n", regno);
557 558 559 560 561 562
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
563
			verbose(env, "R%d !read_ok\n", regno);
564 565
			return -EACCES;
		}
566
		mark_reg_read(&env->cur_state, regno);
567 568 569
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
570
			verbose(env, "frame pointer is read only\n");
571 572
			return -EACCES;
		}
573
		regs[regno].live |= REG_LIVE_WRITTEN;
574
		if (t == DST_OP)
575
			mark_reg_unknown(env, regs, regno);
576 577 578 579
	}
	return 0;
}

580 581 582 583 584 585 586
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
587
	case PTR_TO_PACKET:
588
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
589
	case PTR_TO_PACKET_END:
590 591 592 593 594 595 596
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

597 598 599
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
600 601
static int check_stack_write(struct bpf_verifier_env *env,
			     struct bpf_verifier_state *state, int off,
602
			     int size, int value_regno)
603
{
604
	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
605 606 607
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
608 609

	if (value_regno >= 0 &&
610
	    is_spillable_regtype(state->regs[value_regno].type)) {
611 612

		/* register containing pointer is being spilled into stack */
613
		if (size != BPF_REG_SIZE) {
614
			verbose(env, "invalid size of register spill\n");
615 616 617 618
			return -EACCES;
		}

		/* save register state */
619 620
		state->spilled_regs[spi] = state->regs[value_regno];
		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
621

622 623 624
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
625
		/* regular write of data into stack */
626
		state->spilled_regs[spi] = (struct bpf_reg_state) {};
627 628 629

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
630 631 632 633
	}
	return 0;
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->spilled_regs[slot].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

649 650
static int check_stack_read(struct bpf_verifier_env *env,
			    struct bpf_verifier_state *state, int off, int size,
651 652
			    int value_regno)
{
653
	u8 *slot_type;
654
	int i, spi;
655

656
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
657

658 659
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
660
			verbose(env, "invalid size of register spill\n");
661 662
			return -EACCES;
		}
663 664
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
665
				verbose(env, "corrupted spill memory\n");
666 667 668 669
				return -EACCES;
			}
		}

670 671 672
		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;

		if (value_regno >= 0) {
673
			/* restore register state from stack */
674 675 676
			state->regs[value_regno] = state->spilled_regs[spi];
			mark_stack_slot_read(state, spi);
		}
677 678 679
		return 0;
	} else {
		for (i = 0; i < size; i++) {
680
			if (slot_type[i] != STACK_MISC) {
681
				verbose(env, "invalid read from stack off %d+%d size %d\n",
682 683 684 685 686 687
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
688
			mark_reg_unknown(env, state->regs, value_regno);
689 690 691 692 693
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
694
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
695 696 697 698
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

699
	if (off < 0 || size <= 0 || off + size > map->value_size) {
700
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
701 702 703 704 705 706
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

707 708
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
709 710 711 712 713 714
				int off, int size)
{
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

715 716 717
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
718
	 */
719 720
	if (env->log.level)
		print_verifier_state(env, state);
721 722 723 724 725 726
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
727
	if (reg->smin_value < 0) {
728
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
729 730 731
			regno);
		return -EACCES;
	}
732
	err = __check_map_access(env, regno, reg->smin_value + off, size);
733
	if (err) {
734 735
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
736 737 738
		return err;
	}

739 740 741
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
742
	 */
743
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
744
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
745 746 747
			regno);
		return -EACCES;
	}
748
	err = __check_map_access(env, regno, reg->umax_value + off, size);
749
	if (err)
750 751
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
752
	return err;
753 754
}

A
Alexei Starovoitov 已提交
755 756
#define MAX_PACKET_OFF 0xffff

757
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
758 759
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
760
{
761
	switch (env->prog->type) {
762 763 764 765 766
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
767
		/* fallthrough */
768 769
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
770
	case BPF_PROG_TYPE_XDP:
771
	case BPF_PROG_TYPE_LWT_XMIT:
772
	case BPF_PROG_TYPE_SK_SKB:
773 774 775 776
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
777 778 779 780 781 782
		return true;
	default:
		return false;
	}
}

783 784
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
				 int off, int size)
A
Alexei Starovoitov 已提交
785
{
786 787
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
788

789
	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
790
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
791
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
792 793 794 795 796
		return -EACCES;
	}
	return 0;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
			       int size)
{
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
812
	if (reg->smin_value < 0) {
813
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
814 815 816 817 818
			regno);
		return -EACCES;
	}
	err = __check_packet_access(env, regno, off, size);
	if (err) {
819
		verbose(env, "R%d offset is outside of the packet\n", regno);
820 821 822 823 824 825
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
826
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
827
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
828
{
829 830 831
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
832

833 834
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
835 836 837 838 839 840
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
841
		 */
842
		*reg_type = info.reg_type;
843

844 845 846 847
		if (env->analyzer_ops)
			return 0;

		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
848 849 850
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
851
		return 0;
852
	}
853

854
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
855 856 857
	return -EACCES;
}

858 859
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
860
{
861
	if (allow_ptr_leaks)
862 863
		return false;

864
	return reg->type != SCALAR_VALUE;
865 866
}

867 868 869 870 871
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
}

872 873
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
874
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
875
{
876
	struct tnum reg_off;
877
	int ip_align;
878 879 880 881 882

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

883 884 885 886 887 888 889
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
890
	 */
891
	ip_align = 2;
892 893 894 895 896 897

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
898 899
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
900
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
901 902
		return -EACCES;
	}
903

A
Alexei Starovoitov 已提交
904 905 906
	return 0;
}

907 908
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
909 910
				       const char *pointer_desc,
				       int off, int size, bool strict)
911
{
912 913 914 915 916 917 918 919 920 921 922
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
923
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
924
			pointer_desc, tn_buf, reg->off, off, size);
925 926 927
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
928 929 930
	return 0;
}

931 932
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
933 934
			       int off, int size)
{
935
	bool strict = env->strict_alignment;
936
	const char *pointer_desc = "";
937

938 939
	switch (reg->type) {
	case PTR_TO_PACKET:
940 941 942 943
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
944
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
945 946 947 948 949 950 951 952 953
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
954
	default:
955
		break;
956
	}
957 958
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
959 960
}

961 962 963 964 965 966
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
967
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
968 969 970
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
971 972
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
973 974 975 976 977 978
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

979
	/* alignment checks will add in reg->off themselves */
980
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
981 982
	if (err)
		return err;
983

984 985 986 987
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
988 989
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
990
			verbose(env, "R%d leaks addr into map\n", value_regno);
991 992
			return -EACCES;
		}
993

994
		err = check_map_access(env, regno, off, size);
995
		if (!err && t == BPF_READ && value_regno >= 0)
996
			mark_reg_unknown(env, state->regs, value_regno);
997

