verifier.c 105.0 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35

/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
36
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
 * Most of the time the registers have UNKNOWN_VALUE type, which
 * means the register has some value, but it's not a valid pointer.
 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
 *
 * When verifier sees load or store instructions the type of base register
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

131
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
132
struct bpf_verifier_stack_elem {
133 134 135 136
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
137
	struct bpf_verifier_state st;
138 139
	int insn_idx;
	int prev_insn_idx;
140
	struct bpf_verifier_stack_elem *next;
141 142
};

143
#define BPF_COMPLEXITY_LIMIT_INSNS	98304
144 145
#define BPF_COMPLEXITY_LIMIT_STACK	1024

146 147
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

148 149
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
150
	bool raw_mode;
151
	bool pkt_access;
152 153
	int regno;
	int access_size;
154 155
};

156 157 158 159 160 161 162 163 164 165 166 167
/* verbose verifier prints what it's seeing
 * bpf_check() is called under lock, so no race to access these global vars
 */
static u32 log_level, log_size, log_len;
static char *log_buf;

static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
168
static __printf(1, 2) void verbose(const char *fmt, ...)
169 170 171 172 173 174 175 176 177 178 179
{
	va_list args;

	if (log_level == 0 || log_len >= log_size - 1)
		return;

	va_start(args, fmt);
	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
	va_end(args);
}

180 181 182 183 184 185 186 187
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
	[UNKNOWN_VALUE]		= "inv",
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188
	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
189 190 191
	[FRAME_PTR]		= "fp",
	[PTR_TO_STACK]		= "fp",
	[CONST_IMM]		= "imm",
A
Alexei Starovoitov 已提交
192 193
	[PTR_TO_PACKET]		= "pkt",
	[PTR_TO_PACKET_END]	= "pkt_end",
194 195
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
static const char * const func_id_str[] = {
	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
};
#undef __BPF_FUNC_STR_FN

static const char *func_id_name(int id)
{
	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);

	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
		return func_id_str[id];
	else
		return "unknown";
}

212
static void print_verifier_state(struct bpf_verifier_state *state)
213
{
214
	struct bpf_reg_state *reg;
215 216 217 218
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
219 220
		reg = &state->regs[i];
		t = reg->type;
221 222 223 224
		if (t == NOT_INIT)
			continue;
		verbose(" R%d=%s", i, reg_type_str[t]);
		if (t == CONST_IMM || t == PTR_TO_STACK)
A
Alexei Starovoitov 已提交
225 226 227 228 229 230
			verbose("%lld", reg->imm);
		else if (t == PTR_TO_PACKET)
			verbose("(id=%d,off=%d,r=%d)",
				reg->id, reg->off, reg->range);
		else if (t == UNKNOWN_VALUE && reg->imm)
			verbose("%lld", reg->imm);
231
		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
232 233
			 t == PTR_TO_MAP_VALUE_OR_NULL ||
			 t == PTR_TO_MAP_VALUE_ADJ)
234
			verbose("(ks=%d,vs=%d,id=%u)",
A
Alexei Starovoitov 已提交
235
				reg->map_ptr->key_size,
236 237
				reg->map_ptr->value_size,
				reg->id);
238
		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
239 240
			verbose(",min_value=%lld",
				(long long)reg->min_value);
241 242 243
		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
			verbose(",max_value=%llu",
				(unsigned long long)reg->max_value);
244 245 246 247 248 249
		if (reg->min_align)
			verbose(",min_align=%u", reg->min_align);
		if (reg->aux_off)
			verbose(",aux_off=%u", reg->aux_off);
		if (reg->aux_off_align)
			verbose(",aux_off_align=%u", reg->aux_off_align);
250
	}
251
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
252
		if (state->stack_slot_type[i] == STACK_SPILL)
253
			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
254
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
255 256 257 258
	}
	verbose("\n");
}

259 260 261 262 263 264 265 266 267 268 269
static const char *const bpf_class_string[] = {
	[BPF_LD]    = "ld",
	[BPF_LDX]   = "ldx",
	[BPF_ST]    = "st",
	[BPF_STX]   = "stx",
	[BPF_ALU]   = "alu",
	[BPF_JMP]   = "jmp",
	[BPF_RET]   = "BUG",
	[BPF_ALU64] = "alu64",
};

270
static const char *const bpf_alu_string[16] = {
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	[BPF_ADD >> 4]  = "+=",
	[BPF_SUB >> 4]  = "-=",
	[BPF_MUL >> 4]  = "*=",
	[BPF_DIV >> 4]  = "/=",
	[BPF_OR  >> 4]  = "|=",
	[BPF_AND >> 4]  = "&=",
	[BPF_LSH >> 4]  = "<<=",
	[BPF_RSH >> 4]  = ">>=",
	[BPF_NEG >> 4]  = "neg",
	[BPF_MOD >> 4]  = "%=",
	[BPF_XOR >> 4]  = "^=",
	[BPF_MOV >> 4]  = "=",
	[BPF_ARSH >> 4] = "s>>=",
	[BPF_END >> 4]  = "endian",
};

static const char *const bpf_ldst_string[] = {
	[BPF_W >> 3]  = "u32",
	[BPF_H >> 3]  = "u16",
	[BPF_B >> 3]  = "u8",
	[BPF_DW >> 3] = "u64",
};

294
static const char *const bpf_jmp_string[16] = {
295 296 297 298 299 300 301 302 303 304 305 306
	[BPF_JA >> 4]   = "jmp",
	[BPF_JEQ >> 4]  = "==",
	[BPF_JGT >> 4]  = ">",
	[BPF_JGE >> 4]  = ">=",
	[BPF_JSET >> 4] = "&",
	[BPF_JNE >> 4]  = "!=",
	[BPF_JSGT >> 4] = "s>",
	[BPF_JSGE >> 4] = "s>=",
	[BPF_CALL >> 4] = "call",
	[BPF_EXIT >> 4] = "exit",
};

307 308
static void print_bpf_insn(const struct bpf_verifier_env *env,
			   const struct bpf_insn *insn)
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
{
	u8 class = BPF_CLASS(insn->code);

	if (class == BPF_ALU || class == BPF_ALU64) {
		if (BPF_SRC(insn->code) == BPF_X)
			verbose("(%02x) %sr%d %s %sr%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->src_reg);
		else
			verbose("(%02x) %sr%d %s %s%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->imm);
	} else if (class == BPF_STX) {
		if (BPF_MODE(insn->code) == BPF_MEM)
			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg,
				insn->off, insn->src_reg);
		else if (BPF_MODE(insn->code) == BPF_XADD)
			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg, insn->off,
				insn->src_reg);
		else
			verbose("BUG_%02x\n", insn->code);
	} else if (class == BPF_ST) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_st_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
			insn->code,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->dst_reg,
			insn->off, insn->imm);
	} else if (class == BPF_LDX) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_ldx_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
			insn->code, insn->dst_reg,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->src_reg, insn->off);
	} else if (class == BPF_LD) {
		if (BPF_MODE(insn->code) == BPF_ABS) {
			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IND) {
			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->src_reg, insn->imm);
372 373 374 375 376 377 378 379 380 381 382 383 384
		} else if (BPF_MODE(insn->code) == BPF_IMM &&
			   BPF_SIZE(insn->code) == BPF_DW) {
			/* At this point, we already made sure that the second
			 * part of the ldimm64 insn is accessible.
			 */
			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;

			if (map_ptr && !env->allow_ptr_leaks)
				imm = 0;

			verbose("(%02x) r%d = 0x%llx\n", insn->code,
				insn->dst_reg, (unsigned long long)imm);
385 386 387 388 389 390 391 392
		} else {
			verbose("BUG_ld_%02x\n", insn->code);
			return;
		}
	} else if (class == BPF_JMP) {
		u8 opcode = BPF_OP(insn->code);

		if (opcode == BPF_CALL) {
393 394
			verbose("(%02x) call %s#%d\n", insn->code,
				func_id_name(insn->imm), insn->imm);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
		} else if (insn->code == (BPF_JMP | BPF_JA)) {
			verbose("(%02x) goto pc%+d\n",
				insn->code, insn->off);
		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
			verbose("(%02x) exit\n", insn->code);
		} else if (BPF_SRC(insn->code) == BPF_X) {
			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->src_reg, insn->off);
		} else {
			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->imm, insn->off);
		}
	} else {
		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
	}
}

416
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
417
{
418
	struct bpf_verifier_stack_elem *elem;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

435 436
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
437
{
438
	struct bpf_verifier_stack_elem *elem;
439

440
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
441 442 443 444 445 446 447 448 449
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
450
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
		verbose("BPF program is too complex\n");
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

