verifier.c 127.2 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35

/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
36
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
64
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
65
 * means the register has some value, but it's not a valid pointer.
66
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
67 68
 *
 * When verifier sees load or store instructions the type of base register
69
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

131
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
132
struct bpf_verifier_stack_elem {
133 134 135 136
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
137
	struct bpf_verifier_state st;
138 139
	int insn_idx;
	int prev_insn_idx;
140
	struct bpf_verifier_stack_elem *next;
141 142
};

143
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
144 145
#define BPF_COMPLEXITY_LIMIT_STACK	1024

146 147
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

148 149
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
150
	bool raw_mode;
151
	bool pkt_access;
152 153
	int regno;
	int access_size;
154 155
};

156 157 158 159 160 161 162 163 164 165 166 167
/* verbose verifier prints what it's seeing
 * bpf_check() is called under lock, so no race to access these global vars
 */
static u32 log_level, log_size, log_len;
static char *log_buf;

static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
168
static __printf(1, 2) void verbose(const char *fmt, ...)
169 170 171 172 173 174 175 176 177 178 179
{
	va_list args;

	if (log_level == 0 || log_len >= log_size - 1)
		return;

	va_start(args, fmt);
	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
	va_end(args);
}

180 181 182
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
183
	[SCALAR_VALUE]		= "inv",
184 185 186 187 188
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
189 190
	[PTR_TO_PACKET]		= "pkt",
	[PTR_TO_PACKET_END]	= "pkt_end",
191 192
};

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
static const char * const func_id_str[] = {
	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
};
#undef __BPF_FUNC_STR_FN

static const char *func_id_name(int id)
{
	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);

	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
		return func_id_str[id];
	else
		return "unknown";
}

209
static void print_verifier_state(struct bpf_verifier_state *state)
210
{
211
	struct bpf_reg_state *reg;
212 213 214 215
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
216 217
		reg = &state->regs[i];
		t = reg->type;
218 219 220
		if (t == NOT_INIT)
			continue;
		verbose(" R%d=%s", i, reg_type_str[t]);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
			verbose("%lld", reg->var_off.value + reg->off);
		} else {
			verbose("(id=%d", reg->id);
			if (t != SCALAR_VALUE)
				verbose(",off=%d", reg->off);
			if (t == PTR_TO_PACKET)
				verbose(",r=%d", reg->range);
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
				verbose(",ks=%d,vs=%d",
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
				verbose(",imm=%llx", reg->var_off.value);
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
					verbose(",smin_value=%lld",
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
					verbose(",smax_value=%lld",
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
					verbose(",umin_value=%llu",
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
					verbose(",umax_value=%llu",
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
260

261 262 263
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
					verbose(",var_off=%s", tn_buf);
				}
264 265 266
			}
			verbose(")");
		}
267
	}
268
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
269
		if (state->stack_slot_type[i] == STACK_SPILL)
270
			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
271
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
272 273 274 275
	}
	verbose("\n");
}

276 277 278 279 280 281 282 283 284 285 286
static const char *const bpf_class_string[] = {
	[BPF_LD]    = "ld",
	[BPF_LDX]   = "ldx",
	[BPF_ST]    = "st",
	[BPF_STX]   = "stx",
	[BPF_ALU]   = "alu",
	[BPF_JMP]   = "jmp",
	[BPF_RET]   = "BUG",
	[BPF_ALU64] = "alu64",
};

287
static const char *const bpf_alu_string[16] = {
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	[BPF_ADD >> 4]  = "+=",
	[BPF_SUB >> 4]  = "-=",
	[BPF_MUL >> 4]  = "*=",
	[BPF_DIV >> 4]  = "/=",
	[BPF_OR  >> 4]  = "|=",
	[BPF_AND >> 4]  = "&=",
	[BPF_LSH >> 4]  = "<<=",
	[BPF_RSH >> 4]  = ">>=",
	[BPF_NEG >> 4]  = "neg",
	[BPF_MOD >> 4]  = "%=",
	[BPF_XOR >> 4]  = "^=",
	[BPF_MOV >> 4]  = "=",
	[BPF_ARSH >> 4] = "s>>=",
	[BPF_END >> 4]  = "endian",
};

static const char *const bpf_ldst_string[] = {
	[BPF_W >> 3]  = "u32",
	[BPF_H >> 3]  = "u16",
	[BPF_B >> 3]  = "u8",
	[BPF_DW >> 3] = "u64",
};

311
static const char *const bpf_jmp_string[16] = {
312 313 314
	[BPF_JA >> 4]   = "jmp",
	[BPF_JEQ >> 4]  = "==",
	[BPF_JGT >> 4]  = ">",
315
	[BPF_JLT >> 4]  = "<",
316
	[BPF_JGE >> 4]  = ">=",
317
	[BPF_JLE >> 4]  = "<=",
318 319 320
	[BPF_JSET >> 4] = "&",
	[BPF_JNE >> 4]  = "!=",
	[BPF_JSGT >> 4] = "s>",
321
	[BPF_JSLT >> 4] = "s<",
322
	[BPF_JSGE >> 4] = "s>=",
323
	[BPF_JSLE >> 4] = "s<=",
324 325 326 327
	[BPF_CALL >> 4] = "call",
	[BPF_EXIT >> 4] = "exit",
};

328 329
static void print_bpf_insn(const struct bpf_verifier_env *env,
			   const struct bpf_insn *insn)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
{
	u8 class = BPF_CLASS(insn->code);

	if (class == BPF_ALU || class == BPF_ALU64) {
		if (BPF_SRC(insn->code) == BPF_X)
			verbose("(%02x) %sr%d %s %sr%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->src_reg);
		else
			verbose("(%02x) %sr%d %s %s%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->imm);
	} else if (class == BPF_STX) {
		if (BPF_MODE(insn->code) == BPF_MEM)
			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg,
				insn->off, insn->src_reg);
		else if (BPF_MODE(insn->code) == BPF_XADD)
			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg, insn->off,
				insn->src_reg);
		else
			verbose("BUG_%02x\n", insn->code);
	} else if (class == BPF_ST) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_st_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
			insn->code,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->dst_reg,
			insn->off, insn->imm);
	} else if (class == BPF_LDX) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_ldx_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
			insn->code, insn->dst_reg,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->src_reg, insn->off);
	} else if (class == BPF_LD) {
		if (BPF_MODE(insn->code) == BPF_ABS) {
			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IND) {
			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->src_reg, insn->imm);
393 394 395 396 397 398 399 400 401 402 403 404 405
		} else if (BPF_MODE(insn->code) == BPF_IMM &&
			   BPF_SIZE(insn->code) == BPF_DW) {
			/* At this point, we already made sure that the second
			 * part of the ldimm64 insn is accessible.
			 */
			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;

			if (map_ptr && !env->allow_ptr_leaks)
				imm = 0;

			verbose("(%02x) r%d = 0x%llx\n", insn->code,
				insn->dst_reg, (unsigned long long)imm);
406 407 408 409 410 411 412 413
		} else {
			verbose("BUG_ld_%02x\n", insn->code);
			return;
		}
	} else if (class == BPF_JMP) {
		u8 opcode = BPF_OP(insn->code);

		if (opcode == BPF_CALL) {
414 415
			verbose("(%02x) call %s#%d\n", insn->code,
				func_id_name(insn->imm), insn->imm);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		} else if (insn->code == (BPF_JMP | BPF_JA)) {
			verbose("(%02x) goto pc%+d\n",
				insn->code, insn->off);
		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
			verbose("(%02x) exit\n", insn->code);
		} else if (BPF_SRC(insn->code) == BPF_X) {
			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->src_reg, insn->off);
		} else {
			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->imm, insn->off);
		}
	} else {
		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
	}
}