A
Alexei Starovoitov 已提交
998
	} else if (reg->type == PTR_TO_CTX) {
999
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1000

1001 1002
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1003
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1004 1005
			return -EACCES;
		}
1006 1007 1008
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1009
		if (reg->off) {
1010 1011
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1012 1013 1014 1015
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1016 1017 1018
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1019 1020
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1021 1022 1023
				tn_buf, off, size);
			return -EACCES;
		}
1024
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1025
		if (!err && t == BPF_READ && value_regno >= 0) {
1026
			/* ctx access returns either a scalar, or a
1027 1028
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1029 1030
			 */
			if (reg_type == SCALAR_VALUE)
1031
				mark_reg_unknown(env, state->regs, value_regno);
1032
			else
1033 1034
				mark_reg_known_zero(env, state->regs,
						    value_regno);
1035 1036 1037
			state->regs[value_regno].id = 0;
			state->regs[value_regno].off = 0;
			state->regs[value_regno].range = 0;
1038
			state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1039
		}
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1050
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1051 1052 1053 1054
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1055
		if (off >= 0 || off < -MAX_BPF_STACK) {
1056 1057
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1058 1059
			return -EACCES;
		}
1060 1061 1062 1063

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1064 1065 1066 1067
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
1068
				verbose(env, "attempt to corrupt spilled pointer on stack\n");
1069 1070
				return -EACCES;
			}
1071 1072
			err = check_stack_write(env, state, off, size,
						value_regno);
1073
		} else {
1074 1075
			err = check_stack_read(env, state, off, size,
					       value_regno);
1076
		}
1077
	} else if (reg_is_pkt_pointer(reg)) {
1078
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1079
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1080 1081
			return -EACCES;
		}
1082 1083
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1084 1085
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1086 1087
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
1088 1089
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
1090
			mark_reg_unknown(env, state->regs, value_regno);
1091
	} else {
1092 1093
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1094 1095
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1096

1097 1098 1099 1100 1101
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
	    state->regs[value_regno].type == SCALAR_VALUE) {
		/* b/h/w load zero-extends, mark upper bits as known 0 */
		state->regs[value_regno].var_off = tnum_cast(
					state->regs[value_regno].var_off, size);
1102
		__update_reg_bounds(&state->regs[value_regno]);
A
Alexei Starovoitov 已提交
1103
	}
1104 1105 1106
	return err;
}

1107
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1108 1109 1110 1111 1112
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1113
		verbose(env, "BPF_XADD uses reserved fields\n");
1114 1115 1116 1117
		return -EINVAL;
	}

	/* check src1 operand */
1118
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1119 1120 1121 1122
	if (err)
		return err;

	/* check src2 operand */
1123
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1124 1125 1126
	if (err)
		return err;

1127
	if (is_pointer_value(env, insn->src_reg)) {
1128
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1129 1130 1131
		return -EACCES;
	}

1132
	/* check whether atomic_add can read the memory */
1133
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1134 1135 1136 1137 1138
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1139
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1140 1141 1142
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1143 1144 1145 1146 1147 1148
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1149 1150
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1151 1152 1153
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1154
 */
1155
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1156 1157
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1158
{
1159 1160
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
1161 1162
	int off, i;

1163
	if (regs[regno].type != PTR_TO_STACK) {
1164
		/* Allow zero-byte read from NULL, regardless of pointer type */
1165
		if (zero_size_allowed && access_size == 0 &&
1166
		    register_is_null(regs[regno]))
1167 1168
			return 0;

1169
		verbose(env, "R%d type=%s expected=%s\n", regno,
1170 1171
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1172
		return -EACCES;
1173
	}
1174

1175 1176 1177 1178 1179
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1180
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1181 1182 1183
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1184 1185
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
1186
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1187 1188 1189 1190
			regno, off, access_size);
		return -EACCES;
	}

1191 1192 1193
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1194 1195 1196 1197 1198 1199
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1200
	for (i = 0; i < access_size; i++) {
1201
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1202
			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1203 1204 1205 1206 1207 1208 1209
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1210 1211 1212 1213
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1214
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1215

1216
	switch (reg->type) {
1217
	case PTR_TO_PACKET:
1218
	case PTR_TO_PACKET_META:
1219
		return check_packet_access(env, regno, reg->off, access_size);
1220
	case PTR_TO_MAP_VALUE:
1221 1222
		return check_map_access(env, regno, reg->off, access_size);
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1223 1224 1225 1226 1227
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1228
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1229 1230
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1231
{
1232
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1233
	enum bpf_reg_type expected_type, type = reg->type;
1234 1235
	int err = 0;

1236
	if (arg_type == ARG_DONTCARE)
1237 1238
		return 0;

1239 1240 1241
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1242

1243 1244
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1245 1246
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1247 1248
			return -EACCES;
		}
1249
		return 0;
1250
	}
1251

1252
	if (type_is_pkt_pointer(type) &&
1253
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1254
		verbose(env, "helper access to the packet is not allowed\n");
1255 1256 1257
		return -EACCES;
	}

1258
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1259 1260
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1261 1262
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1263
			goto err_type;
1264 1265
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1266 1267
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1268
			goto err_type;
1269 1270
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1271 1272
		if (type != expected_type)
			goto err_type;
1273 1274
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1275 1276
		if (type != expected_type)
			goto err_type;
1277 1278
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1279 1280
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1281
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1282 1283
		 * happens during stack boundary checking.
		 */
1284
		if (register_is_null(*reg))
1285
			/* final test in check_stack_boundary() */;
1286 1287
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1288
			 type != expected_type)
1289
			goto err_type;
1290
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1291
	} else {
1292
		verbose(env, "unsupported arg_type %d\n", arg_type);
1293 1294 1295 1296 1297
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1298
		meta->map_ptr = reg->map_ptr;
1299 1300 1301 1302 1303
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1304
		if (!meta->map_ptr) {
1305 1306 1307 1308 1309
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1310
			verbose(env, "invalid map_ptr to access map->key\n");
1311 1312
			return -EACCES;
		}
1313
		if (type_is_pkt_pointer(type))
1314
			err = check_packet_access(env, regno, reg->off,
1315 1316 1317 1318 1319
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1320 1321 1322 1323
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1324
		if (!meta->map_ptr) {
1325
			/* kernel subsystem misconfigured verifier */
1326
			verbose(env, "invalid map_ptr to access map->value\n");
1327 1328
			return -EACCES;
		}
1329
		if (type_is_pkt_pointer(type))
1330
			err = check_packet_access(env, regno, reg->off,
1331 1332 1333 1334 1335
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1336 1337 1338
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1339 1340 1341 1342 1343 1344 1345