466
static void init_reg_state(struct bpf_reg_state *regs)
467 468 469 470 471 472
{
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
		regs[i].type = NOT_INIT;
		regs[i].imm = 0;
473 474
		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
475 476 477
		regs[i].min_align = 0;
		regs[i].aux_off = 0;
		regs[i].aux_off_align = 0;
478 479 480 481 482 483 484 485 486
	}

	/* frame pointer */
	regs[BPF_REG_FP].type = FRAME_PTR;

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
}

487
static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
488 489
{
	regs[regno].type = UNKNOWN_VALUE;
490
	regs[regno].id = 0;
491 492 493
	regs[regno].imm = 0;
}

494 495 496 497 498 499
static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
{
	BUG_ON(regno >= MAX_BPF_REG);
	__mark_reg_unknown_value(regs, regno);
}

500 501 502 503
static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
{
	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
504
	regs[regno].min_align = 0;
505 506
}

507 508 509 510 511 512 513
static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
					     u32 regno)
{
	mark_reg_unknown_value(regs, regno);
	reset_reg_range_values(regs, regno);
}

514 515 516 517 518 519
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

520
static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
			 enum reg_arg_type t)
{
	if (regno >= MAX_BPF_REG) {
		verbose("R%d is invalid\n", regno);
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
			verbose("R%d !read_ok\n", regno);
			return -EACCES;
		}
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
			verbose("frame pointer is read only\n");
			return -EACCES;
		}
		if (t == DST_OP)
			mark_reg_unknown_value(regs, regno);
	}
	return 0;
}

static int bpf_size_to_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 8;
	else
		return -EINVAL;
}

560 561 562 563 564
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
565
	case PTR_TO_MAP_VALUE_ADJ:
566 567
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
568 569
	case PTR_TO_PACKET:
	case PTR_TO_PACKET_END:
570 571 572 573 574 575 576 577
	case FRAME_PTR:
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

578 579 580
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
581 582
static int check_stack_write(struct bpf_verifier_state *state, int off,
			     int size, int value_regno)
583 584
{
	int i;
585 586 587
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
588 589

	if (value_regno >= 0 &&
590
	    is_spillable_regtype(state->regs[value_regno].type)) {
591 592

		/* register containing pointer is being spilled into stack */
593
		if (size != BPF_REG_SIZE) {
594 595 596 597 598
			verbose("invalid size of register spill\n");
			return -EACCES;
		}

		/* save register state */
599 600
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
			state->regs[value_regno];
601

602 603 604
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
605
		/* regular write of data into stack */
606
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
607
			(struct bpf_reg_state) {};
608 609 610

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
611 612 613 614
	}
	return 0;
}

615
static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
616 617
			    int value_regno)
{
618
	u8 *slot_type;
619 620
	int i;

621
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
622

623 624
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
625 626 627
			verbose("invalid size of register spill\n");
			return -EACCES;
		}
628 629
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
630 631 632 633 634 635 636
				verbose("corrupted spill memory\n");
				return -EACCES;
			}
		}

		if (value_regno >= 0)
			/* restore register state from stack */
637 638
			state->regs[value_regno] =
				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
639 640 641
		return 0;
	} else {
		for (i = 0; i < size; i++) {
642
			if (slot_type[i] != STACK_MISC) {
643 644 645 646 647 648 649
				verbose("invalid read from stack off %d+%d size %d\n",
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
650 651
			mark_reg_unknown_value_and_range(state->regs,
							 value_regno);
652 653 654 655 656
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
657
static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
658 659 660 661
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

662
	if (off < 0 || size <= 0 || off + size > map->value_size) {
663 664 665 666 667 668 669
		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/* check read/write into an adjusted map element */
static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
				int off, int size)
{
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

	/* We adjusted the register to this map value, so we
	 * need to change off and size to min_value and max_value
	 * respectively to make sure our theoretical access will be
	 * safe.
	 */
	if (log_level)
		print_verifier_state(state);
	env->varlen_map_value_access = true;
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
	if (reg->min_value < 0) {
		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
			regno);
		return -EACCES;
	}
	err = check_map_access(env, regno, reg->min_value + off, size);
	if (err) {
		verbose("R%d min value is outside of the array range\n",
			regno);
		return err;
	}

	/* If we haven't set a max value then we need to bail
	 * since we can't be sure we won't do bad things.
	 */
	if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
			regno);
		return -EACCES;
	}
	return check_map_access(env, regno, reg->max_value + off, size);
}

A
Alexei Starovoitov 已提交
715 716
#define MAX_PACKET_OFF 0xffff

717
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
718 719
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
720
{
721
	switch (env->prog->type) {
722 723 724 725 726
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
727
		/* fallthrough */
728 729
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
730
	case BPF_PROG_TYPE_XDP:
731
	case BPF_PROG_TYPE_LWT_XMIT:
732 733 734 735
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
736 737 738 739 740 741
		return true;
	default:
		return false;
	}
}

742
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
A
Alexei Starovoitov 已提交
743 744
			       int size)
{
745 746
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
747

748
	off += reg->off;
749
	if (off < 0 || size <= 0 || off + size > reg->range) {
750 751
		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
752 753 754 755 756
		return -EACCES;
	}
	return 0;
}

757
/* check access to 'struct bpf_context' fields */
758
static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
759
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
760
{
761 762 763 764
	/* for analyzer ctx accesses are already validated and converted */
	if (env->analyzer_ops)
		return 0;

765
	if (env->prog->aux->ops->is_valid_access &&
766
	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
767 768 769
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
770
		return 0;
771
	}
772 773 774 775 776

	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
	return -EACCES;
}

777
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
778 779 780 781 782 783 784 785 786 787 788 789 790
{
	if (env->allow_ptr_leaks)
		return false;

	switch (env->cur_state.regs[regno].type) {
	case UNKNOWN_VALUE:
	case CONST_IMM:
		return false;
	default:
		return true;
	}
}

791
static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
792
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
793
{
794
	int ip_align;
795 796 797 798 799 800 801 802 803 804 805 806 807 808
	int reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = reg->off;
	if (reg->id) {
		if (reg->aux_off_align % size) {
			verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
				reg->aux_off_align, size);
			return -EACCES;
		}
		reg_off += reg->aux_off;
A
Alexei Starovoitov 已提交
809 810
	}

811 812 813 814 815 816 817
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
818
	 */
819
	ip_align = 2;
820
	if ((ip_align + reg_off + off) % size != 0) {
A
Alexei Starovoitov 已提交
821
		verbose("misaligned packet access off %d+%d+%d size %d\n",
822
			ip_align, reg_off, off, size);
A
Alexei Starovoitov 已提交
823 824
		return -EACCES;
	}
825

A
Alexei Starovoitov 已提交
826 827 828
	return 0;
}

829
static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
830
				   int size, bool strict)
831
{
832
	if (strict && size != 1) {
833 834 835 836
		verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
837 838 839
	return 0;
}

840 841
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
842 843
			       int off, int size)
{
844
	bool strict = env->strict_alignment;
845

846 847
	switch (reg->type) {
	case PTR_TO_PACKET:
848
		return check_pkt_ptr_alignment(reg, off, size, strict);
849
	case PTR_TO_MAP_VALUE_ADJ:
850
		return check_val_ptr_alignment(reg, size, strict);
851 852 853 854 855 856 857 858 859 860 861
	default:
		if (off % size != 0) {
			verbose("misaligned access off %d size %d\n",
				off, size);
			return -EACCES;
		}

		return 0;
	}
}

862 863 864 865 866 867
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
868
static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
869 870 871
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
872 873
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
874 875
	int size, err = 0;

A
Alexei Starovoitov 已提交
876 877
	if (reg->type == PTR_TO_STACK)
		off += reg->imm;
878

879 880 881 882
	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

883
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
884 885
	if (err)
		return err;
886

887 888
	if (reg->type == PTR_TO_MAP_VALUE ||
	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
889 890 891 892 893
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into map\n", value_regno);
			return -EACCES;
		}
894

895 896 897 898
		if (reg->type == PTR_TO_MAP_VALUE_ADJ)
			err = check_map_access_adj(env, regno, off, size);
		else
			err = check_map_access(env, regno, off, size);
899
		if (!err && t == BPF_READ && value_regno >= 0)
900 901
			mark_reg_unknown_value_and_range(state->regs,
							 value_regno);
902

A
Alexei Starovoitov 已提交
903
	} else if (reg->type == PTR_TO_CTX) {
904 905
		enum bpf_reg_type reg_type = UNKNOWN_VALUE;

