verifier.c 170.3 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
Y
Yonghong Song 已提交
25
#include <linux/perf_event.h>
A
Alexei Starovoitov 已提交
26

27 28
#include "disasm.h"

29 30 31 32 33 34 35 36 37
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
38 39 40 41 42 43 44 45 46 47 48 49
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
50
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
78
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
79
 * means the register has some value, but it's not a valid pointer.
80
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
81 82
 *
 * When verifier sees load or store instructions the type of base register
83
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

145
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
146
struct bpf_verifier_stack_elem {
147 148 149 150
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
151
	struct bpf_verifier_state st;
152 153
	int insn_idx;
	int prev_insn_idx;
154
	struct bpf_verifier_stack_elem *next;
155 156
};

157
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 159
#define BPF_COMPLEXITY_LIMIT_STACK	1024

160 161
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

162 163
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
164
	bool raw_mode;
165
	bool pkt_access;
166 167
	int regno;
	int access_size;
168 169
	s64 msize_smax_value;
	u64 msize_umax_value;
170 171
};

172 173
static DEFINE_MUTEX(bpf_verifier_lock);

174 175
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
176
{
177
	unsigned int n;
178

179 180 181 182 183 184 185 186 187 188 189 190
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
191
}
192 193 194 195

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
196
 */
197 198 199 200 201
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

202 203 204
	if (!bpf_verifier_log_needed(&env->log))
		return;

205
	va_start(args, fmt);
206
	bpf_verifier_vlog(&env->log, fmt, args);
207 208 209 210 211 212
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
213
	struct bpf_verifier_env *env = private_data;
214 215
	va_list args;

216 217 218
	if (!bpf_verifier_log_needed(&env->log))
		return;

219
	va_start(args, fmt);
220
	bpf_verifier_vlog(&env->log, fmt, args);
221 222
	va_end(args);
}
223

224 225 226 227 228 229
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

230 231 232
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
233
	[SCALAR_VALUE]		= "inv",
234 235 236 237 238
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
239
	[PTR_TO_PACKET]		= "pkt",
240
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
241
	[PTR_TO_PACKET_END]	= "pkt_end",
242 243
};

244 245 246 247 248 249 250 251 252 253 254
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

255 256 257 258 259 260 261 262
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

263
static void print_verifier_state(struct bpf_verifier_env *env,
264
				 const struct bpf_func_state *state)
265
{
266
	const struct bpf_reg_state *reg;
267 268 269
	enum bpf_reg_type t;
	int i;

270 271
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
272
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
273 274
		reg = &state->regs[i];
		t = reg->type;
275 276
		if (t == NOT_INIT)
			continue;
277 278 279
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
280 281 282
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
283
			verbose(env, "%lld", reg->var_off.value + reg->off);
284 285
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
286
		} else {
287
			verbose(env, "(id=%d", reg->id);
288
			if (t != SCALAR_VALUE)
289
				verbose(env, ",off=%d", reg->off);
290
			if (type_is_pkt_pointer(t))
291
				verbose(env, ",r=%d", reg->range);
292 293 294
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
295
				verbose(env, ",ks=%d,vs=%d",
296 297
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
298 299 300 301 302
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
303
				verbose(env, ",imm=%llx", reg->var_off.value);
304 305 306
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
307
					verbose(env, ",smin_value=%lld",
308 309 310
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
311
					verbose(env, ",smax_value=%lld",
312 313
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
314
					verbose(env, ",umin_value=%llu",
315 316
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
317
					verbose(env, ",umax_value=%llu",
318 319 320
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
321

322
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323
					verbose(env, ",var_off=%s", tn_buf);
324
				}
325
			}
326
			verbose(env, ")");
327
		}
328
	}
329
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 331 332 333 334
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
335
				reg_type_str[state->stack[i].spilled_ptr.type]);
336
		}
337 338
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
339
	}
340
	verbose(env, "\n");
341 342
}

343 344
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
345
{
346 347 348 349 350 351 352 353 354 355 356 357 358 359
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
360
 * the program calls into realloc_func_state() to grow the stack size.
361 362 363 364
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
365 366
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

399 400
static void free_func_state(struct bpf_func_state *state)
{
401 402
	if (!state)
		return;
403 404 405 406
	kfree(state->stack);
	kfree(state);
}

407 408
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
409
{
410 411 412 413 414 415
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
416 417
	if (free_self)
		kfree(state);
418 419 420 421 422
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
423 424
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
425 426 427
{
	int err;

428
	err = realloc_func_state(dst, src->allocated_stack, false);
429 430
	if (err)
		return err;
431
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 433 434
	return copy_stack_state(dst, src);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

463 464 465 466 467 468
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
469 470

	if (env->head == NULL)
471
		return -ENOENT;
472

473 474 475 476 477 478 479
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
480
	if (prev_insn_idx)
481 482
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
483
	free_verifier_state(&head->st, false);
484
	kfree(head);
485 486
	env->head = elem;
	env->stack_size--;
487
	return 0;
488 489
}

490 491
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
492
{
493
	struct bpf_verifier_state *cur = env->cur_state;
494
	struct bpf_verifier_stack_elem *elem;
495
	int err;
496

497
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 499 500 501 502 503 504 505
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
506 507 508
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
509
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510
		verbose(env, "BPF program is too complex\n");
511 512 513 514
		goto err;
	}
	return &elem->st;
err:
515 516
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
517
	/* pop all elements and return */
518
	while (!pop_stack(env, NULL, NULL));
519 520 521 522 523 524 525 526
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

527 528
static void __mark_reg_not_init(struct bpf_reg_state *reg);

529 530 531 532 533 534 535 536 537 538 539 540 541
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

542 543 544 545
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
546
{
547
	__mark_reg_known(reg, 0);
548
}
549

550 551 552 553 554 555 556
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

557 558
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
559 560
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
561
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 563 564 565 566 567 568 569
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

661 662 663 664 665 666 667
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
668
	reg->frameno = 0;
669
	__mark_reg_unbounded(reg);
670 671
}

672 673
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
674 675
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
676
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 678
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
679 680 681 682 683 684 685 686 687 688 689 690
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

691 692
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
693 694
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
695
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 697
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
698 699 700 701
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
702 703
}

704
static void init_reg_state(struct bpf_verifier_env *env,
705
			   struct bpf_func_state *state)
706
{
707
	struct bpf_reg_state *regs = state->regs;
708 709
	int i;