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1346 1347
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1348 1349
			return -EACCES;
		}
1350

1351 1352
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1353
		 */
1354 1355

		if (!tnum_is_const(reg->var_off))
1356 1357 1358 1359 1360 1361 1362
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1363
		if (reg->smin_value < 0) {
1364
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1365 1366 1367
				regno);
			return -EACCES;
		}
1368

1369
		if (reg->umin_value == 0) {
1370 1371 1372
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1373 1374 1375
			if (err)
				return err;
		}
1376

1377
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1378
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1379 1380 1381 1382
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1383
					      reg->umax_value,
1384
					      zero_size_allowed, meta);
1385 1386 1387
	}

	return err;
1388
err_type:
1389
	verbose(env, "R%d type=%s expected=%s\n", regno,
1390 1391
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1392 1393
}

1394 1395
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1396 1397 1398 1399
{
	if (!map)
		return 0;

1400 1401 1402 1403 1404 1405 1406 1407
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1408 1409
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1410 1411 1412 1413 1414 1415
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1416
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1417
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1418
		    func_id != BPF_FUNC_current_task_under_cgroup)
1419 1420
			goto error;
		break;
1421 1422 1423 1424 1425
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1426
		if (func_id != BPF_FUNC_redirect_map)
1427 1428
			goto error;
		break;
1429 1430 1431 1432 1433
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1434
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1435
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1436 1437
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1438
		break;
1439 1440 1441 1442 1443 1444
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1457
	case BPF_FUNC_perf_event_read_value:
1458 1459 1460 1461 1462 1463 1464
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1465
	case BPF_FUNC_current_task_under_cgroup:
1466
	case BPF_FUNC_skb_under_cgroup:
1467 1468 1469
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1470
	case BPF_FUNC_redirect_map:
1471 1472
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1473 1474
			goto error;
		break;
1475 1476 1477 1478 1479 1480 1481 1482
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1483 1484
	default:
		break;
1485 1486 1487
	}

	return 0;
1488
error:
1489
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1490
		map->map_type, func_id_name(func_id), func_id);
1491
	return -EINVAL;
1492 1493
}

1494 1495 1496 1497
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1498
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1499
		count++;
1500
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1501
		count++;
1502
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1503
		count++;
1504
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1505
		count++;
1506
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1507 1508 1509 1510 1511
		count++;

	return count > 1 ? -EINVAL : 0;
}

1512 1513
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
1514
 */
1515
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1516
{
1517 1518
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1519 1520 1521
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1522
		if (reg_is_pkt_pointer_any(&regs[i]))
1523
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
1524 1525 1526 1527 1528

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1529 1530
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1531 1532 1533
	}
}

1534
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1535
{
1536
	struct bpf_verifier_state *state = &env->cur_state;
1537
	const struct bpf_func_proto *fn = NULL;
1538
	struct bpf_reg_state *regs = state->regs;
1539
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1540
	bool changes_data;
1541 1542 1543 1544
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1545 1546
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
1547 1548 1549
		return -EINVAL;
	}

1550 1551
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
1552 1553

	if (!fn) {
1554 1555
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
1556 1557 1558 1559
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1560
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1561
		verbose(env, "cannot call GPL only function from proprietary program\n");
1562 1563 1564
		return -EINVAL;
	}

1565
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1566

1567
	memset(&meta, 0, sizeof(meta));
1568
	meta.pkt_access = fn->pkt_access;
1569

1570 1571 1572 1573 1574
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1575
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1576
			func_id_name(func_id), func_id);
1577 1578 1579
		return err;
	}

1580
	/* check args */
1581
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1582 1583
	if (err)
		return err;
1584
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1585 1586
	if (err)
		return err;
1587
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1588 1589
	if (err)
		return err;
1590
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1591 1592
	if (err)
		return err;
1593
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1594 1595 1596
	if (err)
		return err;

1597 1598 1599 1600
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1601
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1602 1603 1604 1605
		if (err)
			return err;
	}

1606
	/* reset caller saved regs */
1607
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1608
		mark_reg_not_init(env, regs, caller_saved[i]);
1609 1610
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1611

1612
	/* update return register (already marked as written above) */
1613
	if (fn->ret_type == RET_INTEGER) {
1614
		/* sets type to SCALAR_VALUE */
1615
		mark_reg_unknown(env, regs, BPF_REG_0);
1616 1617 1618
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1619 1620
		struct bpf_insn_aux_data *insn_aux;

1621
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1622
		/* There is no offset yet applied, variable or fixed */
1623
		mark_reg_known_zero(env, regs, BPF_REG_0);
1624
		regs[BPF_REG_0].off = 0;
1625 1626 1627 1628
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1629
		if (meta.map_ptr == NULL) {
1630 1631
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
1632 1633
			return -EINVAL;
		}
1634
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1635
		regs[BPF_REG_0].id = ++env->id_gen;
1636 1637 1638 1639 1640
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1641
	} else {
1642
		verbose(env, "unknown return type %d of func %s#%d\n",
1643
			fn->ret_type, func_id_name(func_id), func_id);
1644 1645
		return -EINVAL;
	}
1646

1647
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1648 1649
	if (err)
		return err;
1650

A
Alexei Starovoitov 已提交
1651 1652 1653 1654 1655
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1656 1657 1658 1659
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1682 1683
}

1684 1685 1686 1687 1688 1689 1690 1691 1692
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1693
{
1694 1695
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
	bool known = tnum_is_const(off_reg->var_off);
1696 1697 1698 1699
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1700
	u8 opcode = BPF_OP(insn->code);
1701
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1702

1703
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1704

1705
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1706 1707 1708
		print_verifier_state(env, &env->cur_state);
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
1709 1710 1711
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1712 1713 1714
		print_verifier_state(env, &env->cur_state);
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
1715 1716 1717 1718 1719 1720
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
1721 1722
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
1723 1724
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1725 1726
	}

1727 1728
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
1729
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1730 1731 1732 1733 1734
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
1735
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1736 1737 1738 1739 1740
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
1741
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1742 1743 1744 1745 1746 1747
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1748
	 */
1749 1750
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1751