906 907 908 909 910
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into ctx\n", value_regno);
			return -EACCES;
		}
911
		err = check_ctx_access(env, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
912
		if (!err && t == BPF_READ && value_regno >= 0) {
913 914
			mark_reg_unknown_value_and_range(state->regs,
							 value_regno);
915 916
			/* note that reg.[id|off|range] == 0 */
			state->regs[value_regno].type = reg_type;
917 918
			state->regs[value_regno].aux_off = 0;
			state->regs[value_regno].aux_off_align = 0;
A
Alexei Starovoitov 已提交
919
		}
920

A
Alexei Starovoitov 已提交
921
	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
922 923 924 925
		if (off >= 0 || off < -MAX_BPF_STACK) {
			verbose("invalid stack off=%d size=%d\n", off, size);
			return -EACCES;
		}
926 927 928 929 930 931 932
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
				verbose("attempt to corrupt spilled pointer on stack\n");
				return -EACCES;
			}
933
			err = check_stack_write(state, off, size, value_regno);
934
		} else {
935
			err = check_stack_read(state, off, size, value_regno);
936
		}
A
Alexei Starovoitov 已提交
937
	} else if (state->regs[regno].type == PTR_TO_PACKET) {
938
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
A
Alexei Starovoitov 已提交
939 940 941
			verbose("cannot write into packet\n");
			return -EACCES;
		}
942 943 944 945 946
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into packet\n", value_regno);
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
947 948
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
949 950
			mark_reg_unknown_value_and_range(state->regs,
							 value_regno);
951 952
	} else {
		verbose("R%d invalid mem access '%s'\n",
A
Alexei Starovoitov 已提交
953
			regno, reg_type_str[reg->type]);
954 955
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
956 957 958 959 960 961 962 963 964

	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
	    state->regs[value_regno].type == UNKNOWN_VALUE) {
		/* 1 or 2 byte load zero-extends, determine the number of
		 * zero upper bits. Not doing it fo 4 byte load, since
		 * such values cannot be added to ptr_to_packet anyway.
		 */
		state->regs[value_regno].imm = 64 - size * 8;
	}
965 966 967
	return err;
}

968
static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
969
{
970
	struct bpf_reg_state *regs = env->cur_state.regs;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
		verbose("BPF_XADD uses reserved fields\n");
		return -EINVAL;
	}

	/* check src1 operand */
	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
	if (err)
		return err;

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

	/* check whether atomic_add can read the memory */
	err = check_mem_access(env, insn->dst_reg, insn->off,
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
	return check_mem_access(env, insn->dst_reg, insn->off,
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
 * and all elements of stack are initialized
 */
1004
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1005 1006
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1007
{
1008 1009
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
1010 1011
	int off, i;

1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (regs[regno].type != PTR_TO_STACK) {
		if (zero_size_allowed && access_size == 0 &&
		    regs[regno].type == CONST_IMM &&
		    regs[regno].imm  == 0)
			return 0;

		verbose("R%d type=%s expected=%s\n", regno,
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1021
		return -EACCES;
1022
	}
1023 1024 1025 1026 1027 1028 1029 1030 1031

	off = regs[regno].imm;
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
		verbose("invalid stack type R%d off=%d access_size=%d\n",
			regno, off, access_size);
		return -EACCES;
	}

1032 1033 1034 1035 1036 1037
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1038
	for (i = 0; i < access_size; i++) {
1039
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1040 1041 1042 1043 1044 1045 1046 1047
			verbose("invalid indirect read from stack off %d+%d size %d\n",
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
	struct bpf_reg_state *regs = env->cur_state.regs;

	switch (regs[regno].type) {
	case PTR_TO_PACKET:
		return check_packet_access(env, regno, 0, access_size);
	case PTR_TO_MAP_VALUE:
		return check_map_access(env, regno, 0, access_size);
	case PTR_TO_MAP_VALUE_ADJ:
		return check_map_access_adj(env, regno, 0, access_size);
	default: /* const_imm|ptr_to_stack or invalid ptr */
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1067
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1068 1069
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1070
{
1071
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1072
	enum bpf_reg_type expected_type, type = reg->type;
1073 1074
	int err = 0;

1075
	if (arg_type == ARG_DONTCARE)
1076 1077
		return 0;

1078
	if (type == NOT_INIT) {
1079 1080 1081 1082
		verbose("R%d !read_ok\n", regno);
		return -EACCES;
	}

1083 1084 1085 1086 1087
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
			verbose("R%d leaks addr into helper function\n", regno);
			return -EACCES;
		}
1088
		return 0;
1089
	}
1090

1091 1092
	if (type == PTR_TO_PACKET &&
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1093
		verbose("helper access to the packet is not allowed\n");
1094 1095 1096
		return -EACCES;
	}

1097
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1098 1099
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1100 1101
		if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
1102 1103
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1104
		expected_type = CONST_IMM;
1105 1106 1107 1108
		/* One exception. Allow UNKNOWN_VALUE registers when the
		 * boundaries are known and don't cause unsafe memory accesses
		 */
		if (type != UNKNOWN_VALUE && type != expected_type)
1109
			goto err_type;
1110 1111
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1112 1113
		if (type != expected_type)
			goto err_type;
1114 1115
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1116 1117
		if (type != expected_type)
			goto err_type;
1118 1119
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1120 1121 1122 1123 1124
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
		 * passed in as argument, it's a CONST_IMM type. Final test
		 * happens during stack boundary checking.
		 */
1125 1126
		if (type == CONST_IMM && reg->imm == 0)
			/* final test in check_stack_boundary() */;
1127 1128
		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
			 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1129
			goto err_type;
1130
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1131 1132 1133 1134 1135 1136 1137
	} else {
		verbose("unsupported arg_type %d\n", arg_type);
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1138
		meta->map_ptr = reg->map_ptr;
1139 1140 1141 1142 1143
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1144
		if (!meta->map_ptr) {
1145 1146 1147 1148 1149 1150 1151 1152
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
			verbose("invalid map_ptr to access map->key\n");
			return -EACCES;
		}
1153 1154 1155 1156 1157 1158 1159
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1160 1161 1162 1163
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1164
		if (!meta->map_ptr) {
1165 1166 1167 1168
			/* kernel subsystem misconfigured verifier */
			verbose("invalid map_ptr to access map->value\n");
			return -EACCES;
		}
1169 1170 1171 1172 1173 1174 1175
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1176 1177 1178
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1179 1180 1181 1182 1183 1184 1185

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1186
			verbose("ARG_CONST_SIZE cannot be first argument\n");
1187 1188
			return -EACCES;
		}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

		/* If the register is UNKNOWN_VALUE, the access check happens
		 * using its boundaries. Otherwise, just use its imm
		 */
		if (type == UNKNOWN_VALUE) {
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

			if (reg->min_value < 0) {
				verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
					regno);
				return -EACCES;
			}

			if (reg->min_value == 0) {
				err = check_helper_mem_access(env, regno - 1, 0,
							      zero_size_allowed,
							      meta);
				if (err)
					return err;
			}

			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
				verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
					regno);
				return -EACCES;
			}
			err = check_helper_mem_access(env, regno - 1,
						      reg->max_value,
						      zero_size_allowed, meta);
			if (err)
				return err;
		} else {
			/* register is CONST_IMM */
			err = check_helper_mem_access(env, regno - 1, reg->imm,
						      zero_size_allowed, meta);
		}
1230 1231 1232
	}

	return err;
1233 1234 1235 1236
err_type:
	verbose("R%d type=%s expected=%s\n", regno,
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1237 1238
}

1239 1240 1241 1242 1243
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
	if (!map)
		return 0;

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
		    func_id != BPF_FUNC_perf_event_output)
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1259
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1260
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1261
		    func_id != BPF_FUNC_current_task_under_cgroup)
1262 1263
			goto error;
		break;
1264
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1265
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1266 1267
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1287
	case BPF_FUNC_current_task_under_cgroup:
1288
	case BPF_FUNC_skb_under_cgroup:
1289 1290 1291
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1292 1293
	default:
		break;
1294 1295 1296
	}

	return 0;
1297
error:
1298 1299
	verbose("cannot pass map_type %d into func %s#%d\n",
		map->map_type, func_id_name(func_id), func_id);
1300
	return -EINVAL;
1301 1302
}

1303 1304 1305 1306
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1307
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1308
		count++;
1309
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1310
		count++;
1311
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1312
		count++;
1313
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1314
		count++;
1315
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1316 1317 1318 1319 1320
		count++;

	return count > 1 ? -EINVAL : 0;
}

1321
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1322
{
1323 1324
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET ||
		    regs[i].type == PTR_TO_PACKET_END)
			mark_reg_unknown_value(regs, i);