437
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
438
{
439
	struct bpf_verifier_stack_elem *elem;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

456 457
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
458
{
459
	struct bpf_verifier_stack_elem *elem;
460

461
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
462 463 464 465 466 467 468 469 470
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
471
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
		verbose("BPF program is too complex\n");
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

487 488
static void __mark_reg_not_init(struct bpf_reg_state *reg);

489 490 491 492 493 494 495 496 497 498 499 500 501
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

502 503 504 505
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
506
{
507
	__mark_reg_known(reg, 0);
508
}
509

510 511 512 513 514 515 516 517 518 519 520 521
static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_known_zero(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

588 589 590 591 592 593 594
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
595
	__mark_reg_unbounded(reg);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_unknown(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_not_init(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
626 627
}

628
static void init_reg_state(struct bpf_reg_state *regs)
629 630 631
{
	int i;

632
	for (i = 0; i < MAX_BPF_REG; i++) {
633
		mark_reg_not_init(regs, i);
634 635
		regs[i].live = REG_LIVE_NONE;
	}
636 637

	/* frame pointer */
638 639
	regs[BPF_REG_FP].type = PTR_TO_STACK;
	mark_reg_known_zero(regs, BPF_REG_FP);
640 641 642

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
643
	mark_reg_known_zero(regs, BPF_REG_1);
644 645
}

646 647 648 649 650 651
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
668 669
			 enum reg_arg_type t)
{
670 671
	struct bpf_reg_state *regs = env->cur_state.regs;

672 673 674 675 676 677 678 679 680 681 682
	if (regno >= MAX_BPF_REG) {
		verbose("R%d is invalid\n", regno);
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
			verbose("R%d !read_ok\n", regno);
			return -EACCES;
		}
683
		mark_reg_read(&env->cur_state, regno);
684 685 686 687 688 689
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
			verbose("frame pointer is read only\n");
			return -EACCES;
		}
690
		regs[regno].live |= REG_LIVE_WRITTEN;
691
		if (t == DST_OP)
692
			mark_reg_unknown(regs, regno);
693 694 695 696
	}
	return 0;
}

697 698 699 700 701 702 703
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
704 705
	case PTR_TO_PACKET:
	case PTR_TO_PACKET_END:
706 707 708 709 710 711 712
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

713 714 715
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
716 717
static int check_stack_write(struct bpf_verifier_state *state, int off,
			     int size, int value_regno)
718
{
719
	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
720 721 722
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
723 724

	if (value_regno >= 0 &&
725
	    is_spillable_regtype(state->regs[value_regno].type)) {
726 727

		/* register containing pointer is being spilled into stack */
728
		if (size != BPF_REG_SIZE) {
729 730 731 732 733
			verbose("invalid size of register spill\n");
			return -EACCES;
		}

		/* save register state */
734 735
		state->spilled_regs[spi] = state->regs[value_regno];
		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
736

737 738 739
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
740
		/* regular write of data into stack */
741
		state->spilled_regs[spi] = (struct bpf_reg_state) {};
742 743 744

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
745 746 747 748
	}
	return 0;
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->spilled_regs[slot].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

764
static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
765 766
			    int value_regno)
{
767
	u8 *slot_type;
768
	int i, spi;
769

770
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
771

772 773
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
774 775 776
			verbose("invalid size of register spill\n");
			return -EACCES;
		}
777 778
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
779 780 781 782 783
				verbose("corrupted spill memory\n");
				return -EACCES;
			}
		}

784 785 786
		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;

		if (value_regno >= 0) {
787
			/* restore register state from stack */
788 789 790
			state->regs[value_regno] = state->spilled_regs[spi];
			mark_stack_slot_read(state, spi);
		}
791 792 793
		return 0;
	} else {
		for (i = 0; i < size; i++) {
794
			if (slot_type[i] != STACK_MISC) {
795 796 797 798 799 800 801
				verbose("invalid read from stack off %d+%d size %d\n",
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
802
			mark_reg_unknown(state->regs, value_regno);
803 804 805 806 807
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
808
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
809 810 811 812
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

813
	if (off < 0 || size <= 0 || off + size > map->value_size) {
814 815 816 817 818 819 820
		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

821 822
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
823 824 825 826 827 828
				int off, int size)
{
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

829 830 831
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
832 833 834
	 */
	if (log_level)
		print_verifier_state(state);
835 836 837 838 839
	/* If the offset is variable, we will need to be stricter in state
	 * pruning from now on.
	 */
	if (!tnum_is_const(reg->var_off))
		env->varlen_map_value_access = true;
840 841 842 843 844 845
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
846
	if (reg->smin_value < 0) {
847 848 849 850
		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
			regno);
		return -EACCES;
	}
851
	err = __check_map_access(env, regno, reg->smin_value + off, size);
852
	if (err) {
853
		verbose("R%d min value is outside of the array range\n", regno);
854 855 856
		return err;
	}

857 858 859
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
860
	 */
861
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
862 863 864 865
		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
			regno);
		return -EACCES;
	}
866
	err = __check_map_access(env, regno, reg->umax_value + off, size);
867 868 869
	if (err)
		verbose("R%d max value is outside of the array range\n", regno);
	return err;
870 871
}

A
Alexei Starovoitov 已提交
872 873
#define MAX_PACKET_OFF 0xffff

874
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
875 876
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
877
{
878
	switch (env->prog->type) {
879 880 881 882 883
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
884
		/* fallthrough */
885 886
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
887
	case BPF_PROG_TYPE_XDP:
888
	case BPF_PROG_TYPE_LWT_XMIT:
889
	case BPF_PROG_TYPE_SK_SKB:
890 891 892 893
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
894 895 896 897 898 899
		return true;
	default:
		return false;
	}
}

900 901
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
				 int off, int size)
A
Alexei Starovoitov 已提交
902
{
903 904
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
905

906
	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
907 908
		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
909 910 911 912 913
		return -EACCES;
	}
	return 0;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
			       int size)
{
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
929
	if (reg->smin_value < 0) {
930 931 932 933 934 935 936 937 938 939 940 941 942
		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
			regno);
		return -EACCES;
	}
	err = __check_packet_access(env, regno, off, size);
	if (err) {
		verbose("R%d offset is outside of the packet\n", regno);
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
943
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
944
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
945
{
946 947 948
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
949

950 951 952 953
	/* for analyzer ctx accesses are already validated and converted */
	if (env->analyzer_ops)
		return 0;

954
	if (env->prog->aux->ops->is_valid_access &&
955
	    env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
956 957 958 959 960 961
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
962
		 */
963
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
964
		*reg_type = info.reg_type;
965

966 967 968
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
969
		return 0;
970
	}
971 972 973 974 975

	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
	return -EACCES;
}

976 977
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
978
{
979
	if (allow_ptr_leaks)
980 981
		return false;

982
	return reg->type != SCALAR_VALUE;
983 984
}

985 986 987 988 989
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
}

990
static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
991
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
992
{
993
	struct tnum reg_off;
994
	int ip_align;
995 996 997 998 999