1752 1753 1754 1755
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1756
		 */
1757 1758
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1759
			/* pointer += K.  Accumulate it into fixed offset */
1760 1761 1762 1763
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1764
			dst_reg->var_off = ptr_reg->var_off;
1765
			dst_reg->off = ptr_reg->off + smin_val;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1777
		 */
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1794 1795
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1796
		if (reg_is_pkt_pointer(ptr_reg)) {
1797 1798 1799 1800 1801 1802 1803 1804 1805
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
1806
				verbose(env, "R%d tried to subtract pointer from scalar\n",
1807 1808 1809 1810 1811 1812
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1813
		 */
1814 1815
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
1816
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1817 1818 1819
					dst);
			return -EACCES;
		}
1820 1821
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1822
			/* pointer -= K.  Subtract it from fixed offset */
1823 1824 1825 1826
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1827 1828
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1829
			dst_reg->off = ptr_reg->off - smin_val;
1830 1831 1832 1833 1834
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1835
		 */
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1854 1855
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1856
		if (reg_is_pkt_pointer(ptr_reg)) {
1857 1858
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1859
			if (smin_val < 0)
1860
				dst_reg->range = 0;
1861
		}
1862 1863 1864 1865 1866 1867 1868 1869 1870
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
1871
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1872 1873 1874 1875 1876
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
1877
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1878 1879
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1880 1881
	}

1882 1883 1884
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
1885 1886 1887
	return 0;
}

1888 1889 1890 1891
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
1892
{
1893
	struct bpf_reg_state *regs = env->cur_state.regs;
1894
	u8 opcode = BPF_OP(insn->code);
1895
	bool src_known, dst_known;
1896 1897
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
1898

1899 1900 1901 1902
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
1903
	}
1904 1905 1906 1907
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
1908 1909
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
1910

1911 1912
	switch (opcode) {
	case BPF_ADD:
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
1929
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
1930 1931
		break;
	case BPF_SUB:
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
1950
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
1951 1952
		break;
	case BPF_MUL:
1953 1954
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
1955
			/* Ain't nobody got time to multiply that sign */
1956 1957
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
1958 1959
			break;
		}
1960 1961
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
1962
		 */
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
1980 1981
		break;
	case BPF_AND:
1982
		if (src_known && dst_known) {
1983 1984
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
1985 1986
			break;
		}
1987 1988
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
1989
		 */
1990
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2008 2009 2010
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2011 2012
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2013 2014
			break;
		}
2015 2016
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2017 2018
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2019 2020 2021 2022 2023 2024 2025 2026 2027
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2028
		} else {
2029 2030 2031 2032 2033
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2034
		}
2035 2036
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2037 2038
		break;
	case BPF_LSH:
2039 2040 2041 2042
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2043
			mark_reg_unknown(env, regs, insn->dst_reg);
2044 2045
			break;
		}
2046 2047
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2048
		 */
2049 2050 2051 2052 2053 2054
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2055
		} else {
2056 2057
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2058
		}
2059 2060 2061 2062 2063 2064
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2065 2066
		break;
	case BPF_RSH:
2067 2068 2069 2070
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2071
			mark_reg_unknown(env, regs, insn->dst_reg);
2072 2073 2074
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2075 2076
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2077
				/* Sign bit will be cleared */
2078 2079 2080 2081 2082 2083
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2084
		} else {
2085 2086
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2087
		}
2088
		if (src_known)
2089 2090
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2091
		else
2092 2093 2094 2095 2096
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2097 2098
		break;
	default:
2099
		mark_reg_unknown(env, regs, insn->dst_reg);
2100 2101 2102
		break;
	}

2103 2104
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2131
					verbose(env, "R%d pointer %s pointer prohibited\n",
2132 2133 2134 2135
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2136
				mark_reg_unknown(env, regs, insn->dst_reg);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2171
		__mark_reg_known(&off_reg, insn->imm);
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2188 2189
		print_verifier_state(env, &env->cur_state);
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2190 2191 2192
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2193 2194
		print_verifier_state(env, &env->cur_state);
		verbose(env, "verifier internal error: no src_reg\n");
2195 2196 2197
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2198 2199
}

2200
/* check validity of 32-bit and 64-bit arithmetic operations */
2201
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2202
{
2203
	struct bpf_reg_state *regs = env->cur_state.regs;
2204 2205 2206 2207 2208 2209 2210 2211
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2212
				verbose(env, "BPF_NEG uses reserved fields\n");
2213 2214 2215 2216
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2217 2218
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2219
				verbose(env, "BPF_END uses reserved fields\n");
2220 2221 2222 2223 2224
				return -EINVAL;
			}
		}

		/* check src operand */
2225
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2226 2227 2228
		if (err)
			return err;

2229
		if (is_pointer_value(env, insn->dst_reg)) {
2230
			verbose(env, "R%d pointer arithmetic prohibited\n",
2231 2232 2233 2234
				insn->dst_reg);
			return -EACCES;
		}

2235
		/* check dest operand */
2236
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2237 2238 2239 2240 2241 2242 2243
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2244
				verbose(env, "BPF_MOV uses reserved fields\n");
2245 2246 2247 2248
				return -EINVAL;
			}

			/* check src operand */
2249
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2250 2251 2252 2253
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2254
				verbose(env, "BPF_MOV uses reserved fields\n");
2255 2256 2257 2258 2259
				return -EINVAL;
			}
		}

		/* check dest operand */
2260
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2261 2262 2263 2264 2265 2266 2267 2268 2269
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2270
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2271
			} else {
2272
				/* R1 = (u32) R2 */
2273
				if (is_pointer_value(env, insn->src_reg)) {
2274 2275
					verbose(env,
						"R%d partial copy of pointer\n",
2276 2277 2278
						insn->src_reg);
					return -EACCES;
				}
2279
				mark_reg_unknown(env, regs, insn->dst_reg);
2280
				/* high 32 bits are known zero. */
2281 2282
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2283
				__update_reg_bounds(&regs[insn->dst_reg]);
2284 2285 2286 2287 2288
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2289
			regs[insn->dst_reg].type = SCALAR_VALUE;
2290
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2291 2292 2293
		}

	} else if (opcode > BPF_END) {
2294
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2295 2296 2297 2298 2299 2300
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2301
				verbose(env, "BPF_ALU uses reserved fields\n");
2302 2303 2304
				return -EINVAL;
			}
			/* check src1 operand */
2305
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2306 2307 2308 2309
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2310
				verbose(env, "BPF_ALU uses reserved fields\n");
2311 2312 2313 2314 2315
				return -EINVAL;
			}
		}

		/* check src2 operand */
2316
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2317 2318 2319 2320 2321
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2322
			verbose(env, "div by zero\n");
2323 2324 2325
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2326 2327 2328 2329 2330
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2331
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2332 2333 2334 2335
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2336
		/* check dest operand */
2337
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2338 2339 2340
		if (err)
			return err;

2341
		return adjust_reg_min_max_vals(env, insn);
2342 2343 2344 2345 2346
	}

	return 0;
}

2347
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2348
				   struct bpf_reg_state *dst_reg,
2349
				   enum bpf_reg_type type,
2350
				   bool range_right_open)
A
Alexei Starovoitov 已提交
2351
{
2352
	struct bpf_reg_state *regs = state->regs, *reg;
2353
	u16 new_range;
A
Alexei Starovoitov 已提交
2354
	int i;
2355