710
	for (i = 0; i < MAX_BPF_REG; i++) {
711
		mark_reg_not_init(env, regs, i);
712 713
		regs[i].live = REG_LIVE_NONE;
	}
714 715

	/* frame pointer */
716
	regs[BPF_REG_FP].type = PTR_TO_STACK;
717
	mark_reg_known_zero(env, regs, BPF_REG_FP);
718
	regs[BPF_REG_FP].frameno = state->frameno;
719 720 721

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
722
	mark_reg_known_zero(env, regs, BPF_REG_1);
723 724
}

725 726 727 728 729 730 731 732 733 734 735
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

736 737 738 739 740 741
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

742 743
static int cmp_subprogs(const void *a, const void *b)
{
744 745
	return ((struct bpf_subprog_info *)a)->start -
	       ((struct bpf_subprog_info *)b)->start;
746 747 748 749
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
750
	struct bpf_subprog_info *p;
751

752 753
	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
		    sizeof(env->subprog_info[0]), cmp_subprogs);
754 755
	if (!p)
		return -ENOENT;
756
	return p - env->subprog_info;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
J
Jiong Wang 已提交
772
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
773 774 775
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
776 777 778
	env->subprog_info[env->subprog_cnt++].start = off;
	sort(env->subprog_info, env->subprog_cnt,
	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
779 780 781 782 783 784
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
785
	struct bpf_subprog_info *subprog = env->subprog_info;
786 787 788
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

J
Jiong Wang 已提交
789 790 791 792 793
	/* Add entry function. */
	ret = add_subprog(env, 0);
	if (ret < 0)
		return ret;

794 795 796 797 798 799 800 801 802 803 804
	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
805
			verbose(env, "function calls in offloaded programs are not supported yet\n");
806 807 808 809 810 811 812
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

J
Jiong Wang 已提交
813 814 815 816 817
	/* Add a fake 'exit' subprog which could simplify subprog iteration
	 * logic. 'subprog_cnt' should not be increased.
	 */
	subprog[env->subprog_cnt].start = insn_cnt;

818 819
	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
820
			verbose(env, "func#%d @%d\n", i, subprog[i].start);
821 822

	/* now check that all jumps are within the same subprog */
J
Jiong Wang 已提交
823 824
	subprog_start = subprog[cur_subprog].start;
	subprog_end = subprog[cur_subprog + 1].start;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
J
Jiong Wang 已提交
849 850
			cur_subprog++;
			if (cur_subprog < env->subprog_cnt)
851
				subprog_end = subprog[cur_subprog + 1].start;
852 853 854 855 856
		}
	}
	return 0;
}

857
static
858 859 860 861
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
862
{
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
902
	return NULL;
903 904 905 906 907 908 909 910
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
911

A
Alexei Starovoitov 已提交
912 913
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
914
		return 0;
A
Alexei Starovoitov 已提交
915

916 917
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
918
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
919
			break;
920 921 922
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
923
		/* ... then we depend on parent's value */
924
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
925 926
		state = parent;
		parent = state->parent;
927
		writes = true;
928
	}
929
	return 0;
930 931 932
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
933 934
			 enum reg_arg_type t)
{
935 936 937
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
938

939
	if (regno >= MAX_BPF_REG) {
940
		verbose(env, "R%d is invalid\n", regno);
941 942 943 944 945 946
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
947
			verbose(env, "R%d !read_ok\n", regno);
948 949
			return -EACCES;
		}
950
		return mark_reg_read(env, vstate, vstate->parent, regno);
951 952 953
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
954
			verbose(env, "frame pointer is read only\n");
955 956
			return -EACCES;
		}
957
		regs[regno].live |= REG_LIVE_WRITTEN;
958
		if (t == DST_OP)
959
			mark_reg_unknown(env, regs, regno);
960 961 962 963
	}
	return 0;
}

964 965 966 967 968 969 970
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
971
	case PTR_TO_PACKET:
972
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
973
	case PTR_TO_PACKET_END:
974 975 976 977 978 979 980
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

981 982 983 984 985 986
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

987 988 989
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
990
static int check_stack_write(struct bpf_verifier_env *env,
991 992
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
993
{
994
	struct bpf_func_state *cur; /* state of the current function */
995
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
996
	enum bpf_reg_type type;
997

998 999
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
1000 1001
	if (err)
		return err;
1002 1003 1004
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
1005 1006 1007 1008 1009 1010
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
1011

1012
	cur = env->cur_state->frame[env->cur_state->curframe];
1013
	if (value_regno >= 0 &&
1014
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1015 1016

		/* register containing pointer is being spilled into stack */
1017
		if (size != BPF_REG_SIZE) {
1018
			verbose(env, "invalid size of register spill\n");
1019 1020 1021
			return -EACCES;
		}

1022 1023 1024 1025 1026
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1027
		/* save register state */
1028
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1029
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1030

1031
		for (i = 0; i < BPF_REG_SIZE; i++)
1032
			state->stack[spi].slot_type[i] = STACK_SPILL;
1033
	} else {
1034 1035
		u8 type = STACK_MISC;

1036
		/* regular write of data into stack */
1037
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1055
		for (i = 0; i < size; i++)
1056
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1057
				type;
1058 1059 1060 1061
	}
	return 0;
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1094
{
1095
	bool writes = parent == state->parent; /* Observe write marks */
1096 1097

	while (parent) {
1098 1099 1100 1101 1102 1103 1104 1105
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1106
		/* if read wasn't screened by an earlier write ... */
1107
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1108 1109
			break;
		/* ... then we depend on parent's value */
1110
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1111 1112
		state = parent;
		parent = state->parent;
1113
		writes = true;
1114 1115 1116
	}
}

1117
static int check_stack_read(struct bpf_verifier_env *env,
1118 1119
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1120
{
1121 1122
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1123 1124
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1125

1126
	if (reg_state->allocated_stack <= slot) {
1127 1128 1129 1130
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1131
	stype = reg_state->stack[spi].slot_type;
1132

1133
	if (stype[0] == STACK_SPILL) {
1134
		if (size != BPF_REG_SIZE) {
1135
			verbose(env, "invalid size of register spill\n");
1136 1137
			return -EACCES;
		}
1138
		for (i = 1; i < BPF_REG_SIZE; i++) {
1139
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1140
				verbose(env, "corrupted spill memory\n");
1141 1142 1143 1144
				return -EACCES;
			}
		}