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type != PTR_TO_PACKET &&
		    reg->type != PTR_TO_PACKET_END)
			continue;
		reg->type = UNKNOWN_VALUE;
		reg->imm = 0;
	}
}

1344
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1345
{
1346
	struct bpf_verifier_state *state = &env->cur_state;
1347
	const struct bpf_func_proto *fn = NULL;
1348 1349
	struct bpf_reg_state *regs = state->regs;
	struct bpf_reg_state *reg;
1350
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1351
	bool changes_data;
1352 1353 1354 1355
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1356
		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1357 1358 1359 1360 1361 1362 1363
		return -EINVAL;
	}

	if (env->prog->aux->ops->get_func_proto)
		fn = env->prog->aux->ops->get_func_proto(func_id);

	if (!fn) {
1364
		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1365 1366 1367 1368
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1369
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1370 1371 1372 1373
		verbose("cannot call GPL only function from proprietary program\n");
		return -EINVAL;
	}

1374
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1375

1376
	memset(&meta, 0, sizeof(meta));
1377
	meta.pkt_access = fn->pkt_access;
1378

1379 1380 1381 1382 1383
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1384 1385
		verbose("kernel subsystem misconfigured func %s#%d\n",
			func_id_name(func_id), func_id);
1386 1387 1388
		return err;
	}

1389
	/* check args */
1390
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1391 1392
	if (err)
		return err;
1393
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1394 1395
	if (err)
		return err;
1396
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1397 1398
	if (err)
		return err;
1399
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1400 1401
	if (err)
		return err;
1402
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1403 1404 1405
	if (err)
		return err;

1406 1407 1408 1409 1410 1411 1412 1413 1414
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
		if (err)
			return err;
	}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/* reset caller saved regs */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* update return register */
	if (fn->ret_type == RET_INTEGER) {
		regs[BPF_REG_0].type = UNKNOWN_VALUE;
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1428 1429
		struct bpf_insn_aux_data *insn_aux;

1430
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1431
		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1432 1433 1434 1435
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1436
		if (meta.map_ptr == NULL) {
1437 1438 1439
			verbose("kernel subsystem misconfigured verifier\n");
			return -EINVAL;
		}
1440
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1441
		regs[BPF_REG_0].id = ++env->id_gen;
1442 1443 1444 1445 1446
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1447
	} else {
1448 1449
		verbose("unknown return type %d of func %s#%d\n",
			fn->ret_type, func_id_name(func_id), func_id);
1450 1451
		return -EINVAL;
	}
1452

1453
	err = check_map_func_compatibility(meta.map_ptr, func_id);
1454 1455
	if (err)
		return err;
1456

A
Alexei Starovoitov 已提交
1457 1458 1459 1460 1461
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1462 1463
static int check_packet_ptr_add(struct bpf_verifier_env *env,
				struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1464
{
1465 1466 1467 1468
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
	struct bpf_reg_state tmp_reg;
A
Alexei Starovoitov 已提交
1469 1470 1471 1472 1473 1474 1475
	s32 imm;

	if (BPF_SRC(insn->code) == BPF_K) {
		/* pkt_ptr += imm */
		imm = insn->imm;

add_imm:
1476
		if (imm < 0) {
A
Alexei Starovoitov 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
			verbose("addition of negative constant to packet pointer is not allowed\n");
			return -EACCES;
		}
		if (imm >= MAX_PACKET_OFF ||
		    imm + dst_reg->off >= MAX_PACKET_OFF) {
			verbose("constant %d is too large to add to packet pointer\n",
				imm);
			return -EACCES;
		}
		/* a constant was added to pkt_ptr.
		 * Remember it while keeping the same 'id'
		 */
		dst_reg->off += imm;
	} else {
1491 1492
		bool had_id;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		if (src_reg->type == PTR_TO_PACKET) {
			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
			tmp_reg = *dst_reg;  /* save r7 state */
			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
			src_reg = &tmp_reg;  /* pretend it's src_reg state */
			/* if the checks below reject it, the copy won't matter,
			 * since we're rejecting the whole program. If all ok,
			 * then imm22 state will be added to r7
			 * and r7 will be pkt(id=0,off=22,r=62) while
			 * r6 will stay as pkt(id=0,off=0,r=62)
			 */
		}

A
Alexei Starovoitov 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		if (src_reg->type == CONST_IMM) {
			/* pkt_ptr += reg where reg is known constant */
			imm = src_reg->imm;
			goto add_imm;
		}
		/* disallow pkt_ptr += reg
		 * if reg is not uknown_value with guaranteed zero upper bits
		 * otherwise pkt_ptr may overflow and addition will become
		 * subtraction which is not allowed
		 */
		if (src_reg->type != UNKNOWN_VALUE) {
			verbose("cannot add '%s' to ptr_to_packet\n",
				reg_type_str[src_reg->type]);
			return -EACCES;
		}
		if (src_reg->imm < 48) {
			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
				src_reg->imm);
			return -EACCES;
		}
1526 1527 1528

		had_id = (dst_reg->id != 0);

A
Alexei Starovoitov 已提交
1529 1530 1531
		/* dst_reg stays as pkt_ptr type and since some positive
		 * integer value was added to the pointer, increment its 'id'
		 */
1532
		dst_reg->id = ++env->id_gen;
A
Alexei Starovoitov 已提交
1533

1534
		/* something was added to pkt_ptr, set range to zero */
1535
		dst_reg->aux_off += dst_reg->off;
A
Alexei Starovoitov 已提交
1536 1537
		dst_reg->off = 0;
		dst_reg->range = 0;
1538 1539 1540 1541 1542
		if (had_id)
			dst_reg->aux_off_align = min(dst_reg->aux_off_align,
						     src_reg->min_align);
		else
			dst_reg->aux_off_align = src_reg->min_align;
A
Alexei Starovoitov 已提交
1543 1544 1545 1546
	}
	return 0;
}

1547
static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1548
{
1549 1550
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
A
Alexei Starovoitov 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559
	u8 opcode = BPF_OP(insn->code);
	s64 imm_log2;

	/* for type == UNKNOWN_VALUE:
	 * imm > 0 -> number of zero upper bits
	 * imm == 0 -> don't track which is the same as all bits can be non-zero
	 */

	if (BPF_SRC(insn->code) == BPF_X) {
1560
		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
A
Alexei Starovoitov 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where both have zero upper bits. Adding them
			 * can only result making one more bit non-zero
			 * in the larger value.
			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
			 */
			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
			dst_reg->imm--;
			return 0;
		}
		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where dreg has zero upper bits and sreg is const.
			 * Adding them can only result making one more bit
			 * non-zero in the larger value.
			 */
			imm_log2 = __ilog2_u64((long long)src_reg->imm);
			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
			dst_reg->imm--;
			return 0;
		}
		/* all other cases non supported yet, just mark dst_reg */
		dst_reg->imm = 0;
		return 0;
	}

	/* sign extend 32-bit imm into 64-bit to make sure that
	 * negative values occupy bit 63. Note ilog2() would have
	 * been incorrect, since sizeof(insn->imm) == 4
	 */
	imm_log2 = __ilog2_u64((long long)insn->imm);

	if (dst_reg->imm && opcode == BPF_LSH) {
		/* reg <<= imm
		 * if reg was a result of 2 byte load, then its imm == 48
		 * which means that upper 48 bits are zero and shifting this reg
		 * left by 4 would mean that upper 44 bits are still zero
		 */
		dst_reg->imm -= insn->imm;
	} else if (dst_reg->imm && opcode == BPF_MUL) {
		/* reg *= imm
		 * if multiplying by 14 subtract 4
		 * This is conservative calculation of upper zero bits.
		 * It's not trying to special case insn->imm == 1 or 0 cases
		 */
		dst_reg->imm -= imm_log2 + 1;
	} else if (opcode == BPF_AND) {
		/* reg &= imm */
		dst_reg->imm = 63 - imm_log2;
	} else if (dst_reg->imm && opcode == BPF_ADD) {
		/* reg += imm */
		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
		dst_reg->imm--;
	} else if (opcode == BPF_RSH) {
		/* reg >>= imm
		 * which means that after right shift, upper bits will be zero
		 * note that verifier already checked that
		 * 0 <= imm < 64 for shift insn
		 */
		dst_reg->imm += insn->imm;
		if (unlikely(dst_reg->imm > 64))
			/* some dumb code did:
			 * r2 = *(u32 *)mem;
			 * r2 >>= 32;
			 * and all bits are zero now */
			dst_reg->imm = 64;
	} else {
		/* all other alu ops, means that we don't know what will
		 * happen to the value, mark it with unknown number of zero bits
		 */
		dst_reg->imm = 0;
	}

	if (dst_reg->imm < 0) {
		/* all 64 bits of the register can contain non-zero bits
		 * and such value cannot be added to ptr_to_packet, since it
		 * may overflow, mark it as unknown to avoid further eval
		 */
		dst_reg->imm = 0;
	}
	return 0;
}