2356 2357
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
2358 2359 2360
		/* This doesn't give us any range */
		return;

2361 2362
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2363 2364 2365 2366 2367
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2368 2369 2370 2371 2372
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
2373
	 *
2374
	 * pkt_data in dst register:
2375 2376 2377 2378 2379 2380
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2381 2382 2383 2384 2385
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2386 2387 2388 2389 2390
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2391
	 * pkt_data in src register:
2392 2393 2394 2395 2396 2397
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2398 2399 2400 2401 2402
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2403 2404 2405 2406 2407 2408
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2409 2410 2411
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
2412
	 */
2413

2414 2415 2416 2417 2418
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2419
	for (i = 0; i < MAX_BPF_REG; i++)
2420
		if (regs[i].type == type && regs[i].id == dst_reg->id)
2421
			/* keep the maximum range already checked */
2422
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
2423 2424 2425 2426 2427

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2428
		if (reg->type == type && reg->id == dst_reg->id)
2429
			reg->range = max_t(u16, reg->range, new_range);
A
Alexei Starovoitov 已提交
2430 2431 2432
	}
}

2433 2434 2435
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2436
 * In JEQ/JNE cases we also adjust the var_off values.
2437 2438 2439 2440 2441
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2442 2443 2444 2445 2446 2447 2448 2449
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2450

2451 2452 2453 2454 2455
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2456
		__mark_reg_known(true_reg, val);
2457 2458 2459 2460 2461
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2462
		__mark_reg_known(false_reg, val);
2463 2464
		break;
	case BPF_JGT:
2465 2466 2467
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2468
	case BPF_JSGT:
2469 2470
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2471
		break;
2472 2473 2474 2475 2476 2477 2478 2479
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2480
	case BPF_JGE:
2481 2482 2483
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2484
	case BPF_JSGE:
2485 2486
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2487
		break;
2488 2489 2490 2491 2492 2493 2494 2495
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2496 2497 2498 2499
	default:
		break;
	}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2511 2512
}

2513 2514
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2515 2516 2517 2518 2519
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2520 2521
	if (__is_pointer_value(false, false_reg))
		return;
2522

2523 2524 2525 2526 2527
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2528
		__mark_reg_known(true_reg, val);
2529 2530 2531 2532 2533
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2534
		__mark_reg_known(false_reg, val);
2535 2536
		break;
	case BPF_JGT:
2537 2538 2539
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2540
	case BPF_JSGT:
2541 2542
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2543
		break;
2544 2545 2546 2547 2548 2549 2550 2551
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2552
	case BPF_JGE:
2553 2554 2555
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2556
	case BPF_JSGE:
2557 2558
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2559
		break;
2560 2561 2562 2563 2564 2565 2566 2567
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2568 2569 2570 2571
	default:
		break;
	}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2583 2584 2585 2586 2587 2588
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2589 2590 2591 2592 2593 2594 2595 2596
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2597 2598
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2628
		break;
2629
	}
2630 2631
}

2632
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2633
			 bool is_null)
2634 2635 2636 2637
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2638 2639 2640 2641
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2642 2643
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2644
				 reg->off)) {
2645 2646
			__mark_reg_known_zero(reg);
			reg->off = 0;
2647 2648 2649
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2650 2651 2652 2653
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2654
			reg->type = PTR_TO_MAP_VALUE;
2655
		}
2656 2657 2658 2659 2660
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2661 2662 2663 2664 2665 2666 2667
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2668
			  bool is_null)
2669 2670
{
	struct bpf_reg_state *regs = state->regs;
2671
	u32 id = regs[regno].id;
2672 2673 2674
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2675
		mark_map_reg(regs, i, id, is_null);
2676 2677 2678 2679

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
2680
		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2681 2682 2683
	}
}

2684
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2685 2686
			     struct bpf_insn *insn, int *insn_idx)
{
2687 2688
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2689 2690 2691
	u8 opcode = BPF_OP(insn->code);
	int err;

2692
	if (opcode > BPF_JSLE) {
2693
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2694 2695 2696 2697 2698
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
2699
			verbose(env, "BPF_JMP uses reserved fields\n");
2700 2701 2702 2703
			return -EINVAL;
		}

		/* check src1 operand */
2704
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2705 2706
		if (err)
			return err;
2707 2708

		if (is_pointer_value(env, insn->src_reg)) {
2709
			verbose(env, "R%d pointer comparison prohibited\n",
2710 2711 2712
				insn->src_reg);
			return -EACCES;
		}
2713 2714
	} else {
		if (insn->src_reg != BPF_REG_0) {
2715
			verbose(env, "BPF_JMP uses reserved fields\n");
2716 2717 2718 2719 2720
			return -EINVAL;
		}
	}

	/* check src2 operand */
2721
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2722 2723 2724
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2725 2726
	dst_reg = &regs[insn->dst_reg];

2727 2728 2729
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2730 2731
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2751 2752
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2753 2754 2755 2756
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2757 2758
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2777 2778 2779 2780
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2781
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2782
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2783 2784
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2785 2786 2787
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
2788 2789
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
A
Alexei Starovoitov 已提交
2790 2791 2792
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2793
		/* pkt_data' > pkt_end */
2794 2795
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET, false);
2796 2797 2798 2799
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		/* pkt_end > pkt_data' */
2800 2801
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET, true);
2802 2803 2804
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2805
		/* pkt_data' < pkt_end */
2806 2807
		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET,
				       true);
2808
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2809 2810 2811
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		/* pkt_end < pkt_data' */
2812 2813
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET, false);
2814
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2815 2816
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2817
		/* pkt_data' >= pkt_end */
2818 2819
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET, true);
2820 2821 2822
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2823
		/* pkt_end >= pkt_data' */
2824
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2825
				       PTR_TO_PACKET, false);
2826 2827 2828 2829
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
		/* pkt_data' <= pkt_end */
2830 2831
		find_good_pkt_pointers(other_branch, dst_reg,
				       PTR_TO_PACKET, false);
2832 2833 2834
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2835
		/* pkt_end <= pkt_data' */
2836
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2837
				       PTR_TO_PACKET, true);
2838 2839 2840
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2841 2842
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET_META, false);
2843 2844 2845
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2846 2847
		find_good_pkt_pointers(other_branch, dst_reg,
				       PTR_TO_PACKET_META, false);
2848 2849 2850 2851
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2852
				       PTR_TO_PACKET_META, false);
2853 2854 2855 2856
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2857
				       PTR_TO_PACKET_META, false);
2858
	} else if (is_pointer_value(env, insn->dst_reg)) {
2859 2860
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
2861
		return -EACCES;
2862
	}
2863 2864
	if (env->log.level)
		print_verifier_state(env, this_branch);
2865 2866 2867
	return 0;
}