1145
		if (value_regno >= 0) {
1146
			/* restore register state from stack */
1147
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1148 1149 1150 1151 1152
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1153
		}
1154 1155
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1156 1157
		return 0;
	} else {
1158 1159
		int zeros = 0;

1160
		for (i = 0; i < size; i++) {
1161 1162 1163 1164 1165
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1166
			}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1184 1185 1186 1187 1188 1189
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1190
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1191
			      int size, bool zero_size_allowed)
1192
{
1193 1194
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1195

1196 1197
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1198
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1199 1200 1201 1202 1203 1204
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1205 1206
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1207
			    int off, int size, bool zero_size_allowed)
1208
{
1209 1210
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1211 1212 1213
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1214 1215 1216
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1217
	 */
1218 1219
	if (env->log.level)
		print_verifier_state(env, state);
1220 1221 1222 1223 1224 1225
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1226
	if (reg->smin_value < 0) {
1227
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1228 1229 1230
			regno);
		return -EACCES;
	}
1231 1232
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1233
	if (err) {
1234 1235
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1236 1237 1238
		return err;
	}

1239 1240 1241
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1242
	 */
1243
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1244
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1245 1246 1247
			regno);
		return -EACCES;
	}
1248 1249
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1250
	if (err)
1251 1252
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1253
	return err;
1254 1255
}

A
Alexei Starovoitov 已提交
1256 1257
#define MAX_PACKET_OFF 0xffff

1258
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1259 1260
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1261
{
1262
	switch (env->prog->type) {
1263 1264 1265 1266 1267
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1268
		/* fallthrough */
1269 1270
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1271
	case BPF_PROG_TYPE_XDP:
1272
	case BPF_PROG_TYPE_LWT_XMIT:
1273
	case BPF_PROG_TYPE_SK_SKB:
1274
	case BPF_PROG_TYPE_SK_MSG:
1275 1276 1277 1278
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1279 1280 1281 1282 1283 1284
		return true;
	default:
		return false;
	}
}

1285
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1286
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1287
{
1288
	struct bpf_reg_state *regs = cur_regs(env);
1289
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1290

1291 1292
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1293
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1294
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1295 1296 1297 1298 1299
		return -EACCES;
	}
	return 0;
}

1300
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1301
			       int size, bool zero_size_allowed)
1302
{
1303
	struct bpf_reg_state *regs = cur_regs(env);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1315
	if (reg->smin_value < 0) {
1316
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1317 1318 1319
			regno);
		return -EACCES;
	}
1320
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1321
	if (err) {
1322
		verbose(env, "R%d offset is outside of the packet\n", regno);
1323 1324 1325 1326 1327 1328
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1329
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1330
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1331
{
1332 1333 1334
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1335

1336
	if (env->ops->is_valid_access &&
1337
	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1338 1339 1340 1341 1342 1343
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1344
		 */
1345
		*reg_type = info.reg_type;
1346

1347
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1348 1349 1350
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1351
		return 0;
1352
	}
1353

1354
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1355 1356 1357
	return -EACCES;
}

1358 1359
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1360
{
1361
	if (allow_ptr_leaks)
1362 1363
		return false;

1364
	return reg->type != SCALAR_VALUE;
1365 1366
}

1367 1368
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1369
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1370 1371
}

1372 1373 1374 1375 1376 1377 1378
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1379 1380 1381 1382 1383 1384 1385
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1386 1387
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1388
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1389
{
1390
	struct tnum reg_off;
1391
	int ip_align;
1392 1393 1394 1395 1396

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1397 1398 1399 1400 1401 1402 1403
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1404
	 */
1405
	ip_align = 2;
1406 1407 1408 1409 1410 1411

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1412 1413
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1414
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1415 1416
		return -EACCES;
	}
1417

A
Alexei Starovoitov 已提交
1418 1419 1420
	return 0;
}

1421 1422
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1423 1424
				       const char *pointer_desc,
				       int off, int size, bool strict)
1425
{
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1437
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1438
			pointer_desc, tn_buf, reg->off, off, size);
1439 1440 1441
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1442 1443 1444
	return 0;
}

1445
static int check_ptr_alignment(struct bpf_verifier_env *env,
1446 1447
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1448
{
1449
	bool strict = env->strict_alignment || strict_alignment_once;
1450
	const char *pointer_desc = "";
1451

1452 1453
	switch (reg->type) {
	case PTR_TO_PACKET:
1454 1455 1456 1457
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1458
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1459 1460 1461 1462 1463 1464 1465 1466
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1467 1468 1469 1470 1471
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1472
		break;
1473
	default:
1474
		break;
1475
	}
1476 1477
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1478 1479
}

1480 1481 1482 1483
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1484
	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1485 1486 1487 1488 1489

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
1490
	env->subprog_info[func->subprogno].stack_depth = -off;
1491 1492
	return 0;
}
1493

1494 1495 1496 1497 1498 1499 1500 1501
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
1502 1503
	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
	struct bpf_subprog_info *subprog = env->subprog_info;
1504 1505 1506
	struct bpf_insn *insn = env->prog->insnsi;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1507

1508 1509 1510 1511
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
1512
	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1513
	if (depth > MAX_BPF_STACK) {
1514
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1515
			frame + 1, depth);
1516 1517
		return -EACCES;
	}
1518
continue_func:
J
Jiong Wang 已提交
1519
	subprog_end = subprog[idx + 1].start;
1520 1521 1522 1523 1524 1525 1526
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
1527
		ret_prog[frame] = idx;
1528 1529 1530

		/* find the callee */
		i = i + insn[i].imm + 1;
1531 1532
		idx = find_subprog(env, i);
		if (idx < 0) {
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
1549
	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1550 1551
	frame--;
	i = ret_insn[frame];
1552
	idx = ret_prog[frame];
1553
	goto continue_func;
1554 1555
}

1556
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
1568
	return env->subprog_info[subprog].stack_depth;
1569
}
1570
#endif
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1595 1596 1597 1598 1599 1600
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1601 1602 1603
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1604
{
1605 1606
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1607
	struct bpf_func_state *state;
1608 1609 1610 1611 1612 1613
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1614
	/* alignment checks will add in reg->off themselves */
1615
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1616 1617
	if (err)
		return err;
1618

1619 1620 1621 1622
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1623 1624
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1625
			verbose(env, "R%d leaks addr into map\n", value_regno);
1626 1627
			return -EACCES;
		}
1628