1649 1650
static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
				struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1651
{
1652 1653 1654
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
A
Alexei Starovoitov 已提交
1655
	u8 opcode = BPF_OP(insn->code);
1656
	u64 dst_imm = dst_reg->imm;
A
Alexei Starovoitov 已提交
1657

1658 1659 1660
	/* dst_reg->type == CONST_IMM here. Simulate execution of insns
	 * containing ALU ops. Don't care about overflow or negative
	 * values, just add/sub/... them; registers are in u64.
A
Alexei Starovoitov 已提交
1661
	 */
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
		dst_imm += insn->imm;
	} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
		   src_reg->type == CONST_IMM) {
		dst_imm += src_reg->imm;
	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
		dst_imm -= insn->imm;
	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
		   src_reg->type == CONST_IMM) {
		dst_imm -= src_reg->imm;
	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
		dst_imm *= insn->imm;
	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
		   src_reg->type == CONST_IMM) {
		dst_imm *= src_reg->imm;
	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
		dst_imm |= insn->imm;
	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
		   src_reg->type == CONST_IMM) {
		dst_imm |= src_reg->imm;
	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
		dst_imm &= insn->imm;
	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
		   src_reg->type == CONST_IMM) {
		dst_imm &= src_reg->imm;
	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
		dst_imm >>= insn->imm;
	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
		   src_reg->type == CONST_IMM) {
		dst_imm >>= src_reg->imm;
	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
		dst_imm <<= insn->imm;
	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
		   src_reg->type == CONST_IMM) {
		dst_imm <<= src_reg->imm;
	} else {
A
Alexei Starovoitov 已提交
1698
		mark_reg_unknown_value(regs, insn->dst_reg);
1699 1700 1701 1702 1703
		goto out;
	}

	dst_reg->imm = dst_imm;
out:
1704 1705 1706
	return 0;
}

1707 1708 1709 1710
static void check_reg_overflow(struct bpf_reg_state *reg)
{
	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
		reg->max_value = BPF_REGISTER_MAX_RANGE;
1711 1712
	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1713 1714 1715
		reg->min_value = BPF_REGISTER_MIN_RANGE;
}

1716 1717 1718 1719 1720 1721 1722
static u32 calc_align(u32 imm)
{
	if (!imm)
		return 1U << 31;
	return imm - ((imm - 1) & imm);
}

1723 1724 1725 1726
static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				    struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1727 1728
	s64 min_val = BPF_REGISTER_MIN_RANGE;
	u64 max_val = BPF_REGISTER_MAX_RANGE;
1729
	u8 opcode = BPF_OP(insn->code);
1730
	u32 dst_align, src_align;
1731 1732

	dst_reg = &regs[insn->dst_reg];
1733
	src_align = 0;
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (BPF_SRC(insn->code) == BPF_X) {
		check_reg_overflow(&regs[insn->src_reg]);
		min_val = regs[insn->src_reg].min_value;
		max_val = regs[insn->src_reg].max_value;

		/* If the source register is a random pointer then the
		 * min_value/max_value values represent the range of the known
		 * accesses into that value, not the actual min/max value of the
		 * register itself.  In this case we have to reset the reg range
		 * values so we know it is not safe to look at.
		 */
		if (regs[insn->src_reg].type != CONST_IMM &&
		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
			min_val = BPF_REGISTER_MIN_RANGE;
			max_val = BPF_REGISTER_MAX_RANGE;
1749 1750 1751
			src_align = 0;
		} else {
			src_align = regs[insn->src_reg].min_align;
1752 1753 1754 1755
		}
	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
		min_val = max_val = insn->imm;
1756
		src_align = calc_align(insn->imm);
1757 1758
	}

1759 1760
	dst_align = dst_reg->min_align;

1761 1762 1763 1764 1765 1766 1767 1768 1769
	/* We don't know anything about what was done to this register, mark it
	 * as unknown.
	 */
	if (min_val == BPF_REGISTER_MIN_RANGE &&
	    max_val == BPF_REGISTER_MAX_RANGE) {
		reset_reg_range_values(regs, insn->dst_reg);
		return;
	}

1770 1771 1772 1773 1774 1775 1776 1777 1778
	/* If one of our values was at the end of our ranges then we can't just
	 * do our normal operations to the register, we need to set the values
	 * to the min/max since they are undefined.
	 */
	if (min_val == BPF_REGISTER_MIN_RANGE)
		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
	if (max_val == BPF_REGISTER_MAX_RANGE)
		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;

1779 1780
	switch (opcode) {
	case BPF_ADD:
1781 1782 1783 1784
		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
			dst_reg->min_value += min_val;
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value += max_val;
1785
		dst_reg->min_align = min(src_align, dst_align);
1786 1787
		break;
	case BPF_SUB:
1788 1789 1790 1791
		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
			dst_reg->min_value -= min_val;
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value -= max_val;
1792
		dst_reg->min_align = min(src_align, dst_align);
1793 1794
		break;
	case BPF_MUL:
1795 1796 1797 1798
		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
			dst_reg->min_value *= min_val;
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value *= max_val;
1799
		dst_reg->min_align = max(src_align, dst_align);
1800 1801
		break;
	case BPF_AND:
1802 1803 1804 1805 1806 1807 1808 1809
		/* Disallow AND'ing of negative numbers, ain't nobody got time
		 * for that.  Otherwise the minimum is 0 and the max is the max
		 * value we could AND against.
		 */
		if (min_val < 0)
			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
		else
			dst_reg->min_value = 0;
1810
		dst_reg->max_value = max_val;
1811
		dst_reg->min_align = max(src_align, dst_align);
1812 1813 1814 1815 1816 1817
		break;
	case BPF_LSH:
		/* Gotta have special overflow logic here, if we're shifting
		 * more than MAX_RANGE then just assume we have an invalid
		 * range.
		 */
1818
		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
1819
			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1820 1821 1822 1823 1824 1825 1826 1827
			dst_reg->min_align = 1;
		} else {
			if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
				dst_reg->min_value <<= min_val;
			if (!dst_reg->min_align)
				dst_reg->min_align = 1;
			dst_reg->min_align <<= min_val;
		}
1828 1829
		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1830
		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1831 1832 1833
			dst_reg->max_value <<= max_val;
		break;
	case BPF_RSH:
1834 1835
		/* RSH by a negative number is undefined, and the BPF_RSH is an
		 * unsigned shift, so make the appropriate casts.
1836
		 */
1837
		if (min_val < 0 || dst_reg->min_value < 0) {
1838
			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1839
		} else {
1840 1841
			dst_reg->min_value =
				(u64)(dst_reg->min_value) >> min_val;
1842 1843 1844 1845 1846 1847 1848 1849
		}
		if (min_val < 0) {
			dst_reg->min_align = 1;
		} else {
			dst_reg->min_align >>= (u64) min_val;
			if (!dst_reg->min_align)
				dst_reg->min_align = 1;
		}
1850 1851
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value >>= max_val;
1852 1853 1854 1855 1856 1857 1858 1859 1860
		break;
	default:
		reset_reg_range_values(regs, insn->dst_reg);
		break;
	}

	check_reg_overflow(dst_reg);
}

1861
/* check validity of 32-bit and 64-bit arithmetic operations */
1862
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1863
{
1864
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
				verbose("BPF_NEG uses reserved fields\n");
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
				verbose("BPF_END uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

1889 1890 1891 1892 1893 1894
		if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}

			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

1924 1925 1926 1927 1928
		/* we are setting our register to something new, we need to
		 * reset its range values.
		 */
		reset_reg_range_values(regs, insn->dst_reg);

1929 1930 1931 1932 1933 1934 1935
		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
			} else {
1936 1937 1938 1939 1940
				if (is_pointer_value(env, insn->src_reg)) {
					verbose("R%d partial copy of pointer\n",
						insn->src_reg);
					return -EACCES;
				}
1941
				mark_reg_unknown_value(regs, insn->dst_reg);
1942 1943 1944 1945 1946 1947 1948
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
			regs[insn->dst_reg].type = CONST_IMM;
			regs[insn->dst_reg].imm = insn->imm;
1949 1950
			regs[insn->dst_reg].max_value = insn->imm;
			regs[insn->dst_reg].min_value = insn->imm;
1951
			regs[insn->dst_reg].min_align = calc_align(insn->imm);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		}