2868 2869 2870 2871 2872 2873 2874 2875
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2876
/* verify BPF_LD_IMM64 instruction */
2877
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2878
{
2879
	struct bpf_reg_state *regs = env->cur_state.regs;
2880 2881 2882
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
2883
		verbose(env, "invalid BPF_LD_IMM insn\n");
2884 2885 2886
		return -EINVAL;
	}
	if (insn->off != 0) {
2887
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2888 2889 2890
		return -EINVAL;
	}

2891
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2892 2893 2894
	if (err)
		return err;

2895 2896 2897
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

2898
		regs[insn->dst_reg].type = SCALAR_VALUE;
2899
		__mark_reg_known(&regs[insn->dst_reg], imm);
2900
		return 0;
2901
	}
2902 2903 2904 2905 2906 2907 2908 2909 2910

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2911 2912 2913 2914 2915
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2916
	case BPF_PROG_TYPE_SCHED_ACT:
2917 2918 2919 2920 2921 2922
		return true;
	default:
		return false;
	}
}

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2938
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2939
{
2940
	struct bpf_reg_state *regs = env->cur_state.regs;
2941 2942 2943
	u8 mode = BPF_MODE(insn->code);
	int i, err;

2944
	if (!may_access_skb(env->prog->type)) {
2945
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2946 2947 2948 2949
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2950
	    BPF_SIZE(insn->code) == BPF_DW ||
2951
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2952
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
2953 2954 2955 2956
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
2957
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2958 2959 2960 2961
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2962 2963
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2964 2965 2966 2967 2968
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
2969
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2970 2971 2972 2973 2974
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
2975
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2976
		mark_reg_not_init(env, regs, caller_saved[i]);
2977 2978
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2979 2980

	/* mark destination R0 register as readable, since it contains
2981 2982
	 * the value fetched from the packet.
	 * Already marked as written above.
2983
	 */
2984
	mark_reg_unknown(env, regs, BPF_REG_0);
2985 2986 2987
	return 0;
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
		break;
	default:
		return 0;
	}

	reg = &env->cur_state.regs[BPF_REG_0];
	if (reg->type != SCALAR_VALUE) {
3004
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3005 3006 3007 3008 3009
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3010
		verbose(env, "At program exit the register R0 ");
3011 3012 3013 3014
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3015
			verbose(env, "has value %s", tn_buf);
3016
		} else {
3017
			verbose(env, "has unknown scalar value");
3018
		}
3019
		verbose(env, " should have been 0 or 1\n");
3020 3021 3022 3023 3024
		return -EINVAL;
	}
	return 0;
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3065
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3076
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3077 3078 3079 3080 3081 3082 3083 3084
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3085
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3086 3087 3088
		return -EINVAL;
	}

3089 3090 3091 3092
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3093 3094 3095 3096 3097 3098 3099 3100 3101
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3102
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3103 3104 3105 3106 3107
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3108
		verbose(env, "insn state internal bug\n");
3109 3110 3111 3112 3113 3114 3115 3116
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3117
static int check_cfg(struct bpf_verifier_env *env)
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3154 3155
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3168 3169 3170
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3171 3172
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3173 3174
		} else {
			/* conditional jump with two edges */
3175
			env->explored_states[t] = STATE_LIST_MARK;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3202
		verbose(env, "pop stack internal bug\n");
3203 3204 3205 3206 3207 3208 3209 3210
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3211
			verbose(env, "unreachable insn %d\n", i);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3224 3225 3226 3227
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3228 3229 3230 3231
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3250
 */
3251
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3252
{
3253
	unsigned int i;
A
Alexei Starovoitov 已提交
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3271 3272
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3273
{
3274 3275 3276 3277 3278
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3279 3280
		return true;

3281 3282
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3283
		return true;
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3297 3298 3299 3300
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3301 3302 3303
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3304 3305 3306 3307 3308 3309 3310 3311
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
3326
	case PTR_TO_PACKET_META:
3327
	case PTR_TO_PACKET:
3328
		if (rcur->type != rold->type)
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3360

3361 3362
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3363 3364 3365
	return false;
}

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3392 3393
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3394
			 struct bpf_verifier_state *cur)
3395
{
3396 3397
	struct idpair *idmap;
	bool ret = false;
3398 3399
	int i;

3400 3401 3402
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3403
		return false;
3404 3405

	for (i = 0; i < MAX_BPF_REG; i++) {
3406
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3407
			goto out_free;
3408 3409 3410
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
3411 3412 3413 3414 3415 3416 3417 3418
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
3419
			goto out_free;
3420 3421
		if (i % BPF_REG_SIZE)
			continue;
3422 3423
		if (old->stack_slot_type[i] != STACK_SPILL)
			continue;
3424 3425
		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
			     &cur->spilled_regs[i / BPF_REG_SIZE],
3426
			     idmap))
3427 3428
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
3429 3430
			 * are the same as well.
			 * Ex: explored safe path could have stored
3431
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3432
			 * but current path has stored:
3433
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3434 3435 3436
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
3437
			goto out_free;
3438 3439
		else
			continue;
3440
	}
3441 3442 3443 3444
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3445 3446
}

3447 3448 3449 3450 3451 3452
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3453 3454 3455
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3456
	bool writes = parent == state->parent; /* Observe write marks */
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3468 3469 3470
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (parent->spilled_regs[i].live & REG_LIVE_READ)
			continue;
3483 3484 3485
		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3486
			parent->spilled_regs[i].live |= REG_LIVE_READ;
3487 3488 3489 3490 3491 3492
			touched = true;
		}
	}
	return touched;
}

3493 3494 3495 3496 3497 3498 3499 3500 3501
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3512
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3513
{
3514 3515
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3516
	int i;
3517 3518 3519 3520 3521 3522 3523 3524 3525

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3526
		if (states_equal(env, &sl->state, &env->cur_state)) {
3527
			/* reached equivalent register/stack state,
3528 3529
			 * prune the search.
			 * Registers read by the continuation are read by us.
3530 3531 3532 3533 3534 3535
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3536
			 */
3537
			propagate_liveness(&sl->state, &env->cur_state);
3538
			return 1;
3539
		}
3540 3541 3542 3543 3544 3545 3546 3547 3548
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3549
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3550 3551 3552 3553 3554 3555 3556
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3557 3558
	/* connect new state to parentage chain */
	env->cur_state.parent = &new_sl->state;
3559 3560 3561 3562 3563 3564
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3565 3566 3567 3568 3569
	for (i = 0; i < BPF_REG_FP; i++)
		env->cur_state.regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3570 3571 3572
	return 0;
}

3573 3574 3575 3576 3577 3578 3579 3580 3581
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