1629
		err = check_map_access(env, regno, off, size, false);
1630
		if (!err && t == BPF_READ && value_regno >= 0)
1631
			mark_reg_unknown(env, regs, value_regno);
1632

A
Alexei Starovoitov 已提交
1633
	} else if (reg->type == PTR_TO_CTX) {
1634
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1635

1636 1637
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1638
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1639 1640
			return -EACCES;
		}
1641 1642 1643
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1644
		if (reg->off) {
1645 1646
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1647 1648 1649 1650
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1651 1652 1653
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1654 1655
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1656 1657 1658
				tn_buf, off, size);
			return -EACCES;
		}
1659
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1660
		if (!err && t == BPF_READ && value_regno >= 0) {
1661
			/* ctx access returns either a scalar, or a
1662 1663
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1664 1665
			 */
			if (reg_type == SCALAR_VALUE)
1666
				mark_reg_unknown(env, regs, value_regno);
1667
			else
1668
				mark_reg_known_zero(env, regs,
1669
						    value_regno);
1670 1671 1672 1673
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1674
		}
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1685
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1686 1687 1688 1689
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1690
		if (off >= 0 || off < -MAX_BPF_STACK) {
1691 1692
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1693 1694
			return -EACCES;
		}
1695

1696 1697 1698 1699
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1700

1701
		if (t == BPF_WRITE)
1702 1703
			err = check_stack_write(env, state, off, size,
						value_regno);
1704
		else
1705 1706
			err = check_stack_read(env, state, off, size,
					       value_regno);
1707
	} else if (reg_is_pkt_pointer(reg)) {
1708
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1709
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1710 1711
			return -EACCES;
		}
1712 1713
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1714 1715
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1716 1717
			return -EACCES;
		}
1718
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1719
		if (!err && t == BPF_READ && value_regno >= 0)
1720
			mark_reg_unknown(env, regs, value_regno);
1721
	} else {
1722 1723
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1724 1725
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1726

1727
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1728
	    regs[value_regno].type == SCALAR_VALUE) {
1729
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1730
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1731
	}
1732 1733 1734
	return err;
}

1735
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1736 1737 1738 1739 1740
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1741
		verbose(env, "BPF_XADD uses reserved fields\n");
1742 1743 1744 1745
		return -EINVAL;
	}

	/* check src1 operand */
1746
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1747 1748 1749 1750
	if (err)
		return err;

	/* check src2 operand */
1751
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1752 1753 1754
	if (err)
		return err;

1755
	if (is_pointer_value(env, insn->src_reg)) {
1756
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1757 1758 1759
		return -EACCES;
	}

1760 1761 1762 1763 1764
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1765 1766 1767
		return -EACCES;
	}

1768
	/* check whether atomic_add can read the memory */
1769
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1770
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1771 1772 1773 1774
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1775
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1776
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1777 1778 1779 1780
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1781 1782 1783
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1784
 */
1785
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1786 1787
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1788
{
1789
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1790
	struct bpf_func_state *state = func(env, reg);
1791
	int off, i, slot, spi;
1792

1793
	if (reg->type != PTR_TO_STACK) {
1794
		/* Allow zero-byte read from NULL, regardless of pointer type */
1795
		if (zero_size_allowed && access_size == 0 &&
1796
		    register_is_null(reg))
1797 1798
			return 0;

1799
		verbose(env, "R%d type=%s expected=%s\n", regno,
1800
			reg_type_str[reg->type],
1801
			reg_type_str[PTR_TO_STACK]);
1802
		return -EACCES;
1803
	}
1804

1805
	/* Only allow fixed-offset stack reads */
1806
	if (!tnum_is_const(reg->var_off)) {
1807 1808
		char tn_buf[48];

1809
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1810
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1811
			regno, tn_buf);
1812
		return -EACCES;
1813
	}
1814
	off = reg->off + reg->var_off.value;
1815
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1816
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1817
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1818 1819 1820 1821
			regno, off, access_size);
		return -EACCES;
	}

1822 1823 1824 1825 1826 1827
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1828
	for (i = 0; i < access_size; i++) {
1829 1830
		u8 *stype;

1831 1832
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1833 1834 1835 1836 1837 1838 1839 1840 1841
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1842
		}
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1853
	}
1854
	return update_stack_depth(env, state, off);
1855 1856
}

1857 1858 1859 1860
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1861
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1862

1863
	switch (reg->type) {
1864
	case PTR_TO_PACKET:
1865
	case PTR_TO_PACKET_META:
1866 1867
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1868
	case PTR_TO_MAP_VALUE:
1869 1870
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1871
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1872 1873 1874 1875 1876
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1890
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1891 1892
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1893
{
1894
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1895
	enum bpf_reg_type expected_type, type = reg->type;
1896 1897
	int err = 0;

1898
	if (arg_type == ARG_DONTCARE)
1899 1900
		return 0;

1901 1902 1903
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1904

1905 1906
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1907 1908
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1909 1910
			return -EACCES;
		}
1911
		return 0;
1912
	}
1913

1914
	if (type_is_pkt_pointer(type) &&
1915
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1916
		verbose(env, "helper access to the packet is not allowed\n");
1917 1918 1919
		return -EACCES;
	}

1920
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1921 1922
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1923
		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1924
		    type != expected_type)
1925
			goto err_type;
1926 1927
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1928 1929
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1930
			goto err_type;
1931 1932
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1933 1934
		if (type != expected_type)
			goto err_type;
1935 1936
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1937 1938
		if (type != expected_type)
			goto err_type;
1939
	} else if (arg_type_is_mem_ptr(arg_type)) {
1940 1941
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1942
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1943 1944
		 * happens during stack boundary checking.
		 */
1945
		if (register_is_null(reg) &&
1946
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1947
			/* final test in check_stack_boundary() */;
1948 1949
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1950
			 type != expected_type)
1951
			goto err_type;
1952
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1953
	} else {
1954
		verbose(env, "unsupported arg_type %d\n", arg_type);
1955 1956 1957 1958 1959
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1960
		meta->map_ptr = reg->map_ptr;
1961 1962 1963 1964 1965
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1966
		if (!meta->map_ptr) {
1967 1968 1969 1970 1971
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1972
			verbose(env, "invalid map_ptr to access map->key\n");
1973 1974
			return -EACCES;
		}
1975 1976 1977
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->key_size, false,
					      NULL);
1978 1979 1980 1981
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1982
		if (!meta->map_ptr) {
1983
			/* kernel subsystem misconfigured verifier */
1984
			verbose(env, "invalid map_ptr to access map->value\n");
1985 1986
			return -EACCES;
		}
1987 1988 1989
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->value_size, false,
					      NULL);
1990
	} else if (arg_type_is_mem_size(arg_type)) {
1991
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1992