	} else if (opcode > BPF_END) {
		verbose("invalid BPF_ALU opcode %x\n", opcode);
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src2 operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
			verbose("div by zero\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
				verbose("invalid shift %d\n", insn->imm);
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
1997 1998 1999 2000 2001 2002 2003
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
		if (err)
			return err;

		dst_reg = &regs[insn->dst_reg];

2004 2005 2006
		/* first we want to adjust our ranges. */
		adjust_reg_min_max_vals(env, insn);

2007 2008
		/* pattern match 'bpf_add Rx, imm' instruction */
		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
A
Alexei Starovoitov 已提交
2009 2010 2011 2012
		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
			dst_reg->type = PTR_TO_STACK;
			dst_reg->imm = insn->imm;
			return 0;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		} else if (opcode == BPF_ADD &&
			   BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == PTR_TO_STACK &&
			   ((BPF_SRC(insn->code) == BPF_X &&
			     regs[insn->src_reg].type == CONST_IMM) ||
			    BPF_SRC(insn->code) == BPF_K)) {
			if (BPF_SRC(insn->code) == BPF_X)
				dst_reg->imm += regs[insn->src_reg].imm;
			else
				dst_reg->imm += insn->imm;
			return 0;
A
Alexei Starovoitov 已提交
2024 2025
		} else if (opcode == BPF_ADD &&
			   BPF_CLASS(insn->code) == BPF_ALU64 &&
2026 2027 2028
			   (dst_reg->type == PTR_TO_PACKET ||
			    (BPF_SRC(insn->code) == BPF_X &&
			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
A
Alexei Starovoitov 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
			/* ptr_to_packet += K|X */
			return check_packet_ptr_add(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == UNKNOWN_VALUE &&
			   env->allow_ptr_leaks) {
			/* unknown += K|X */
			return evaluate_reg_alu(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == CONST_IMM &&
			   env->allow_ptr_leaks) {
			/* reg_imm += K|X */
			return evaluate_reg_imm_alu(env, insn);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		} else if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		} else if (BPF_SRC(insn->code) == BPF_X &&
			   is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
2051

2052 2053 2054 2055 2056 2057
		/* If we did pointer math on a map value then just set it to our
		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
		 * loads to this register appropriately, otherwise just mark the
		 * register as unknown.
		 */
		if (env->allow_ptr_leaks &&
2058
		    BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
2059 2060 2061 2062 2063
		    (dst_reg->type == PTR_TO_MAP_VALUE ||
		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
		else
			mark_reg_unknown_value(regs, insn->dst_reg);
2064 2065 2066 2067 2068
	}

	return 0;
}

2069 2070
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
				   struct bpf_reg_state *dst_reg)
A
Alexei Starovoitov 已提交
2071
{
2072
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2073
	int i;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

	/* LLVM can generate two kind of checks:
	 *
	 * Type 1:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Type 2:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
2103
	 */
2104

A
Alexei Starovoitov 已提交
2105 2106
	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2107 2108
			/* keep the maximum range already checked */
			regs[i].range = max(regs[i].range, dst_reg->off);
A
Alexei Starovoitov 已提交
2109 2110 2111 2112 2113 2114

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2115
			reg->range = max(reg->range, dst_reg->off);
A
Alexei Starovoitov 已提交
2116 2117 2118
	}
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
		true_reg->max_value = true_reg->min_value = val;
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
		false_reg->max_value = false_reg->min_value = val;
		break;
	case BPF_JGT:
		/* Unsigned comparison, the minimum value is 0. */
		false_reg->min_value = 0;
2143
		/* fallthrough */
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	case BPF_JSGT:
		/* If this is false then we know the maximum val is val,
		 * otherwise we know the min val is val+1.
		 */
		false_reg->max_value = val;
		true_reg->min_value = val + 1;
		break;
	case BPF_JGE:
		/* Unsigned comparison, the minimum value is 0. */
		false_reg->min_value = 0;
2154
		/* fallthrough */
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	case BPF_JSGE:
		/* If this is false then we know the maximum value is val - 1,
		 * otherwise we know the mimimum value is val.
		 */
		false_reg->max_value = val - 1;
		true_reg->min_value = val;
		break;
	default:
		break;
	}

	check_reg_overflow(false_reg);
	check_reg_overflow(true_reg);
}

/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
 * is the variable reg.
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
		true_reg->max_value = true_reg->min_value = val;
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
		false_reg->max_value = false_reg->min_value = val;
		break;
	case BPF_JGT:
		/* Unsigned comparison, the minimum value is 0. */
		true_reg->min_value = 0;
2193
		/* fallthrough */
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	case BPF_JSGT:
		/*
		 * If this is false, then the val is <= the register, if it is
		 * true the register <= to the val.
		 */
		false_reg->min_value = val;
		true_reg->max_value = val - 1;
		break;
	case BPF_JGE:
		/* Unsigned comparison, the minimum value is 0. */
		true_reg->min_value = 0;
2205
		/* fallthrough */
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	case BPF_JSGE:
		/* If this is false then constant < register, if it is true then
		 * the register < constant.
		 */
		false_reg->min_value = val + 1;
		true_reg->max_value = val;
		break;
	default:
		break;
	}

	check_reg_overflow(false_reg);
	check_reg_overflow(true_reg);
}

2221 2222 2223 2224 2225 2226
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
			 enum bpf_reg_type type)
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2227 2228 2229 2230 2231 2232 2233 2234
		if (type == UNKNOWN_VALUE) {
			__mark_reg_unknown_value(regs, regno);
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
			reg->type = type;
		}
2235 2236 2237 2238 2239
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
			  enum bpf_reg_type type)
{
	struct bpf_reg_state *regs = state->regs;
2250
	u32 id = regs[regno].id;
2251 2252 2253
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2254
		mark_map_reg(regs, i, id, type);
2255 2256 2257 2258

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
2259
		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2260 2261 2262
	}
}

2263
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2264 2265
			     struct bpf_insn *insn, int *insn_idx)
{
2266 2267
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode > BPF_EXIT) {
		verbose("invalid BPF_JMP opcode %x\n", opcode);
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}

		/* check src1 operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
2286 2287 2288 2289 2290 2291

		if (is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer comparison prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	} else {
		if (insn->src_reg != BPF_REG_0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}
	}

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2304 2305
	dst_reg = &regs[insn->dst_reg];

2306 2307 2308
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
A
Alexei Starovoitov 已提交
2309
	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
		if (regs[insn->src_reg].type == CONST_IMM)
			reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, regs[insn->src_reg].imm,
					opcode);
		else if (dst_reg->type == CONST_IMM)
			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
					    &regs[insn->src_reg], dst_reg->imm,
					    opcode);
	} else {
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2346
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2347
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2348 2349
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2350 2351 2352 2353 2354 2355 2356
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
		mark_map_regs(this_branch, insn->dst_reg,
			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
		mark_map_regs(other_branch, insn->dst_reg,
			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
A
Alexei Starovoitov 已提交
2357 2358 2359
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2360 2361 2362 2363 2364
		find_good_pkt_pointers(this_branch, dst_reg);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2365 2366 2367
	} else if (is_pointer_value(env, insn->dst_reg)) {
		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
		return -EACCES;
2368 2369
	}
	if (log_level)
2370
		print_verifier_state(this_branch);
2371 2372 2373
	return 0;
}

2374 2375 2376 2377 2378 2379 2380 2381
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2382
/* verify BPF_LD_IMM64 instruction */
2383
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2384
{
2385
	struct bpf_reg_state *regs = env->cur_state.regs;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
		verbose("invalid BPF_LD_IMM insn\n");
		return -EINVAL;
	}
	if (insn->off != 0) {
		verbose("BPF_LD_IMM64 uses reserved fields\n");
		return -EINVAL;
	}

	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
	if (err)
		return err;

2401 2402 2403 2404 2405
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

		regs[insn->dst_reg].type = CONST_IMM;
		regs[insn->dst_reg].imm = imm;
2406
		return 0;
2407
	}
2408 2409 2410 2411 2412 2413 2414 2415 2416

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2417 2418 2419 2420 2421
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2422
	case BPF_PROG_TYPE_SCHED_ACT:
2423 2424 2425 2426 2427 2428
		return true;
	default:
		return false;
	}
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2444
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2445
{
2446
	struct bpf_reg_state *regs = env->cur_state.regs;
2447
	u8 mode = BPF_MODE(insn->code);
2448
	struct bpf_reg_state *reg;
2449 2450
	int i, err;