3582
static int do_check(struct bpf_verifier_env *env)
3583
{
3584
	struct bpf_verifier_state *state = &env->cur_state;
3585
	struct bpf_insn *insns = env->prog->insnsi;
3586
	struct bpf_reg_state *regs = state->regs;
3587 3588 3589 3590 3591
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

3592
	init_reg_state(env, regs);
3593
	state->parent = NULL;
3594 3595 3596 3597 3598 3599 3600
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
3601
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3602 3603 3604 3605 3606 3607 3608
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3609
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3610 3611
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
3612 3613 3614 3615
				insn_processed);
			return -E2BIG;
		}

3616 3617 3618 3619 3620
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
3621
			if (env->log.level) {
3622
				if (do_print_state)
3623
					verbose(env, "\nfrom %d to %d: safe\n",
3624 3625
						prev_insn_idx, insn_idx);
				else
3626
					verbose(env, "%d: safe\n", insn_idx);
3627 3628 3629 3630
			}
			goto process_bpf_exit;
		}

3631 3632 3633
		if (need_resched())
			cond_resched();

3634 3635 3636
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
3637
			else
3638
				verbose(env, "\nfrom %d to %d:",
3639
					prev_insn_idx, insn_idx);
3640
			print_verifier_state(env, &env->cur_state);
3641 3642 3643
			do_print_state = false;
		}

3644 3645
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
3646 3647
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
3648 3649
		}

3650 3651 3652 3653
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3654
		if (class == BPF_ALU || class == BPF_ALU64) {
3655
			err = check_alu_op(env, insn);
3656 3657 3658 3659
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3660
			enum bpf_reg_type *prev_src_type, src_reg_type;
3661 3662 3663

			/* check for reserved fields is already done */

3664
			/* check src operand */
3665
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3666 3667 3668
			if (err)
				return err;

3669
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3670 3671 3672
			if (err)
				return err;

3673 3674
			src_reg_type = regs[insn->src_reg].type;

3675 3676 3677
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3678
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3679 3680 3681 3682 3683
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3684 3685 3686
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3687 3688
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3689
				 * save type to validate intersecting paths
3690
				 */
3691
				*prev_src_type = src_reg_type;
3692

3693
			} else if (src_reg_type != *prev_src_type &&
3694
				   (src_reg_type == PTR_TO_CTX ||
3695
				    *prev_src_type == PTR_TO_CTX)) {
3696 3697 3698 3699 3700 3701 3702
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
3703
				verbose(env, "same insn cannot be used with different pointers\n");
3704 3705 3706
				return -EINVAL;
			}

3707
		} else if (class == BPF_STX) {
3708
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3709

3710
			if (BPF_MODE(insn->code) == BPF_XADD) {
3711
				err = check_xadd(env, insn_idx, insn);
3712 3713 3714 3715 3716 3717 3718
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3719
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3720 3721 3722
			if (err)
				return err;
			/* check src2 operand */
3723
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3724 3725 3726
			if (err)
				return err;

3727 3728
			dst_reg_type = regs[insn->dst_reg].type;

3729
			/* check that memory (dst_reg + off) is writeable */
3730
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3731 3732 3733 3734 3735
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3736 3737 3738 3739 3740
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3741
				   (dst_reg_type == PTR_TO_CTX ||
3742
				    *prev_dst_type == PTR_TO_CTX)) {
3743
				verbose(env, "same insn cannot be used with different pointers\n");
3744 3745 3746
				return -EINVAL;
			}

3747 3748 3749
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
3750
				verbose(env, "BPF_ST uses reserved fields\n");
3751 3752 3753
				return -EINVAL;
			}
			/* check src operand */
3754
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3755 3756 3757 3758
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3759
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3773
					verbose(env, "BPF_CALL uses reserved fields\n");
3774 3775 3776
					return -EINVAL;
				}

3777
				err = check_call(env, insn->imm, insn_idx);
3778 3779 3780 3781 3782 3783 3784 3785
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3786
					verbose(env, "BPF_JA uses reserved fields\n");
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3798
					verbose(env, "BPF_EXIT uses reserved fields\n");
3799 3800 3801 3802 3803 3804 3805 3806 3807
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3808
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3809 3810 3811
				if (err)
					return err;

3812
				if (is_pointer_value(env, BPF_REG_0)) {
3813
					verbose(env, "R0 leaks addr as return value\n");
3814 3815 3816
					return -EACCES;
				}

3817 3818 3819
				err = check_return_code(env);
				if (err)
					return err;
3820
process_bpf_exit:
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3837 3838 3839 3840
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3841 3842 3843 3844 3845 3846 3847
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
3848
				verbose(env, "invalid BPF_LD mode\n");
3849 3850 3851
				return -EINVAL;
			}
		} else {
3852
			verbose(env, "unknown insn class %d\n", class);
3853 3854 3855 3856 3857 3858
			return -EINVAL;
		}

		insn_idx++;
	}

3859 3860
	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
		env->prog->aux->stack_depth);
3861 3862 3863
	return 0;
}

3864 3865 3866
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
3867 3868
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3869 3870 3871
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

3872 3873
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
3874 3875 3876
					struct bpf_prog *prog)

{
3877 3878 3879 3880 3881 3882 3883
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
3884
			verbose(env, "perf_event programs can only use preallocated hash map\n");
3885 3886 3887 3888
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
3889
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
3890 3891
			return -EINVAL;
		}
3892 3893 3894 3895
	}
	return 0;
}

3896 3897 3898
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
3899
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3900 3901 3902
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
3903
	int i, j, err;
3904

3905
	err = bpf_prog_calc_tag(env->prog);
3906 3907 3908
	if (err)
		return err;

3909
	for (i = 0; i < insn_cnt; i++, insn++) {
3910
		if (BPF_CLASS(insn->code) == BPF_LDX &&
3911
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3912
			verbose(env, "BPF_LDX uses reserved fields\n");
3913 3914 3915
			return -EINVAL;
		}

3916 3917 3918
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3919
			verbose(env, "BPF_STX uses reserved fields\n");
3920 3921 3922
			return -EINVAL;
		}

3923 3924 3925 3926 3927 3928 3929
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
3930
				verbose(env, "invalid bpf_ld_imm64 insn\n");
3931 3932 3933 3934 3935 3936 3937 3938
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3939 3940
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
3941 3942 3943 3944
				return -EINVAL;
			}

			f = fdget(insn->imm);
3945
			map = __bpf_map_get(f);
3946
			if (IS_ERR(map)) {
3947
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
3948 3949 3950 3951
					insn->imm);
				return PTR_ERR(map);
			}