1993 1994 1995 1996 1997 1998
		/* remember the mem_size which may be used later
		 * to refine return values.
		 */
		meta->msize_smax_value = reg->smax_value;
		meta->msize_umax_value = reg->umax_value;

1999 2000
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
2001
		 */
2002
		if (!tnum_is_const(reg->var_off))
2003 2004 2005 2006 2007 2008 2009
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

2010
		if (reg->smin_value < 0) {
2011
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2012 2013 2014
				regno);
			return -EACCES;
		}
2015

2016
		if (reg->umin_value == 0) {
2017 2018 2019
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2020 2021 2022
			if (err)
				return err;
		}
2023

2024
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2025
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2026 2027 2028 2029
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2030
					      reg->umax_value,
2031
					      zero_size_allowed, meta);
2032 2033 2034
	}

	return err;
2035
err_type:
2036
	verbose(env, "R%d type=%s expected=%s\n", regno,
2037 2038
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2039 2040
}

2041 2042
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2043 2044 2045 2046
{
	if (!map)
		return 0;

2047 2048 2049 2050 2051 2052 2053 2054
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2055 2056
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2057 2058 2059 2060 2061 2062
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2063
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2064
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2065
		    func_id != BPF_FUNC_current_task_under_cgroup)
2066 2067
			goto error;
		break;
2068 2069 2070 2071 2072
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2073
		if (func_id != BPF_FUNC_redirect_map)
2074 2075
			goto error;
		break;
2076 2077 2078
	/* Restrict bpf side of cpumap and xskmap, open when use-cases
	 * appear.
	 */
2079
	case BPF_MAP_TYPE_CPUMAP:
2080
	case BPF_MAP_TYPE_XSKMAP:
2081 2082 2083
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2084
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2085
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2086 2087
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2088
		break;
2089 2090 2091
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2092 2093
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2094 2095
			goto error;
		break;
2096 2097 2098 2099 2100 2101 2102
	case BPF_MAP_TYPE_SOCKHASH:
		if (func_id != BPF_FUNC_sk_redirect_hash &&
		    func_id != BPF_FUNC_sock_hash_update &&
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_hash)
			goto error;
		break;
2103 2104 2105 2106 2107 2108 2109 2110 2111
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
J
Jiong Wang 已提交
2112
		if (env->subprog_cnt > 1) {
2113 2114 2115
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2116 2117 2118
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2119
	case BPF_FUNC_perf_event_read_value:
2120 2121 2122 2123 2124 2125 2126
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2127
	case BPF_FUNC_current_task_under_cgroup:
2128
	case BPF_FUNC_skb_under_cgroup:
2129 2130 2131
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2132
	case BPF_FUNC_redirect_map:
2133
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2134 2135
		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2136 2137
			goto error;
		break;
2138
	case BPF_FUNC_sk_redirect_map:
2139
	case BPF_FUNC_msg_redirect_map:
2140
	case BPF_FUNC_sock_map_update:
2141 2142 2143
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2144 2145 2146 2147
	case BPF_FUNC_sk_redirect_hash:
	case BPF_FUNC_msg_redirect_hash:
	case BPF_FUNC_sock_hash_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2148 2149
			goto error;
		break;
2150 2151
	default:
		break;
2152 2153 2154
	}

	return 0;
2155
error:
2156
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2157
		map->map_type, func_id_name(func_id), func_id);
2158
	return -EINVAL;
2159 2160
}

2161
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2162 2163 2164
{
	int count = 0;

2165
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2166
		count++;
2167
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2168
		count++;
2169
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2170
		count++;
2171
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2172
		count++;
2173
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2174 2175
		count++;

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2214 2215
}

2216 2217
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2218
 */
2219 2220
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2221
{
2222
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2223 2224 2225
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2226
		if (reg_is_pkt_pointer_any(&regs[i]))
2227
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2228

2229 2230
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2231
			continue;
2232
		reg = &state->stack[i].spilled_ptr;
2233 2234
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2235 2236 2237
	}
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2254
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2255
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2256
			state->curframe + 2);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
J
Jiong Wang 已提交
2288
			subprog /* subprog number within this prog */);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
				   int func_id,
				   struct bpf_call_arg_meta *meta)
{
	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];

	if (ret_type != RET_INTEGER ||
	    (func_id != BPF_FUNC_get_stack &&
	     func_id != BPF_FUNC_probe_read_str))
		return;

	ret_reg->smax_value = meta->msize_smax_value;
	ret_reg->umax_value = meta->msize_umax_value;
	__reg_deduce_bounds(ret_reg);
	__reg_bound_offset(ret_reg);
}

2369
static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2370 2371
{
	const struct bpf_func_proto *fn = NULL;
2372
	struct bpf_reg_state *regs;
2373
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2374
	bool changes_data;
2375 2376 2377 2378
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2379 2380
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2381 2382 2383
		return -EINVAL;
	}

2384
	if (env->ops->get_func_proto)
2385
		fn = env->ops->get_func_proto(func_id, env->prog);
2386
	if (!fn) {
2387 2388
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2389 2390 2391 2392
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2393
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2394
		verbose(env, "cannot call GPL only function from proprietary program\n");
2395 2396 2397
		return -EINVAL;
	}

2398
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2399
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2400 2401 2402 2403 2404
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2405

2406
	memset(&meta, 0, sizeof(meta));
2407
	meta.pkt_access = fn->pkt_access;
2408

2409
	err = check_func_proto(fn);
2410
	if (err) {
2411
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2412
			func_id_name(func_id), func_id);
2413 2414 2415
		return err;
	}

2416
	/* check args */
2417
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2418 2419
	if (err)
		return err;
2420
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2421 2422
	if (err)
		return err;
2423 2424 2425 2426 2427 2428 2429
	if (func_id == BPF_FUNC_tail_call) {
		if (meta.map_ptr == NULL) {
			verbose(env, "verifier bug\n");
			return -EINVAL;
		}
		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
	}
2430
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2431 2432
	if (err)
		return err;
2433
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2434 2435
	if (err)
		return err;
2436
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2437 2438 2439
	if (err)
		return err;