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1000 1001 1002 1003 1004 1005 1006
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1007
	 */
1008
	ip_align = 2;
1009 1010 1011 1012 1013 1014 1015 1016

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
		verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1017 1018
		return -EACCES;
	}
1019

A
Alexei Starovoitov 已提交
1020 1021 1022
	return 0;
}

1023 1024 1025
static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
				       const char *pointer_desc,
				       int off, int size, bool strict)
1026
{
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
		verbose("misaligned %saccess off %s+%d+%d size %d\n",
			pointer_desc, tn_buf, reg->off, off, size);
1040 1041 1042
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1043 1044 1045
	return 0;
}

1046 1047
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1048 1049
			       int off, int size)
{
1050
	bool strict = env->strict_alignment;
1051
	const char *pointer_desc = "";
1052

1053 1054
	switch (reg->type) {
	case PTR_TO_PACKET:
1055
		/* special case, because of NET_IP_ALIGN */
1056
		return check_pkt_ptr_alignment(reg, off, size, strict);
1057 1058 1059 1060 1061 1062 1063 1064 1065
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1066
	default:
1067
		break;
1068
	}
1069
	return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
1070 1071
}

1072 1073 1074 1075 1076 1077
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1078
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1079 1080 1081
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1082 1083
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
1084 1085 1086 1087 1088 1089
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1090
	/* alignment checks will add in reg->off themselves */
1091
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1092 1093
	if (err)
		return err;
1094

1095 1096 1097 1098
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1099 1100 1101 1102 1103
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into map\n", value_regno);
			return -EACCES;
		}
1104

1105
		err = check_map_access(env, regno, off, size);
1106
		if (!err && t == BPF_READ && value_regno >= 0)
1107
			mark_reg_unknown(state->regs, value_regno);
1108

A
Alexei Starovoitov 已提交
1109
	} else if (reg->type == PTR_TO_CTX) {
1110
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1111

1112 1113 1114 1115 1116
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into ctx\n", value_regno);
			return -EACCES;
		}
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
			verbose("variable ctx access var_off=%s off=%d size=%d",
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1129
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1130
		if (!err && t == BPF_READ && value_regno >= 0) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
			/* ctx access returns either a scalar, or a
			 * PTR_TO_PACKET[_END].  In the latter case, we know
			 * the offset is zero.
			 */
			if (reg_type == SCALAR_VALUE)
				mark_reg_unknown(state->regs, value_regno);
			else
				mark_reg_known_zero(state->regs, value_regno);
			state->regs[value_regno].id = 0;
			state->regs[value_regno].off = 0;
			state->regs[value_regno].range = 0;
1142
			state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1143
		}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
			verbose("variable stack access var_off=%s off=%d size=%d",
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1159 1160 1161 1162
		if (off >= 0 || off < -MAX_BPF_STACK) {
			verbose("invalid stack off=%d size=%d\n", off, size);
			return -EACCES;
		}
1163 1164 1165 1166

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1167 1168 1169 1170 1171 1172 1173
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
				verbose("attempt to corrupt spilled pointer on stack\n");
				return -EACCES;
			}
1174
			err = check_stack_write(state, off, size, value_regno);
1175
		} else {
1176
			err = check_stack_read(state, off, size, value_regno);
1177
		}
1178
	} else if (reg->type == PTR_TO_PACKET) {
1179
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
A
Alexei Starovoitov 已提交
1180 1181 1182
			verbose("cannot write into packet\n");
			return -EACCES;
		}
1183 1184 1185 1186 1187
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into packet\n", value_regno);
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
1188 1189
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
1190
			mark_reg_unknown(state->regs, value_regno);
1191 1192
	} else {
		verbose("R%d invalid mem access '%s'\n",
A
Alexei Starovoitov 已提交
1193
			regno, reg_type_str[reg->type]);
1194 1195
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1196

1197 1198 1199 1200 1201
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
	    state->regs[value_regno].type == SCALAR_VALUE) {
		/* b/h/w load zero-extends, mark upper bits as known 0 */
		state->regs[value_regno].var_off = tnum_cast(
					state->regs[value_regno].var_off, size);
1202
		__update_reg_bounds(&state->regs[value_regno]);
A
Alexei Starovoitov 已提交
1203
	}
1204 1205 1206
	return err;
}

1207
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
		verbose("BPF_XADD uses reserved fields\n");
		return -EINVAL;
	}

	/* check src1 operand */
1218
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1219 1220 1221 1222
	if (err)
		return err;

	/* check src2 operand */
1223
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1224 1225 1226
	if (err)
		return err;

1227 1228 1229 1230 1231
	if (is_pointer_value(env, insn->src_reg)) {
		verbose("R%d leaks addr into mem\n", insn->src_reg);
		return -EACCES;
	}

1232
	/* check whether atomic_add can read the memory */
1233
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1234 1235 1236 1237 1238
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1239
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1240 1241 1242
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1243 1244 1245 1246 1247 1248
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1249 1250
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1251 1252 1253
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1254
 */
1255
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1256 1257
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1258
{
1259 1260
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
1261 1262
	int off, i;

1263
	if (regs[regno].type != PTR_TO_STACK) {
1264
		/* Allow zero-byte read from NULL, regardless of pointer type */
1265
		if (zero_size_allowed && access_size == 0 &&
1266
		    register_is_null(regs[regno]))
1267 1268 1269 1270 1271
			return 0;

		verbose("R%d type=%s expected=%s\n", regno,
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1272
		return -EACCES;
1273
	}
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
		verbose("invalid variable stack read R%d var_off=%s\n",
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1284 1285 1286 1287 1288 1289 1290
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
		verbose("invalid stack type R%d off=%d access_size=%d\n",
			regno, off, access_size);
		return -EACCES;
	}

1291 1292 1293
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1294 1295 1296 1297 1298 1299
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1300
	for (i = 0; i < access_size; i++) {
1301
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1302 1303 1304 1305 1306 1307 1308 1309
			verbose("invalid indirect read from stack off %d+%d size %d\n",
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1310 1311 1312 1313
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1314
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1315

1316
	switch (reg->type) {
1317
	case PTR_TO_PACKET:
1318
		return check_packet_access(env, regno, reg->off, access_size);
1319
	case PTR_TO_MAP_VALUE:
1320 1321
		return check_map_access(env, regno, reg->off, access_size);
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1322 1323 1324 1325 1326
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1327
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1328 1329
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1330
{
1331
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1332
	enum bpf_reg_type expected_type, type = reg->type;
1333 1334
	int err = 0;

1335
	if (arg_type == ARG_DONTCARE)
1336 1337
		return 0;

1338 1339 1340
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1341

1342 1343 1344 1345 1346
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
			verbose("R%d leaks addr into helper function\n", regno);
			return -EACCES;
		}
1347
		return 0;
1348
	}
1349

1350 1351
	if (type == PTR_TO_PACKET &&
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1352
		verbose("helper access to the packet is not allowed\n");
1353 1354 1355
		return -EACCES;
	}