3952
			err = check_map_prog_compatibility(env, map, env->prog);
3953 3954 3955 3956 3957
			if (err) {
				fdput(f);
				return err;
			}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
3979 3980 3981 3982 3983 3984 3985
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4001
static void release_maps(struct bpf_verifier_env *env)
4002 4003 4004 4005 4006 4007 4008 4009
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4010
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

4056 4057 4058
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4059
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4060
{
4061
	const struct bpf_verifier_ops *ops = env->ops;
4062
	int i, cnt, size, ctx_field_size, delta = 0;
4063
	const int insn_cnt = env->prog->len;
4064
	struct bpf_insn insn_buf[16], *insn;
4065
	struct bpf_prog *new_prog;
4066
	enum bpf_access_type type;
4067 4068
	bool is_narrower_load;
	u32 target_size;
4069

4070 4071 4072 4073
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4074
			verbose(env, "bpf verifier is misconfigured\n");
4075 4076
			return -EINVAL;
		} else if (cnt) {
4077
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4078 4079
			if (!new_prog)
				return -ENOMEM;
4080

4081
			env->prog = new_prog;
4082
			delta += cnt - 1;
4083 4084 4085 4086
		}
	}

	if (!ops->convert_ctx_access)
4087 4088
		return 0;

4089
	insn = env->prog->insnsi + delta;
4090

4091
	for (i = 0; i < insn_cnt; i++, insn++) {
4092 4093 4094
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4095
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4096
			type = BPF_READ;
4097 4098 4099
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4100
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4101 4102
			type = BPF_WRITE;
		else
4103 4104
			continue;

4105
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4106 4107
			continue;

4108
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4109
		size = BPF_LDST_BYTES(insn);
4110 4111 4112 4113 4114 4115

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4116
		is_narrower_load = size < ctx_field_size;
4117
		if (is_narrower_load) {
4118 4119 4120 4121
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4122
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4123 4124
				return -EINVAL;
			}
4125

4126
			size_code = BPF_H;
4127 4128 4129 4130
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4131

4132 4133 4134
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4135 4136 4137 4138 4139 4140

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4141
			verbose(env, "bpf verifier is misconfigured\n");
4142 4143
			return -EINVAL;
		}
4144 4145

		if (is_narrower_load && size < target_size) {
4146 4147
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4148
								(1 << size * 8) - 1);
4149 4150
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4151
								(1 << size * 8) - 1);
4152
		}
4153

4154
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4155 4156 4157
		if (!new_prog)
			return -ENOMEM;

4158
		delta += cnt - 1;
4159 4160 4161

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4162
		insn      = new_prog->insnsi + i + delta;
4163 4164 4165 4166 4167
	}

	return 0;
}

4168
/* fixup insn->imm field of bpf_call instructions
4169
 * and inline eligible helpers as explicit sequence of BPF instructions
4170 4171 4172
 *
 * this function is called after eBPF program passed verification
 */
4173
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4174
{
4175 4176
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4177
	const struct bpf_func_proto *fn;
4178
	const int insn_cnt = prog->len;
4179 4180 4181 4182
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4183

4184 4185 4186
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4187

4188 4189 4190 4191 4192
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4193 4194 4195 4196 4197 4198
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4199
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4200

4201 4202 4203 4204
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4205
			 */
4206
			insn->imm = 0;
4207
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4208 4209
			continue;
		}
4210

4211 4212 4213 4214 4215
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4216
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4217 4218
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4219 4220 4221 4222
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4223
				verbose(env, "bpf verifier is misconfigured\n");
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4240
		if (insn->imm == BPF_FUNC_redirect_map) {
4241 4242 4243 4244 4245 4246
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4261
patch_call_imm:
4262
		fn = env->ops->get_func_proto(insn->imm);
4263 4264 4265 4266
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
4267 4268
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
4269 4270
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4271
		}
4272
		insn->imm = fn->func - __bpf_call_base;
4273 4274
	}

4275 4276
	return 0;
}
4277

4278
static void free_states(struct bpf_verifier_env *env)
4279
{
4280
	struct bpf_verifier_state_list *sl, *sln;
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4300
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4301
{
4302
	struct bpf_verifier_env *env;
4303
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
4304 4305
	int ret = -EINVAL;

4306
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4307 4308
	 * allocate/free it every time bpf_check() is called
	 */
4309
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4310 4311
	if (!env)
		return -ENOMEM;
4312
	log = &env->log;
4313

4314 4315 4316 4317 4318
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4319
	env->prog = *prog;
4320
	env->ops = bpf_verifier_ops[env->prog->type];
4321

4322 4323 4324 4325 4326 4327 4328
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
4329 4330 4331
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
4332 4333

		ret = -EINVAL;
4334 4335 4336
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
4337
			goto err_unlock;
4338
	}
4339 4340 4341

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4342
		env->strict_alignment = true;
4343

4344 4345 4346 4347
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4348
	env->explored_states = kcalloc(env->prog->len,
4349
				       sizeof(struct bpf_verifier_state_list *),
4350 4351 4352 4353 4354
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4355 4356 4357 4358
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4359 4360
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4361
	ret = do_check(env);
4362

4363
skip_full_check:
4364
	while (pop_stack(env, NULL) >= 0);
4365
	free_states(env);
4366

4367 4368 4369 4370
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4371
	if (ret == 0)
4372
		ret = fixup_bpf_calls(env);
4373

4374
	if (log->level && bpf_verifier_log_full(log))
4375
		ret = -ENOSPC;
4376
	if (log->level && !log->ubuf) {
4377
		ret = -EFAULT;
4378
		goto err_release_maps;
4379 4380
	}

4381 4382
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4383 4384 4385
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4386

4387
		if (!env->prog->aux->used_maps) {
4388
			ret = -ENOMEM;
4389
			goto err_release_maps;
4390 4391
		}

4392
		memcpy(env->prog->aux->used_maps, env->used_maps,
4393
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4394
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4395 4396 4397 4398 4399 4400

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4401

4402
err_release_maps:
4403
	if (!env->prog->aux->used_maps)
4404 4405 4406 4407
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4408
	*prog = env->prog;
4409
err_unlock:
4410
	mutex_unlock(&bpf_verifier_lock);
4411 4412 4413
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4414 4415
	return ret;
}
4416

4417 4418 4419 4420 4421
static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
	[BPF_PROG_TYPE_XDP]		= &xdp_analyzer_ops,
	[BPF_PROG_TYPE_SCHED_CLS]	= &tc_cls_act_analyzer_ops,
};

4422 4423 4424 4425 4426 4427
int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

4428 4429 4430 4431
	if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
	    !bpf_analyzer_ops[prog->type])
		return -EOPNOTSUPP;

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
4442
	env->ops = bpf_analyzer_ops[env->prog->type];
4443 4444 4445 4446 4447 4448
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

4449
	env->strict_alignment = false;
4450 4451
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);