2440 2441 2442 2443
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2444 2445
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2446 2447 2448 2449
		if (err)
			return err;
	}

2450
	regs = cur_regs(env);
2451
	/* reset caller saved regs */
2452
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2453
		mark_reg_not_init(env, regs, caller_saved[i]);
2454 2455
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2456

2457
	/* update return register (already marked as written above) */
2458
	if (fn->ret_type == RET_INTEGER) {
2459
		/* sets type to SCALAR_VALUE */
2460
		mark_reg_unknown(env, regs, BPF_REG_0);
2461 2462 2463
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2464 2465
		struct bpf_insn_aux_data *insn_aux;

2466
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2467
		/* There is no offset yet applied, variable or fixed */
2468
		mark_reg_known_zero(env, regs, BPF_REG_0);
2469
		regs[BPF_REG_0].off = 0;
2470 2471 2472 2473
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2474
		if (meta.map_ptr == NULL) {
2475 2476
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2477 2478
			return -EINVAL;
		}
2479
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2480
		regs[BPF_REG_0].id = ++env->id_gen;
2481 2482 2483 2484 2485
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2486
	} else {
2487
		verbose(env, "unknown return type %d of func %s#%d\n",
2488
			fn->ret_type, func_id_name(func_id), func_id);
2489 2490
		return -EINVAL;
	}
2491

2492 2493
	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);

2494
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2495 2496
	if (err)
		return err;
2497

Y
Yonghong Song 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
		const char *err_str;

#ifdef CONFIG_PERF_EVENTS
		err = get_callchain_buffers(sysctl_perf_event_max_stack);
		err_str = "cannot get callchain buffer for func %s#%d\n";
#else
		err = -ENOTSUPP;
		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
		if (err) {
			verbose(env, err_str, func_id_name(func_id), func_id);
			return err;
		}

		env->prog->has_callchain_buf = true;
	}

A
Alexei Starovoitov 已提交
2516 2517 2518 2519 2520
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2539 2540
}

A
Alexei Starovoitov 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2576 2577 2578 2579 2580 2581 2582 2583 2584
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2585
{
2586 2587 2588
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2589
	bool known = tnum_is_const(off_reg->var_off);
2590 2591 2592 2593
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2594
	u8 opcode = BPF_OP(insn->code);
2595
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2596

2597
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2598

2599 2600 2601 2602 2603 2604 2605
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2606 2607 2608 2609
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2610 2611 2612
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2613
		return -EACCES;
A
Alexei Starovoitov 已提交
2614 2615
	}

2616
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2617 2618
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2619 2620 2621
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2622 2623
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2624 2625 2626
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2627 2628
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2629 2630 2631 2632 2633
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2634
	 */
2635 2636
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2637

A
Alexei Starovoitov 已提交
2638 2639 2640 2641
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2642 2643 2644 2645
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2646
		 */
2647 2648
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2649
			/* pointer += K.  Accumulate it into fixed offset */
2650 2651 2652 2653
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2654
			dst_reg->var_off = ptr_reg->var_off;
2655
			dst_reg->off = ptr_reg->off + smin_val;
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2667
		 */
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2684 2685
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2686
		if (reg_is_pkt_pointer(ptr_reg)) {
2687 2688 2689 2690 2691 2692 2693 2694
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2695 2696
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2697 2698 2699 2700 2701
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2702
		 */
2703
		if (ptr_reg->type == PTR_TO_STACK) {
2704 2705
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2706 2707
			return -EACCES;
		}
2708 2709
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2710
			/* pointer -= K.  Subtract it from fixed offset */
2711 2712 2713 2714
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2715 2716
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2717
			dst_reg->off = ptr_reg->off - smin_val;
2718 2719 2720 2721 2722
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2723
		 */
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2742 2743
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2744
		if (reg_is_pkt_pointer(ptr_reg)) {
2745 2746
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2747
			if (smin_val < 0)
2748
				dst_reg->range = 0;
2749
		}
2750 2751 2752 2753
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2754 2755 2756
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2757 2758 2759
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2760 2761
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2762
		return -EACCES;
2763 2764
	}

A
Alexei Starovoitov 已提交
2765 2766 2767
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2768 2769 2770
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2771 2772 2773
	return 0;
}

J
Jann Horn 已提交
2774 2775 2776 2777
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2778 2779 2780 2781
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2782
{
2783
	struct bpf_reg_state *regs = cur_regs(env);
2784
	u8 opcode = BPF_OP(insn->code);
2785
	bool src_known, dst_known;
2786 2787
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2788
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2789

2790 2791 2792 2793
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2794 2795
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2806 2807 2808 2809 2810 2811
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2812 2813
	switch (opcode) {
	case BPF_ADD:
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2830
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2831 2832
		break;
	case BPF_SUB:
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2851
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2852 2853
		break;
	case BPF_MUL:
2854 2855
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2856
			/* Ain't nobody got time to multiply that sign */
2857 2858
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2859 2860
			break;
		}
2861 2862
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2863
		 */
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2881 2882
		break;
	case BPF_AND:
2883
		if (src_known && dst_known) {
2884 2885
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2886 2887
			break;
		}
2888 2889
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2890
		 */
2891
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2909 2910 2911
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2912 2913
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2914 2915
			break;
		}
2916 2917
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2918 2919
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2920 2921 2922 2923 2924 2925 2926 2927 2928
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2929
		} else {
2930 2931 2932 2933 2934
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2935
		}
2936 2937
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2938 2939
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2940 2941 2942
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2943
			 */
2944
			mark_reg_unknown(env, regs, insn->dst_reg);
2945 2946
			break;
		}
2947 2948
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2949
		 */
2950 2951 2952 2953 2954 2955
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2956
		} else {
2957 2958
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2959
		}
2960
		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2961 2962
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2963 2964
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2965 2966 2967
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2968
			 */
2969
			mark_reg_unknown(env, regs, insn->dst_reg);
2970 2971
			break;
		}
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2988
		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2989 2990 2991 2992
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2993
		break;
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	case BPF_ARSH:
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
			 */
			mark_reg_unknown(env, regs, insn->dst_reg);
			break;
		}

		/* Upon reaching here, src_known is true and
		 * umax_val is equal to umin_val.
		 */
		dst_reg->smin_value >>= umin_val;
		dst_reg->smax_value >>= umin_val;
		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);