1356
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1357 1358
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1359 1360
		if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
1361 1362
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1363 1364
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1365
			goto err_type;
1366 1367
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1368 1369
		if (type != expected_type)
			goto err_type;
1370 1371
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1372 1373
		if (type != expected_type)
			goto err_type;
1374 1375
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1376 1377
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1378
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1379 1380
		 * happens during stack boundary checking.
		 */
1381
		if (register_is_null(*reg))
1382
			/* final test in check_stack_boundary() */;
1383
		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1384
			 type != expected_type)
1385
			goto err_type;
1386
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1387 1388 1389 1390 1391 1392 1393
	} else {
		verbose("unsupported arg_type %d\n", arg_type);
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1394
		meta->map_ptr = reg->map_ptr;
1395 1396 1397 1398 1399
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1400
		if (!meta->map_ptr) {
1401 1402 1403 1404 1405 1406 1407 1408
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
			verbose("invalid map_ptr to access map->key\n");
			return -EACCES;
		}
1409
		if (type == PTR_TO_PACKET)
1410
			err = check_packet_access(env, regno, reg->off,
1411 1412 1413 1414 1415
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1416 1417 1418 1419
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1420
		if (!meta->map_ptr) {
1421 1422 1423 1424
			/* kernel subsystem misconfigured verifier */
			verbose("invalid map_ptr to access map->value\n");
			return -EACCES;
		}
1425
		if (type == PTR_TO_PACKET)
1426
			err = check_packet_access(env, regno, reg->off,
1427 1428 1429 1430 1431
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1432 1433 1434
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1435 1436 1437 1438 1439 1440 1441

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1442
			verbose("ARG_CONST_SIZE cannot be first argument\n");
1443 1444
			return -EACCES;
		}
1445

1446 1447
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1448
		 */
1449 1450

		if (!tnum_is_const(reg->var_off))
1451 1452 1453 1454 1455 1456 1457
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1458
		if (reg->smin_value < 0) {
1459 1460 1461 1462
			verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
				regno);
			return -EACCES;
		}
1463

1464
		if (reg->umin_value == 0) {
1465 1466 1467
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1468 1469 1470
			if (err)
				return err;
		}
1471

1472
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1473 1474 1475 1476 1477
			verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1478
					      reg->umax_value,
1479
					      zero_size_allowed, meta);
1480 1481 1482
	}

	return err;
1483 1484 1485 1486
err_type:
	verbose("R%d type=%s expected=%s\n", regno,
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1487 1488
}

1489 1490 1491 1492 1493
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
	if (!map)
		return 0;

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
		    func_id != BPF_FUNC_perf_event_output)
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1509
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1510
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1511
		    func_id != BPF_FUNC_current_task_under_cgroup)
1512 1513
			goto error;
		break;
1514 1515 1516 1517 1518
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1519
		if (func_id != BPF_FUNC_redirect_map)
1520 1521
			goto error;
		break;
1522
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1523
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1524 1525
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1526 1527 1528 1529 1530 1531
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1551
	case BPF_FUNC_current_task_under_cgroup:
1552
	case BPF_FUNC_skb_under_cgroup:
1553 1554 1555
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1556 1557 1558 1559
	case BPF_FUNC_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_DEVMAP)
			goto error;
		break;
1560 1561 1562 1563 1564 1565 1566 1567
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1568 1569
	default:
		break;
1570 1571 1572
	}

	return 0;
1573
error:
1574 1575
	verbose("cannot pass map_type %d into func %s#%d\n",
		map->map_type, func_id_name(func_id), func_id);
1576
	return -EINVAL;
1577 1578
}

1579 1580 1581 1582
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1583
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1584
		count++;
1585
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1586
		count++;
1587
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1588
		count++;
1589
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1590
		count++;
1591
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1592 1593 1594 1595 1596
		count++;

	return count > 1 ? -EINVAL : 0;
}

1597 1598 1599
/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
 * so turn them into unknown SCALAR_VALUE.
 */
1600
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1601
{
1602 1603
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1604 1605 1606 1607 1608
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET ||
		    regs[i].type == PTR_TO_PACKET_END)
1609
			mark_reg_unknown(regs, i);
A
Alexei Starovoitov 已提交
1610 1611 1612 1613 1614 1615 1616 1617

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type != PTR_TO_PACKET &&
		    reg->type != PTR_TO_PACKET_END)
			continue;
1618
		__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1619 1620 1621
	}
}

1622
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1623
{
1624
	struct bpf_verifier_state *state = &env->cur_state;
1625
	const struct bpf_func_proto *fn = NULL;
1626
	struct bpf_reg_state *regs = state->regs;
1627
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1628
	bool changes_data;
1629 1630 1631 1632
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1633
		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1634 1635 1636 1637 1638 1639 1640
		return -EINVAL;
	}

	if (env->prog->aux->ops->get_func_proto)
		fn = env->prog->aux->ops->get_func_proto(func_id);

	if (!fn) {
1641
		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1642 1643 1644 1645
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1646
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1647 1648 1649 1650
		verbose("cannot call GPL only function from proprietary program\n");
		return -EINVAL;
	}

1651
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1652

1653
	memset(&meta, 0, sizeof(meta));
1654
	meta.pkt_access = fn->pkt_access;
1655

1656 1657 1658 1659 1660
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1661 1662
		verbose("kernel subsystem misconfigured func %s#%d\n",
			func_id_name(func_id), func_id);
1663 1664 1665
		return err;
	}

1666
	/* check args */
1667
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1668 1669
	if (err)
		return err;
1670
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1671 1672
	if (err)
		return err;
1673
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1674 1675
	if (err)
		return err;
1676
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1677 1678
	if (err)
		return err;
1679
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1680 1681 1682
	if (err)
		return err;

1683 1684 1685 1686
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1687
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1688 1689 1690 1691
		if (err)
			return err;
	}

1692
	/* reset caller saved regs */
1693
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1694
		mark_reg_not_init(regs, caller_saved[i]);
1695 1696
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1697

1698
	/* update return register (already marked as written above) */
1699
	if (fn->ret_type == RET_INTEGER) {
1700 1701
		/* sets type to SCALAR_VALUE */
		mark_reg_unknown(regs, BPF_REG_0);
1702 1703 1704
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1705 1706
		struct bpf_insn_aux_data *insn_aux;

1707
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1708 1709 1710
		/* There is no offset yet applied, variable or fixed */
		mark_reg_known_zero(regs, BPF_REG_0);
		regs[BPF_REG_0].off = 0;
1711 1712 1713 1714
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1715
		if (meta.map_ptr == NULL) {
1716 1717 1718
			verbose("kernel subsystem misconfigured verifier\n");
			return -EINVAL;
		}
1719
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1720
		regs[BPF_REG_0].id = ++env->id_gen;
1721 1722 1723 1724 1725
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1726
	} else {
1727 1728
		verbose("unknown return type %d of func %s#%d\n",
			fn->ret_type, func_id_name(func_id), func_id);
1729 1730
		return -EINVAL;
	}
1731

1732
	err = check_map_func_compatibility(meta.map_ptr, func_id);
1733 1734
	if (err)
		return err;
1735

A
Alexei Starovoitov 已提交
1736 1737 1738 1739 1740
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1741 1742 1743 1744
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1778
{
1779 1780
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
	bool known = tnum_is_const(off_reg->var_off);
1781 1782 1783 1784
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1785
	u8 opcode = BPF_OP(insn->code);
1786
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1787