2451
	if (!may_access_skb(env->prog->type)) {
A
Alexei Starovoitov 已提交
2452
		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2453 2454 2455 2456
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2457
	    BPF_SIZE(insn->code) == BPF_DW ||
2458
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
A
Alexei Starovoitov 已提交
2459
		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* mark destination R0 register as readable, since it contains
	 * the value fetched from the packet
	 */
	regs[BPF_REG_0].type = UNKNOWN_VALUE;
	return 0;
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

2534
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2535

2536 2537 2538 2539 2540 2541 2542 2543 2544
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
2545
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
		verbose("jump out of range from insn %d to %d\n", t, w);
		return -EINVAL;
	}

2558 2559 2560 2561
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
		verbose("back-edge from insn %d to %d\n", t, w);
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
		verbose("insn state internal bug\n");
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
2586
static int check_cfg(struct bpf_verifier_env *env)
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2623 2624
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2637 2638 2639
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
2640 2641
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2642 2643
		} else {
			/* conditional jump with two edges */
2644
			env->explored_states[t] = STATE_LIST_MARK;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
		verbose("pop stack internal bug\n");
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
			verbose("unreachable insn %d\n", i);
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

A
Alexei Starovoitov 已提交
2693 2694 2695
/* the following conditions reduce the number of explored insns
 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
 */
2696 2697
static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
				   struct bpf_reg_state *old,
2698
				   struct bpf_reg_state *cur)
A
Alexei Starovoitov 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
{
	if (old->id != cur->id)
		return false;

	/* old ptr_to_packet is more conservative, since it allows smaller
	 * range. Ex:
	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
	 * old(off=0,r=10) means that with range=10 the verifier proceeded
	 * further and found no issues with the program. Now we're in the same
	 * spot with cur(off=0,r=20), so we're safe too, since anything further
	 * will only be looking at most 10 bytes after this pointer.
	 */
	if (old->off == cur->off && old->range < cur->range)
		return true;

	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
	 * since both cannot be used for packet access and safe(old)
	 * pointer has smaller off that could be used for further
	 * 'if (ptr > data_end)' check
	 * Ex:
	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
	 * that we cannot access the packet.
	 * The safe range is:
	 * [ptr, ptr + range - off)
	 * so whenever off >=range, it means no safe bytes from this pointer.
	 * When comparing old->off <= cur->off, it means that older code
	 * went with smaller offset and that offset was later
	 * used to figure out the safe range after 'if (ptr > data_end)' check
	 * Say, 'old' state was explored like:
	 * ... R3(off=0, r=0)
	 * R4 = R3 + 20
	 * ... now R4(off=20,r=0)  <-- here
	 * if (R4 > data_end)
	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
	 * ... the code further went all the way to bpf_exit.
	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
	 * goes further, such cur_R4 will give larger safe packet range after
	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
	 * so they will be good with r=30 and we can prune the search.
	 */
2740
	if (!env->strict_alignment && old->off <= cur->off &&
A
Alexei Starovoitov 已提交
2741 2742 2743 2744 2745 2746
	    old->off >= old->range && cur->off >= cur->range)
		return true;

	return false;
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
2773 2774
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
2775
			 struct bpf_verifier_state *cur)
2776
{
2777
	bool varlen_map_access = env->varlen_map_value_access;
2778
	struct bpf_reg_state *rold, *rcur;
2779 2780 2781
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
2782 2783 2784 2785 2786 2787
		rold = &old->regs[i];
		rcur = &cur->regs[i];

		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
			continue;

2788 2789 2790
		/* If the ranges were not the same, but everything else was and
		 * we didn't do a variable access into a map then we are a-ok.
		 */
2791
		if (!varlen_map_access &&
A
Alexei Starovoitov 已提交
2792
		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2793 2794
			continue;

2795 2796 2797 2798
		/* If we didn't map access then again we don't care about the
		 * mismatched range values and it's ok if our old type was
		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
		 */
A
Alexei Starovoitov 已提交
2799
		if (rold->type == NOT_INIT ||
2800 2801
		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
		     rcur->type != NOT_INIT))
A
Alexei Starovoitov 已提交
2802 2803
			continue;

2804 2805 2806 2807 2808 2809
		/* Don't care about the reg->id in this case. */
		if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
		    rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
		    rold->map_ptr == rcur->map_ptr)
			continue;

A
Alexei Starovoitov 已提交
2810
		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2811
		    compare_ptrs_to_packet(env, rold, rcur))
A
Alexei Starovoitov 已提交
2812 2813
			continue;

A
Alexei Starovoitov 已提交
2814
		return false;
2815 2816 2817
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
2818 2819 2820 2821 2822 2823 2824 2825
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
2826
			return false;
2827 2828 2829 2830 2831 2832 2833 2834 2835
		if (i % BPF_REG_SIZE)
			continue;
		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
			   &cur->spilled_regs[i / BPF_REG_SIZE],
			   sizeof(old->spilled_regs[0])))
			/* when explored and current stack slot types are
			 * the same, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
2836
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2837
			 * but current path has stored:
2838
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2839 2840 2841 2842 2843 2844
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
		else
			continue;
2845 2846 2847 2848
	}
	return true;
}

2849
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2850
{
2851 2852
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
2853 2854 2855 2856 2857 2858 2859 2860 2861

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
2862
		if (states_equal(env, &sl->state, &env->cur_state))
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
			/* reached equivalent register/stack state,
			 * prune the search
			 */
			return 1;
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
2876
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
	return 0;
}

2887 2888 2889 2890 2891 2892 2893 2894 2895
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

2896
static int do_check(struct bpf_verifier_env *env)
2897
{
2898
	struct bpf_verifier_state *state = &env->cur_state;
2899
	struct bpf_insn *insns = env->prog->insnsi;
2900
	struct bpf_reg_state *regs = state->regs;
2901 2902 2903 2904 2905 2906 2907
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

	init_reg_state(regs);
	insn_idx = 0;
2908
	env->varlen_map_value_access = false;
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
			verbose("invalid insn idx %d insn_cnt %d\n",
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

2923
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2924
			verbose("BPF program is too large. Processed %d insn\n",
2925 2926 2927 2928
				insn_processed);
			return -E2BIG;
		}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
			if (log_level) {
				if (do_print_state)
					verbose("\nfrom %d to %d: safe\n",
						prev_insn_idx, insn_idx);
				else
					verbose("%d: safe\n", insn_idx);
			}
			goto process_bpf_exit;
		}

2944 2945 2946
		if (need_resched())
			cond_resched();

2947 2948 2949 2950 2951 2952
		if (log_level > 1 || (log_level && do_print_state)) {
			if (log_level > 1)
				verbose("%d:", insn_idx);
			else
				verbose("\nfrom %d to %d:",
					prev_insn_idx, insn_idx);
A
Alexei Starovoitov 已提交
2953
			print_verifier_state(&env->cur_state);
2954 2955 2956 2957 2958
			do_print_state = false;
		}

		if (log_level) {
			verbose("%d: ", insn_idx);
2959
			print_bpf_insn(env, insn);
2960 2961
		}

2962 2963 2964 2965
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

2966
		if (class == BPF_ALU || class == BPF_ALU64) {
2967
			err = check_alu_op(env, insn);
2968 2969 2970 2971
			if (err)
				return err;

		} else if (class == BPF_LDX) {
2972
			enum bpf_reg_type *prev_src_type, src_reg_type;
2973 2974 2975

			/* check for reserved fields is already done */

2976 2977 2978 2979 2980 2981 2982 2983 2984
			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;

			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
			if (err)
				return err;

2985 2986
			src_reg_type = regs[insn->src_reg].type;

2987 2988 2989 2990 2991 2992 2993 2994 2995
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
			err = check_mem_access(env, insn->src_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

2996 2997
			if (BPF_SIZE(insn->code) != BPF_W &&
			    BPF_SIZE(insn->code) != BPF_DW) {
2998 2999 3000
				insn_idx++;
				continue;
			}
3001

3002 3003 3004
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3005 3006
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3007
				 * save type to validate intersecting paths
3008
				 */
3009
				*prev_src_type = src_reg_type;
3010

3011
			} else if (src_reg_type != *prev_src_type &&
3012
				   (src_reg_type == PTR_TO_CTX ||
3013
				    *prev_src_type == PTR_TO_CTX)) {
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3025
		} else if (class == BPF_STX) {
3026
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3027

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
			if (BPF_MODE(insn->code) == BPF_XADD) {
				err = check_xadd(env, insn);
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
			/* check src2 operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

3045 3046
			dst_reg_type = regs[insn->dst_reg].type;