		/* blow away the dst_reg umin_value/umax_value and rely on
		 * dst_reg var_off to refine the result.
		 */
		dst_reg->umin_value = 0;
		dst_reg->umax_value = U64_MAX;
		__update_reg_bounds(dst_reg);
		break;
3017
	default:
3018
		mark_reg_unknown(env, regs, insn->dst_reg);
3019 3020 3021
		break;
	}

J
Jann Horn 已提交
3022 3023 3024 3025 3026 3027
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

3028 3029
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
3030 3031 3032 3033 3034 3035 3036 3037 3038
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
3039 3040 3041
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
3054 3055
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
3056
				 */
3057 3058 3059
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
3060
				}
3061 3062 3063 3064
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
3065 3066 3067 3068 3069
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
3070 3071
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3072 3073 3074
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3075 3076
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3077 3078 3079 3080 3081 3082
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3083
		__mark_reg_known(&off_reg, insn->imm);
3084
		src_reg = &off_reg;
3085 3086 3087
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3088 3089 3090 3091
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3092
		print_verifier_state(env, state);
3093
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3094 3095 3096
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3097
		print_verifier_state(env, state);
3098
		verbose(env, "verifier internal error: no src_reg\n");
3099 3100 3101
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3102 3103
}

3104
/* check validity of 32-bit and 64-bit arithmetic operations */
3105
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3106
{
3107
	struct bpf_reg_state *regs = cur_regs(env);
3108 3109 3110 3111 3112 3113 3114 3115
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3116
				verbose(env, "BPF_NEG uses reserved fields\n");
3117 3118 3119 3120
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3121 3122
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3123
				verbose(env, "BPF_END uses reserved fields\n");
3124 3125 3126 3127 3128
				return -EINVAL;
			}
		}

		/* check src operand */
3129
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3130 3131 3132
		if (err)
			return err;

3133
		if (is_pointer_value(env, insn->dst_reg)) {
3134
			verbose(env, "R%d pointer arithmetic prohibited\n",
3135 3136 3137 3138
				insn->dst_reg);
			return -EACCES;
		}

3139
		/* check dest operand */
3140
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3141 3142 3143 3144 3145 3146 3147
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3148
				verbose(env, "BPF_MOV uses reserved fields\n");
3149 3150 3151 3152
				return -EINVAL;
			}

			/* check src operand */
3153
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3154 3155 3156 3157
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3158
				verbose(env, "BPF_MOV uses reserved fields\n");
3159 3160 3161 3162 3163
				return -EINVAL;
			}
		}

		/* check dest operand */
3164
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3165 3166 3167 3168 3169 3170 3171 3172 3173
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3174
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3175
			} else {
3176
				/* R1 = (u32) R2 */
3177
				if (is_pointer_value(env, insn->src_reg)) {
3178 3179
					verbose(env,
						"R%d partial copy of pointer\n",
3180 3181 3182
						insn->src_reg);
					return -EACCES;
				}
3183
				mark_reg_unknown(env, regs, insn->dst_reg);
3184
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3185 3186 3187 3188 3189
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3190
			regs[insn->dst_reg].type = SCALAR_VALUE;
3191 3192 3193 3194 3195 3196 3197
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3198 3199 3200
		}

	} else if (opcode > BPF_END) {
3201
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3202 3203 3204 3205 3206 3207
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3208
				verbose(env, "BPF_ALU uses reserved fields\n");
3209 3210 3211
				return -EINVAL;
			}
			/* check src1 operand */
3212
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3213 3214 3215 3216
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3217
				verbose(env, "BPF_ALU uses reserved fields\n");
3218 3219 3220 3221 3222
				return -EINVAL;
			}
		}

		/* check src2 operand */
3223
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3224 3225 3226 3227 3228
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3229
			verbose(env, "div by zero\n");
3230 3231 3232
			return -EINVAL;
		}

3233 3234 3235 3236 3237
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3238 3239 3240 3241 3242
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3243
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3244 3245 3246 3247
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3248
		/* check dest operand */
3249
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3250 3251 3252
		if (err)
			return err;

3253
		return adjust_reg_min_max_vals(env, insn);
3254 3255 3256 3257 3258
	}

	return 0;
}

3259
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3260
				   struct bpf_reg_state *dst_reg,
3261
				   enum bpf_reg_type type,
3262
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3263
{
3264
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3265
	struct bpf_reg_state *regs = state->regs, *reg;
3266
	u16 new_range;
3267
	int i, j;
3268

3269 3270
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3271 3272 3273
		/* This doesn't give us any range */
		return;

3274 3275
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3276 3277 3278 3279 3280
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3281 3282 3283 3284 3285
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3286
	 *
3287
	 * pkt_data in dst register:
3288 3289 3290 3291 3292 3293
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3294 3295 3296 3297 3298
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3299 3300 3301 3302 3303
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3304
	 * pkt_data in src register:
3305 3306 3307 3308 3309 3310
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3311 3312 3313 3314 3315
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3316 3317 3318 3319 3320 3321
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3322 3323 3324
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3325
	 */
3326

3327 3328 3329 3330 3331
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3332
	for (i = 0; i < MAX_BPF_REG; i++)
3333
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3334
			/* keep the maximum range already checked */
3335
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3336

3337 3338 3339 3340 3341 3342 3343 3344 3345
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3346 3347 3348
	}
}

3349 3350 3351
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3352
 * In JEQ/JNE cases we also adjust the var_off values.
3353 3354 3355 3356 3357
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3358 3359 3360 3361 3362 3363 3364 3365
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3366

3367 3368 3369 3370 3371
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3372
		__mark_reg_known(true_reg, val);
3373 3374 3375 3376 3377
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3378
		__mark_reg_known(false_reg, val);
3379 3380
		break;
	case BPF_JGT:
3381 3382 3383
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3384
	case BPF_JSGT:
3385 3386
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3387
		break;
3388 3389 3390 3391 3392 3393 3394 3395
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3396
	case BPF_JGE:
3397 3398 3399
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3400
	case BPF_JSGE:
3401 3402
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3403
		break;
3404 3405 3406 3407 3408 3409 3410 3411
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3412 3413 3414 3415
	default:
		break;
	}

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3427 3428
}

3429 3430
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3431 3432 3433 3434 3435
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3436 3437
	if (__is_pointer_value(false, false_reg))
		return;
3438