1788
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1789

1790
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1791
		print_verifier_state(&env->cur_state);
1792 1793 1794 1795 1796 1797
		verbose("verifier internal error: known but bad sbounds\n");
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: known but bad ubounds\n");
1798 1799 1800 1801 1802 1803 1804 1805 1806
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
			verbose("R%d 32-bit pointer arithmetic prohibited\n",
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1807 1808
	}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1830
	 */
1831 1832
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1833

1834 1835 1836 1837
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1838
		 */
1839 1840
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1841
			/* pointer += K.  Accumulate it into fixed offset */
1842 1843 1844 1845
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1846
			dst_reg->var_off = ptr_reg->var_off;
1847
			dst_reg->off = ptr_reg->off + smin_val;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1859
		 */
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
		if (ptr_reg->type == PTR_TO_PACKET) {
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
				verbose("R%d tried to subtract pointer from scalar\n",
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1895
		 */
1896 1897 1898 1899 1900 1901
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
				verbose("R%d subtraction from stack pointer prohibited\n",
					dst);
			return -EACCES;
		}
1902 1903
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1904
			/* pointer -= K.  Subtract it from fixed offset */
1905 1906 1907 1908
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1909 1910
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1911
			dst_reg->off = ptr_reg->off - smin_val;
1912 1913 1914 1915 1916
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1917
		 */
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1936 1937 1938 1939 1940
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
		if (ptr_reg->type == PTR_TO_PACKET) {
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1941
			if (smin_val < 0)
1942
				dst_reg->range = 0;
1943
		}
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
			verbose("R%d bitwise operator %s on pointer prohibited\n",
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic with %s operator prohibited\n",
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1962 1963
	}

1964 1965 1966
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
1967 1968 1969
	return 0;
}

1970 1971 1972 1973
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
1974
{
1975
	struct bpf_reg_state *regs = env->cur_state.regs;
1976
	u8 opcode = BPF_OP(insn->code);
1977
	bool src_known, dst_known;
1978 1979
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
1980

1981 1982 1983 1984
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
1985
	}
1986 1987 1988 1989
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
1990 1991
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
1992

1993 1994
	switch (opcode) {
	case BPF_ADD:
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2011
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2012 2013
		break;
	case BPF_SUB:
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2032
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2033 2034
		break;
	case BPF_MUL:
2035 2036
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2037
			/* Ain't nobody got time to multiply that sign */
2038 2039
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2040 2041
			break;
		}
2042 2043
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2044
		 */
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2062 2063
		break;
	case BPF_AND:
2064
		if (src_known && dst_known) {
2065 2066
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2067 2068
			break;
		}
2069 2070
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2071
		 */
2072
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2090 2091 2092
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2093 2094
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2095 2096
			break;
		}
2097 2098
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2099 2100
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2101 2102 2103 2104 2105 2106 2107 2108 2109
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2110
		} else {
2111 2112 2113 2114 2115
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2116
		}
2117 2118
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2119 2120
		break;
	case BPF_LSH:
2121 2122 2123 2124
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2125 2126 2127
			mark_reg_unknown(regs, insn->dst_reg);
			break;
		}
2128 2129
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2130
		 */
2131 2132 2133 2134 2135 2136
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2137
		} else {
2138 2139
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2140
		}
2141 2142 2143 2144 2145 2146
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2147 2148
		break;
	case BPF_RSH:
2149 2150 2151 2152
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2153 2154 2155 2156
			mark_reg_unknown(regs, insn->dst_reg);
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2157 2158
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2159
				/* Sign bit will be cleared */
2160 2161 2162 2163 2164 2165
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2166
		} else {
2167 2168
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2169
		}
2170
		if (src_known)
2171 2172
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2173
		else
2174 2175 2176 2177 2178
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2179 2180
		break;
	default:
2181
		mark_reg_unknown(regs, insn->dst_reg);
2182 2183 2184
		break;
	}

2185 2186
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
					verbose("R%d pointer %s pointer prohibited\n",
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
				mark_reg_unknown(regs, insn->dst_reg);
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2253
		__mark_reg_known(&off_reg, insn->imm);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: unexpected ptr_reg\n");
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: no src_reg\n");
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2280 2281
}

2282
/* check validity of 32-bit and 64-bit arithmetic operations */
2283
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2284
{
2285
	struct bpf_reg_state *regs = env->cur_state.regs;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
				verbose("BPF_NEG uses reserved fields\n");
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
				verbose("BPF_END uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src operand */
2306
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2307 2308 2309
		if (err)
			return err;

2310 2311 2312 2313 2314 2315
		if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		}

2316
		/* check dest operand */
2317
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}

			/* check src operand */
2330
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check dest operand */
2341
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
			} else {
2352
				/* R1 = (u32) R2 */
2353 2354 2355 2356 2357
				if (is_pointer_value(env, insn->src_reg)) {
					verbose("R%d partial copy of pointer\n",
						insn->src_reg);
					return -EACCES;
				}
2358
				mark_reg_unknown(regs, insn->dst_reg);
2359
				/* high 32 bits are known zero. */
2360 2361
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2362
				__update_reg_bounds(&regs[insn->dst_reg]);
2363 2364 2365 2366 2367
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2368
			regs[insn->dst_reg].type = SCALAR_VALUE;
2369
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		}

	} else if (opcode > BPF_END) {
		verbose("invalid BPF_ALU opcode %x\n", opcode);
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
			/* check src1 operand */
2384
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src2 operand */
2395
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2396 2397 2398 2399 2400 2401 2402 2403 2404
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
			verbose("div by zero\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
				verbose("invalid shift %d\n", insn->imm);
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2415
		/* check dest operand */
2416
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2417 2418 2419
		if (err)
			return err;

2420
		return adjust_reg_min_max_vals(env, insn);
2421 2422 2423 2424 2425
	}

	return 0;
}

2426 2427
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
				   struct bpf_reg_state *dst_reg)
A
Alexei Starovoitov 已提交
2428
{
2429
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2430
	int i;
2431

2432 2433 2434 2435
	if (dst_reg->off < 0)
		/* This doesn't give us any range */
		return;

2436 2437
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2438 2439 2440 2441 2442
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2443
	/* LLVM can generate four kind of checks:
2444
	 *
2445
	 * Type 1/2:
2446 2447 2448 2449 2450 2451
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2452 2453 2454 2455 2456
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2457 2458 2459 2460 2461
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2462
	 * Type 3/4:
2463 2464 2465 2466 2467 2468
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2469 2470 2471 2472 2473
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2474 2475 2476 2477 2478 2479 2480
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
2481
	 */
2482

2483 2484 2485 2486 2487
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2488 2489
	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2490
			/* keep the maximum range already checked */
2491
			regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
A
Alexei Starovoitov 已提交
2492 2493 2494 2495 2496 2497

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2498
			reg->range = max_t(u16, reg->range, dst_reg->off);
A
Alexei Starovoitov 已提交
2499 2500 2501
	}
}

2502 2503 2504
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2505
 * In JEQ/JNE cases we also adjust the var_off values.
2506 2507 2508 2509 2510
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2511 2512 2513 2514 2515 2516 2517 2518
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2519

2520 2521 2522 2523 2524
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2525
		__mark_reg_known(true_reg, val);
2526 2527 2528 2529 2530
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2531
		__mark_reg_known(false_reg, val);
2532 2533
		break;
	case BPF_JGT:
2534 2535 2536
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2537
	case BPF_JSGT:
2538 2539
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2540
		break;
2541 2542 2543 2544 2545 2546 2547 2548
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2549
	case BPF_JGE:
2550 2551 2552
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2553
	case BPF_JSGE:
2554 2555
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2556
		break;
2557 2558 2559 2560 2561 2562 2563 2564
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2565 2566 2567 2568
	default:
		break;
	}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2580 2581
}