3047 3048 3049 3050 3051 3052 3053
			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3054 3055 3056 3057 3058
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3059
				   (dst_reg_type == PTR_TO_CTX ||
3060
				    *prev_dst_type == PTR_TO_CTX)) {
3061 3062 3063 3064
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
				verbose("BPF_ST uses reserved fields\n");
				return -EINVAL;
			}
			/* check src operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_CALL uses reserved fields\n");
					return -EINVAL;
				}

3095
				err = check_call(env, insn->imm, insn_idx);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_JA uses reserved fields\n");
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_EXIT uses reserved fields\n");
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
				if (err)
					return err;

3130 3131 3132 3133 3134
				if (is_pointer_value(env, BPF_REG_0)) {
					verbose("R0 leaks addr as return value\n");
					return -EACCES;
				}

3135
process_bpf_exit:
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3152 3153 3154 3155
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
				verbose("invalid BPF_LD mode\n");
				return -EINVAL;
			}
3166
			reset_reg_range_values(regs, insn->dst_reg);
3167 3168 3169 3170 3171 3172 3173 3174
		} else {
			verbose("unknown insn class %d\n", class);
			return -EINVAL;
		}

		insn_idx++;
	}

A
Alexei Starovoitov 已提交
3175
	verbose("processed %d insns\n", insn_processed);
3176 3177 3178
	return 0;
}

3179 3180 3181
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
3182 3183
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3184 3185 3186
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

3187 3188 3189 3190
static int check_map_prog_compatibility(struct bpf_map *map,
					struct bpf_prog *prog)

{
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
			verbose("perf_event programs can only use preallocated hash map\n");
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
			verbose("perf_event programs can only use preallocated inner hash map\n");
			return -EINVAL;
		}
3206 3207 3208 3209
	}
	return 0;
}

3210 3211 3212
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
3213
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3214 3215 3216
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
3217
	int i, j, err;
3218

3219
	err = bpf_prog_calc_tag(env->prog);
3220 3221 3222
	if (err)
		return err;

3223
	for (i = 0; i < insn_cnt; i++, insn++) {
3224
		if (BPF_CLASS(insn->code) == BPF_LDX &&
3225
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3226 3227 3228 3229
			verbose("BPF_LDX uses reserved fields\n");
			return -EINVAL;
		}

3230 3231 3232 3233 3234 3235 3236
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
			verbose("BPF_STX uses reserved fields\n");
			return -EINVAL;
		}

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
				verbose("invalid bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
				verbose("unrecognized bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			f = fdget(insn->imm);
3258
			map = __bpf_map_get(f);
3259 3260 3261 3262 3263 3264
			if (IS_ERR(map)) {
				verbose("fd %d is not pointing to valid bpf_map\n",
					insn->imm);
				return PTR_ERR(map);
			}

3265 3266 3267 3268 3269 3270
			err = check_map_prog_compatibility(map, env->prog);
			if (err) {
				fdput(f);
				return err;
			}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
3292 3293 3294 3295 3296 3297 3298
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
3314
static void release_maps(struct bpf_verifier_env *env)
3315 3316 3317 3318 3319 3320 3321 3322
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3323
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

3369 3370 3371
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
3372
static int convert_ctx_accesses(struct bpf_verifier_env *env)
3373
{
3374
	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3375
	const int insn_cnt = env->prog->len;
3376
	struct bpf_insn insn_buf[16], *insn;
3377
	struct bpf_prog *new_prog;
3378
	enum bpf_access_type type;
3379
	int i, cnt, delta = 0;
3380

3381 3382 3383 3384 3385 3386 3387
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		} else if (cnt) {
3388
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3389 3390
			if (!new_prog)
				return -ENOMEM;
3391

3392
			env->prog = new_prog;
3393
			delta += cnt - 1;
3394 3395 3396 3397
		}
	}

	if (!ops->convert_ctx_access)
3398 3399
		return 0;

3400
	insn = env->prog->insnsi + delta;
3401

3402
	for (i = 0; i < insn_cnt; i++, insn++) {
3403 3404 3405
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3406
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3407
			type = BPF_READ;
3408 3409 3410
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3411
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3412 3413
			type = BPF_WRITE;
		else
3414 3415
			continue;

3416
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3417 3418
			continue;

3419
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3420 3421 3422 3423 3424
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		}

3425
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3426 3427 3428
		if (!new_prog)
			return -ENOMEM;

3429
		delta += cnt - 1;
3430 3431 3432

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
3433
		insn      = new_prog->insnsi + i + delta;
3434 3435 3436 3437 3438
	}

	return 0;
}

3439
/* fixup insn->imm field of bpf_call instructions
3440
 * and inline eligible helpers as explicit sequence of BPF instructions
3441 3442 3443
 *
 * this function is called after eBPF program passed verification
 */
3444
static int fixup_bpf_calls(struct bpf_verifier_env *env)
3445
{
3446 3447
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
3448
	const struct bpf_func_proto *fn;
3449
	const int insn_cnt = prog->len;
3450 3451 3452 3453
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
3454

3455 3456 3457
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
3458

3459 3460 3461 3462 3463
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
3464 3465 3466 3467 3468 3469 3470
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;

3471 3472 3473 3474
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
3475
			 */
3476 3477 3478 3479
			insn->imm = 0;
			insn->code |= BPF_X;
			continue;
		}
3480

3481 3482
		if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
3483 3484
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose("bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

patch_call_imm:
3507 3508 3509 3510 3511 3512 3513 3514
		fn = prog->aux->ops->get_func_proto(insn->imm);
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
			verbose("kernel subsystem misconfigured func %s#%d\n",
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
3515
		}
3516
		insn->imm = fn->func - __bpf_call_base;
3517 3518
	}

3519 3520
	return 0;
}
3521

3522
static void free_states(struct bpf_verifier_env *env)
3523
{
3524
	struct bpf_verifier_state_list *sl, *sln;
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

3544
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
3545
{
3546
	char __user *log_ubuf = NULL;
3547
	struct bpf_verifier_env *env;
A
Alexei Starovoitov 已提交
3548 3549
	int ret = -EINVAL;

3550
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3551 3552
	 * allocate/free it every time bpf_check() is called
	 */
3553
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3554 3555 3556
	if (!env)
		return -ENOMEM;

3557 3558 3559 3560 3561
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
3562
	env->prog = *prog;
3563

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
		log_level = attr->log_level;
		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
		log_size = attr->log_size;
		log_len = 0;

		ret = -EINVAL;
		/* log_* values have to be sane */
		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
		    log_level == 0 || log_ubuf == NULL)
3580
			goto err_unlock;
3581 3582 3583 3584

		ret = -ENOMEM;
		log_buf = vmalloc(log_size);
		if (!log_buf)
3585
			goto err_unlock;
3586 3587 3588
	} else {
		log_level = 0;
	}
3589 3590 3591

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3592
		env->strict_alignment = true;
3593

3594 3595 3596 3597
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

3598
	env->explored_states = kcalloc(env->prog->len,
3599
				       sizeof(struct bpf_verifier_state_list *),
3600 3601 3602 3603 3604
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

3605 3606 3607 3608
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

3609 3610
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

3611
	ret = do_check(env);
3612

3613
skip_full_check:
3614
	while (pop_stack(env, NULL) >= 0);
3615
	free_states(env);
3616

3617 3618 3619 3620
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

3621
	if (ret == 0)
3622
		ret = fixup_bpf_calls(env);
3623

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	if (log_level && log_len >= log_size - 1) {
		BUG_ON(log_len >= log_size);
		/* verifier log exceeded user supplied buffer */
		ret = -ENOSPC;
		/* fall through to return what was recorded */
	}

	/* copy verifier log back to user space including trailing zero */
	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
		ret = -EFAULT;
		goto free_log_buf;
	}

3637 3638
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
3639 3640 3641
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
3642

3643
		if (!env->prog->aux->used_maps) {
3644 3645 3646 3647
			ret = -ENOMEM;
			goto free_log_buf;
		}

3648
		memcpy(env->prog->aux->used_maps, env->used_maps,
3649
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3650
		env->prog->aux->used_map_cnt = env->used_map_cnt;
3651 3652 3653 3654 3655 3656

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
3657 3658 3659 3660

free_log_buf:
	if (log_level)
		vfree(log_buf);
3661
	if (!env->prog->aux->used_maps)
3662 3663 3664 3665
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
3666
	*prog = env->prog;
3667
err_unlock:
3668
	mutex_unlock(&bpf_verifier_lock);
3669 3670 3671
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
3672 3673
	return ret;
}
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697

int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	log_level = 0;
3698

3699
	env->strict_alignment = false;
3700 3701
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);