2582 2583
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2584 2585 2586 2587 2588
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2589 2590
	if (__is_pointer_value(false, false_reg))
		return;
2591

2592 2593 2594 2595 2596
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2597
		__mark_reg_known(true_reg, val);
2598 2599 2600 2601 2602
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2603
		__mark_reg_known(false_reg, val);
2604 2605
		break;
	case BPF_JGT:
2606 2607 2608
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2609
	case BPF_JSGT:
2610 2611
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2612
		break;
2613 2614 2615 2616 2617 2618 2619 2620
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2621
	case BPF_JGE:
2622 2623 2624
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2625
	case BPF_JSGE:
2626 2627
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2628
		break;
2629 2630 2631 2632 2633 2634 2635 2636
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2637 2638 2639 2640
	default:
		break;
	}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2652 2653 2654 2655 2656 2657
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2658 2659 2660 2661 2662 2663 2664 2665
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2666 2667
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2697
		break;
2698
	}
2699 2700
}

2701
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2702
			 bool is_null)
2703 2704 2705 2706
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2707 2708 2709 2710
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2711 2712
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2713
				 reg->off)) {
2714 2715
			__mark_reg_known_zero(reg);
			reg->off = 0;
2716 2717 2718
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2719 2720 2721 2722
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2723
			reg->type = PTR_TO_MAP_VALUE;
2724
		}
2725 2726 2727 2728 2729
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2730 2731 2732 2733 2734 2735 2736
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2737
			  bool is_null)
2738 2739
{
	struct bpf_reg_state *regs = state->regs;
2740
	u32 id = regs[regno].id;
2741 2742 2743
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2744
		mark_map_reg(regs, i, id, is_null);
2745 2746 2747 2748

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
2749
		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2750 2751 2752
	}
}

2753
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2754 2755
			     struct bpf_insn *insn, int *insn_idx)
{
2756 2757
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2758 2759 2760
	u8 opcode = BPF_OP(insn->code);
	int err;

2761
	if (opcode > BPF_JSLE) {
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		verbose("invalid BPF_JMP opcode %x\n", opcode);
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}

		/* check src1 operand */
2773
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2774 2775
		if (err)
			return err;
2776 2777 2778 2779 2780 2781

		if (is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer comparison prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
2782 2783 2784 2785 2786 2787 2788 2789
	} else {
		if (insn->src_reg != BPF_REG_0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}
	}

	/* check src2 operand */
2790
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2791 2792 2793
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2794 2795
	dst_reg = &regs[insn->dst_reg];

2796 2797 2798
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2799 2800
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2820 2821
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2822 2823 2824 2825
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2826 2827
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2846 2847 2848 2849
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2850
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2851
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2852 2853
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2854 2855 2856
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
2857 2858
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
A
Alexei Starovoitov 已提交
2859 2860 2861
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2862
		find_good_pkt_pointers(this_branch, dst_reg);
2863 2864 2865 2866
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
		find_good_pkt_pointers(other_branch, dst_reg);
2867 2868 2869 2870
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2871 2872 2873 2874
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
2875 2876 2877
	} else if (is_pointer_value(env, insn->dst_reg)) {
		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
		return -EACCES;
2878 2879
	}
	if (log_level)
2880
		print_verifier_state(this_branch);
2881 2882 2883
	return 0;
}

2884 2885 2886 2887 2888 2889 2890 2891
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2892
/* verify BPF_LD_IMM64 instruction */
2893
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2894
{
2895
	struct bpf_reg_state *regs = env->cur_state.regs;
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
		verbose("invalid BPF_LD_IMM insn\n");
		return -EINVAL;
	}
	if (insn->off != 0) {
		verbose("BPF_LD_IMM64 uses reserved fields\n");
		return -EINVAL;
	}

2907
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2908 2909 2910
	if (err)
		return err;

2911 2912 2913
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

2914
		regs[insn->dst_reg].type = SCALAR_VALUE;
2915
		__mark_reg_known(&regs[insn->dst_reg], imm);
2916
		return 0;
2917
	}
2918 2919 2920 2921 2922 2923 2924 2925 2926

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2927 2928 2929 2930 2931
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2932
	case BPF_PROG_TYPE_SCHED_ACT:
2933 2934 2935 2936 2937 2938
		return true;
	default:
		return false;
	}
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2954
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2955
{
2956
	struct bpf_reg_state *regs = env->cur_state.regs;
2957 2958 2959
	u8 mode = BPF_MODE(insn->code);
	int i, err;

2960
	if (!may_access_skb(env->prog->type)) {
A
Alexei Starovoitov 已提交
2961
		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2962 2963 2964 2965
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2966
	    BPF_SIZE(insn->code) == BPF_DW ||
2967
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
A
Alexei Starovoitov 已提交
2968
		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2969 2970 2971 2972
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
2973
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
2984
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2985 2986 2987 2988 2989
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
2990
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2991
		mark_reg_not_init(regs, caller_saved[i]);
2992 2993
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2994 2995

	/* mark destination R0 register as readable, since it contains
2996 2997
	 * the value fetched from the packet.
	 * Already marked as written above.
2998
	 */
2999
	mark_reg_unknown(regs, BPF_REG_0);
3000 3001 3002
	return 0;
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3043
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3044

3045 3046 3047 3048 3049 3050 3051 3052 3053
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3054
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
		verbose("jump out of range from insn %d to %d\n", t, w);
		return -EINVAL;
	}

3067 3068 3069 3070
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
		verbose("back-edge from insn %d to %d\n", t, w);
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
		verbose("insn state internal bug\n");
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3095
static int check_cfg(struct bpf_verifier_env *env)
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3132 3133
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3146 3147 3148
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3149 3150
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3151 3152
		} else {
			/* conditional jump with two edges */
3153
			env->explored_states[t] = STATE_LIST_MARK;
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
		verbose("pop stack internal bug\n");
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
			verbose("unreachable insn %d\n", i);
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3202 3203 3204 3205
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3206 3207 3208 3209
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3228
 */
3229
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3230
{
3231
	unsigned int i;
A
Alexei Starovoitov 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
static bool regsafe(struct bpf_reg_state *rold,
		    struct bpf_reg_state *rcur,
		    bool varlen_map_access, struct idpair *idmap)
{
3253 3254 3255 3256 3257
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3258 3259
		return true;

3260 3261
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3262
		return true;
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3276 3277 3278 3279
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
		if (varlen_map_access) {
			/* If the new min/max/var_off satisfy the old ones and
			 * everything else matches, we are OK.
			 * We don't care about the 'id' value, because nothing
			 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
			 */
			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
			       range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* If the ranges/var_off were not the same, but
			 * everything else was and we didn't do a variable
			 * access into a map then we are a-ok.
			 */
			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0;
		}
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
	case PTR_TO_PACKET:
		if (rcur->type != PTR_TO_PACKET)
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3346

3347 3348
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3349 3350 3351
	return false;
}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3378 3379
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3380
			 struct bpf_verifier_state *cur)
3381
{
3382
	bool varlen_map_access = env->varlen_map_value_access;
3383 3384
	struct idpair *idmap;
	bool ret = false;
3385 3386
	int i;

3387 3388 3389
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3390
		return false;
3391 3392 3393 3394 3395

	for (i = 0; i < MAX_BPF_REG; i++) {
		if (!regsafe(&old->regs[i], &cur->regs[i], varlen_map_access,
			     idmap))
			goto out_free;
3396 3397 3398
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
3399 3400 3401 3402 3403 3404 3405 3406
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
3407
			goto out_free;
3408 3409
		if (i % BPF_REG_SIZE)
			continue;
3410 3411
		if (old->stack_slot_type[i] != STACK_SPILL)
			continue;
3412 3413 3414 3415 3416
		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
			     &cur->spilled_regs[i / BPF_REG_SIZE],
			     varlen_map_access, idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
3417 3418
			 * are the same as well.
			 * Ex: explored safe path could have stored
3419
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3420
			 * but current path has stored:
3421
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3422 3423 3424
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
3425
			goto out_free;
3426 3427
		else
			continue;
3428
	}
3429 3430 3431 3432
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3433 3434
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
		if (state->regs[i].live == REG_LIVE_READ) {
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (parent->spilled_regs[i].live & REG_LIVE_READ)
			continue;
		if (state->spilled_regs[i].live == REG_LIVE_READ) {
3463
			parent->spilled_regs[i].live |= REG_LIVE_READ;
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
			touched = true;
		}
	}
	return touched;
}

static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3480
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3481
{
3482 3483
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3484
	int i;
3485 3486 3487 3488 3489 3490 3491 3492 3493

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3494
		if (states_equal(env, &sl->state, &env->cur_state)) {
3495
			/* reached equivalent register/stack state,
3496 3497
			 * prune the search.
			 * Registers read by the continuation are read by us.
3498
			 */
3499
			propagate_liveness(&sl->state, &env->cur_state);
3500
			return 1;
3501
		}
3502 3503 3504 3505 3506 3507 3508 3509 3510
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3511
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3512 3513 3514 3515 3516 3517 3518
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3519 3520 3521 3522 3523 3524 3525 3526
	/* connect new state to parentage chain */
	env->cur_state.parent = &new_sl->state;
	/* clear liveness marks in current state */
	for (i = 0; i < BPF_REG_FP; i++)
		env->cur_state.regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3527 3528 3529
	return 0;
}

3530 3531 3532 3533 3534 3535 3536 3537 3538
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

3539
static int do_check(struct bpf_verifier_env *env)
3540
{
3541
	struct bpf_verifier_state *state = &env->cur_state;
3542
	struct bpf_insn *insns = env->prog->insnsi;
3543
	struct bpf_reg_state *regs = state->regs;
3544 3545 3546 3547 3548 3549
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

	init_reg_state(regs);
3550
	state->parent = NULL;
3551
	insn_idx = 0;
3552
	env->varlen_map_value_access = false;
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
			verbose("invalid insn idx %d insn_cnt %d\n",
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3567
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3568
			verbose("BPF program is too large. Processed %d insn\n",
3569 3570 3571 3572
				insn_processed);
			return -E2BIG;
		}

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
			if (log_level) {
				if (do_print_state)
					verbose("\nfrom %d to %d: safe\n",
						prev_insn_idx, insn_idx);
				else
					verbose("%d: safe\n", insn_idx);
			}
			goto process_bpf_exit;
		}

3588 3589 3590
		if (need_resched())
			cond_resched();

3591 3592 3593 3594 3595 3596
		if (log_level > 1 || (log_level && do_print_state)) {
			if (log_level > 1)
				verbose("%d:", insn_idx);
			else
				verbose("\nfrom %d to %d:",
					prev_insn_idx, insn_idx);
A
Alexei Starovoitov 已提交
3597
			print_verifier_state(&env->cur_state);
3598 3599 3600 3601 3602
			do_print_state = false;
		}

		if (log_level) {
			verbose("%d: ", insn_idx);
3603
			print_bpf_insn(env, insn);
3604 3605
		}

3606 3607 3608 3609
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3610
		if (class == BPF_ALU || class == BPF_ALU64) {
3611
			err = check_alu_op(env, insn);
3612 3613 3614 3615
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3616
			enum bpf_reg_type *prev_src_type, src_reg_type;
3617 3618 3619

			/* check for reserved fields is already done */

3620
			/* check src operand */
3621
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3622 3623 3624
			if (err)
				return err;

3625
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3626 3627 3628
			if (err)
				return err;

3629 3630
			src_reg_type = regs[insn->src_reg].type;

3631 3632 3633
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3634
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3635 3636 3637 3638 3639
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3640 3641 3642
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3643 3644
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3645
				 * save type to validate intersecting paths
3646
				 */
3647
				*prev_src_type = src_reg_type;
3648

3649
			} else if (src_reg_type != *prev_src_type &&
3650
				   (src_reg_type == PTR_TO_CTX ||
3651
				    *prev_src_type == PTR_TO_CTX)) {
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3663
		} else if (class == BPF_STX) {
3664
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3665

3666
			if (BPF_MODE(insn->code) == BPF_XADD) {
3667
				err = check_xadd(env, insn_idx, insn);
3668 3669 3670 3671 3672 3673 3674
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3675
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3676 3677 3678
			if (err)
				return err;
			/* check src2 operand */
3679
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3680 3681 3682
			if (err)
				return err;

3683 3684
			dst_reg_type = regs[insn->dst_reg].type;

3685
			/* check that memory (dst_reg + off) is writeable */
3686
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3687 3688 3689 3690 3691
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3692 3693 3694 3695 3696
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3697
				   (dst_reg_type == PTR_TO_CTX ||
3698
				    *prev_dst_type == PTR_TO_CTX)) {
3699 3700 3701 3702
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3703 3704 3705 3706 3707 3708 3709
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
				verbose("BPF_ST uses reserved fields\n");
				return -EINVAL;
			}
			/* check src operand */
3710
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3711 3712 3713 3714
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3715
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_CALL uses reserved fields\n");
					return -EINVAL;
				}

3733
				err = check_call(env, insn->imm, insn_idx);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_JA uses reserved fields\n");
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_EXIT uses reserved fields\n");
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3764
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3765 3766 3767
				if (err)
					return err;

3768 3769 3770 3771 3772
				if (is_pointer_value(env, BPF_REG_0)) {
					verbose("R0 leaks addr as return value\n");
					return -EACCES;
				}

3773
process_bpf_exit:
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3790 3791 3792 3793
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
				verbose("invalid BPF_LD mode\n");
				return -EINVAL;
			}
		} else {
			verbose("unknown insn class %d\n", class);
			return -EINVAL;
		}

		insn_idx++;
	}

3812 3813
	verbose("processed %d insns, stack depth %d\n",
		insn_processed, env->prog->aux->stack_depth);
3814 3815 3816
	return 0;
}

3817 3818 3819
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
3820 3821
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3822 3823 3824
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

3825 3826 3827 3828
static int check_map_prog_compatibility(struct bpf_map *map,
					struct bpf_prog *prog)

{
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
			verbose("perf_event programs can only use preallocated hash map\n");
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
			verbose("perf_event programs can only use preallocated inner hash map\n");
			return -EINVAL;
		}
3844 3845 3846 3847
	}
	return 0;
}

3848 3849 3850
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
3851
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3852 3853 3854
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
3855
	int i, j, err;
3856

3857
	err = bpf_prog_calc_tag(env->prog);
3858 3859 3860
	if (err)
		return err;

3861
	for (i = 0; i < insn_cnt; i++, insn++) {
3862
		if (BPF_CLASS(insn->code) == BPF_LDX &&
3863
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3864 3865 3866 3867
			verbose("BPF_LDX uses reserved fields\n");
			return -EINVAL;
		}

3868 3869 3870 3871 3872 3873 3874
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
			verbose("BPF_STX uses reserved fields\n");
			return -EINVAL;
		}

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
				verbose("invalid bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
				verbose("unrecognized bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			f = fdget(insn->imm);
3896
			map = __bpf_map_get(f);
3897 3898 3899 3900 3901 3902
			if (IS_ERR(map)) {
				verbose("fd %d is not pointing to valid bpf_map\n",
					insn->imm);
				return PTR_ERR(map);
			}

3903 3904 3905 3906 3907 3908
			err = check_map_prog_compatibility(map, env->prog);
			if (err) {
				fdput(f);
				return err;
			}

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
3930 3931 3932 3933 3934 3935 3936
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
3952
static void release_maps(struct bpf_verifier_env *env)
3953 3954 3955 3956 3957 3958 3959 3960
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3961
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

4007 4008 4009
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4010
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4011
{
4012
	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4013
	int i, cnt, size, ctx_field_size, delta = 0;
4014
	const int insn_cnt = env->prog->len;
4015
	struct bpf_insn insn_buf[16], *insn;
4016
	struct bpf_prog *new_prog;
4017
	enum bpf_access_type type;
4018 4019
	bool is_narrower_load;
	u32 target_size;
4020

4021 4022 4023 4024 4025 4026 4027
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		} else if (cnt) {
4028
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4029 4030
			if (!new_prog)
				return -ENOMEM;
4031

4032
			env->prog = new_prog;
4033
			delta += cnt - 1;
4034 4035 4036 4037
		}
	}

	if (!ops->convert_ctx_access)
4038 4039
		return 0;

4040
	insn = env->prog->insnsi + delta;
4041

4042
	for (i = 0; i < insn_cnt; i++, insn++) {
4043 4044 4045
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4046
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4047
			type = BPF_READ;
4048 4049 4050
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4051
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4052 4053
			type = BPF_WRITE;
		else
4054 4055
			continue;

4056
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4057 4058
			continue;

4059
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4060
		size = BPF_LDST_BYTES(insn);
4061 4062 4063 4064 4065 4066

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4067
		is_narrower_load = size < ctx_field_size;
4068
		if (is_narrower_load) {
4069 4070 4071 4072 4073 4074 4075
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
				verbose("bpf verifier narrow ctx access misconfigured\n");
				return -EINVAL;
			}
4076

4077
			size_code = BPF_H;
4078 4079 4080 4081
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4082

4083 4084 4085
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4086 4087 4088 4089 4090 4091

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4092 4093 4094
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		}
4095 4096

		if (is_narrower_load && size < target_size) {
4097 4098
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4099
								(1 << size * 8) - 1);
4100 4101
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4102
								(1 << size * 8) - 1);
4103
		}
4104

4105
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4106 4107 4108
		if (!new_prog)
			return -ENOMEM;

4109
		delta += cnt - 1;
4110 4111 4112

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4113
		insn      = new_prog->insnsi + i + delta;
4114 4115 4116 4117 4118
	}

	return 0;
}

4119
/* fixup insn->imm field of bpf_call instructions
4120
 * and inline eligible helpers as explicit sequence of BPF instructions
4121 4122 4123
 *
 * this function is called after eBPF program passed verification
 */
4124
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4125
{
4126 4127
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4128
	const struct bpf_func_proto *fn;
4129
	const int insn_cnt = prog->len;
4130 4131 4132 4133
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4134

4135 4136 4137
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4138

4139 4140 4141 4142 4143
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4144 4145 4146 4147 4148 4149
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4150
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4151

4152 4153 4154 4155
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4156
			 */
4157
			insn->imm = 0;
4158
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4159 4160
			continue;
		}
4161

4162 4163
		if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4164 4165
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose("bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

patch_call_imm:
4188 4189 4190 4191 4192 4193 4194 4195
		fn = prog->aux->ops->get_func_proto(insn->imm);
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
			verbose("kernel subsystem misconfigured func %s#%d\n",
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4196
		}
4197
		insn->imm = fn->func - __bpf_call_base;
4198 4199
	}

4200 4201
	return 0;
}
4202

4203
static void free_states(struct bpf_verifier_env *env)
4204
{
4205
	struct bpf_verifier_state_list *sl, *sln;
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4225
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4226
{
4227
	char __user *log_ubuf = NULL;
4228
	struct bpf_verifier_env *env;
A
Alexei Starovoitov 已提交
4229 4230
	int ret = -EINVAL;

4231
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4232 4233
	 * allocate/free it every time bpf_check() is called
	 */
4234
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4235 4236 4237
	if (!env)
		return -ENOMEM;

4238 4239 4240 4241 4242
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4243
	env->prog = *prog;
4244

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
		log_level = attr->log_level;
		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
		log_size = attr->log_size;
		log_len = 0;

		ret = -EINVAL;
		/* log_* values have to be sane */
		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
		    log_level == 0 || log_ubuf == NULL)
4261
			goto err_unlock;
4262 4263 4264 4265

		ret = -ENOMEM;
		log_buf = vmalloc(log_size);
		if (!log_buf)
4266
			goto err_unlock;
4267 4268 4269
	} else {
		log_level = 0;
	}
4270 4271 4272

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4273
		env->strict_alignment = true;
4274

4275 4276 4277 4278
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4279
	env->explored_states = kcalloc(env->prog->len,
4280
				       sizeof(struct bpf_verifier_state_list *),
4281 4282 4283 4284 4285
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4286 4287 4288 4289
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4290 4291
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4292
	ret = do_check(env);
4293

4294
skip_full_check:
4295
	while (pop_stack(env, NULL) >= 0);
4296
	free_states(env);
4297

4298 4299 4300 4301
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4302
	if (ret == 0)
4303
		ret = fixup_bpf_calls(env);
4304

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	if (log_level && log_len >= log_size - 1) {
		BUG_ON(log_len >= log_size);
		/* verifier log exceeded user supplied buffer */
		ret = -ENOSPC;
		/* fall through to return what was recorded */
	}

	/* copy verifier log back to user space including trailing zero */
	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
		ret = -EFAULT;
		goto free_log_buf;
	}

4318 4319
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4320 4321 4322
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4323

4324
		if (!env->prog->aux->used_maps) {
4325 4326 4327 4328
			ret = -ENOMEM;
			goto free_log_buf;
		}

4329
		memcpy(env->prog->aux->used_maps, env->used_maps,
4330
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4331
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4332 4333 4334 4335 4336 4337

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4338 4339 4340 4341

free_log_buf:
	if (log_level)
		vfree(log_buf);
4342
	if (!env->prog->aux->used_maps)
4343 4344 4345 4346
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4347
	*prog = env->prog;
4348
err_unlock:
4349
	mutex_unlock(&bpf_verifier_lock);
4350 4351 4352
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4353 4354
	return ret;
}
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378

int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	log_level = 0;
4379

4380
	env->strict_alignment = false;
4381 4382
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);