3439 3440 3441 3442 3443
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3444
		__mark_reg_known(true_reg, val);
3445 3446 3447 3448 3449
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3450
		__mark_reg_known(false_reg, val);
3451 3452
		break;
	case BPF_JGT:
3453 3454 3455
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3456
	case BPF_JSGT:
3457 3458
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3459
		break;
3460 3461 3462 3463 3464 3465 3466 3467
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3468
	case BPF_JGE:
3469 3470 3471
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3472
	case BPF_JSGE:
3473 3474
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3475
		break;
3476 3477 3478 3479 3480 3481 3482 3483
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3484 3485 3486 3487
	default:
		break;
	}

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3499 3500 3501 3502 3503 3504
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3505 3506 3507 3508 3509 3510 3511 3512
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3513 3514
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3544
		break;
3545
	}
3546 3547
}

3548
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3549
			 bool is_null)
3550 3551 3552 3553
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3554 3555 3556 3557
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3558 3559
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3560
				 reg->off)) {
3561 3562
			__mark_reg_known_zero(reg);
			reg->off = 0;
3563 3564 3565
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3566 3567 3568 3569
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3570
			reg->type = PTR_TO_MAP_VALUE;
3571
		}
3572 3573 3574 3575 3576
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3577 3578 3579 3580 3581 3582
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3583
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3584
			  bool is_null)
3585
{
3586
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3587
	struct bpf_reg_state *regs = state->regs;
3588
	u32 id = regs[regno].id;
3589
	int i, j;
3590 3591

	for (i = 0; i < MAX_BPF_REG; i++)
3592
		mark_map_reg(regs, i, id, is_null);
3593

3594 3595 3596 3597 3598 3599 3600
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3601 3602 3603
	}
}

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3697
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3698 3699
			     struct bpf_insn *insn, int *insn_idx)
{
3700 3701 3702 3703
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3704 3705 3706
	u8 opcode = BPF_OP(insn->code);
	int err;

3707
	if (opcode > BPF_JSLE) {
3708
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3709 3710 3711 3712 3713
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3714
			verbose(env, "BPF_JMP uses reserved fields\n");
3715 3716 3717 3718
			return -EINVAL;
		}

		/* check src1 operand */
3719
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3720 3721
		if (err)
			return err;
3722 3723

		if (is_pointer_value(env, insn->src_reg)) {
3724
			verbose(env, "R%d pointer comparison prohibited\n",
3725 3726 3727
				insn->src_reg);
			return -EACCES;
		}
3728 3729
	} else {
		if (insn->src_reg != BPF_REG_0) {
3730
			verbose(env, "BPF_JMP uses reserved fields\n");
3731 3732 3733 3734 3735
			return -EINVAL;
		}
	}

	/* check src2 operand */
3736
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3737 3738 3739
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3740 3741
	dst_reg = &regs[insn->dst_reg];

3742 3743 3744
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3745
	    dst_reg->type == SCALAR_VALUE &&
3746 3747 3748
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3766
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3767

3768 3769
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3770 3771 3772 3773
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3774 3775
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3776 3777 3778
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3779
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3780 3781 3782
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3783
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3784 3785 3786 3787
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3788 3789
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3790 3791 3792 3793
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3794
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3795 3796 3797
					dst_reg, insn->imm, opcode);
	}

3798
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3799
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3800 3801
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3802 3803 3804
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3805 3806
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3807 3808 3809
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3810 3811
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3812
		return -EACCES;
3813
	}
3814
	if (env->log.level)
3815
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3816 3817 3818
	return 0;
}

3819 3820 3821 3822 3823 3824 3825 3826
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3827
/* verify BPF_LD_IMM64 instruction */
3828
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3829
{
3830
	struct bpf_reg_state *regs = cur_regs(env);
3831 3832 3833
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3834
		verbose(env, "invalid BPF_LD_IMM insn\n");
3835 3836 3837
		return -EINVAL;
	}
	if (insn->off != 0) {
3838
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3839 3840 3841
		return -EINVAL;
	}

3842
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3843 3844 3845
	if (err)
		return err;

3846 3847 3848
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3849
		regs[insn->dst_reg].type = SCALAR_VALUE;
3850
		__mark_reg_known(&regs[insn->dst_reg], imm);
3851
		return 0;
3852
	}
3853 3854 3855 3856 3857 3858 3859 3860 3861

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3862 3863 3864 3865 3866
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3867
	case BPF_PROG_TYPE_SCHED_ACT:
3868 3869 3870 3871 3872 3873
		return true;
	default:
		return false;
	}
}

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3889
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3890
{
3891
	struct bpf_reg_state *regs = cur_regs(env);
3892 3893 3894
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3895
	if (!may_access_skb(env->prog->type)) {
3896
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3897 3898 3899
		return -EINVAL;
	}

3900 3901 3902 3903 3904
	if (!env->ops->gen_ld_abs) {
		verbose(env, "bpf verifier is misconfigured\n");
		return -EINVAL;
	}

J
Jiong Wang 已提交
3905
	if (env->subprog_cnt > 1) {
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3917
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3918
	    BPF_SIZE(insn->code) == BPF_DW ||
3919
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3920
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3921 3922 3923 3924
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3925
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3926 3927 3928 3929
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3930 3931
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3932 3933 3934 3935 3936
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3937
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3938 3939 3940 3941 3942
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3943
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3944
		mark_reg_not_init(env, regs, caller_saved[i]);
3945 3946
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3947 3948

	/* mark destination R0 register as readable, since it contains
3949 3950
	 * the value fetched from the packet.
	 * Already marked as written above.
3951
	 */
3952
	mark_reg_unknown(env, regs, BPF_REG_0);
3953 3954 3955
	return 0;
}

3956 3957 3958 3959 3960 3961 3962 3963
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
A
Andrey Ignatov 已提交
3964
	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3965
	case BPF_PROG_TYPE_SOCK_OPS:
3966
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3967 3968 3969 3970 3971
		break;
	default:
		return 0;
	}

3972
	reg = cur_regs(env) + BPF_REG_0;
3973
	if (reg->type != SCALAR_VALUE) {
3974
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3975 3976 3977 3978 3979
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3980
		verbose(env, "At program exit the register R0 ");
3981 3982 3983 3984
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3985
			verbose(env, "has value %s", tn_buf);
3986
		} else {
3987
			verbose(env, "has unknown scalar value");
3988
		}
3989
		verbose(env, " should have been 0 or 1\n");
3990 3991 3992 3993 3994
		return -EINVAL;
	}
	return 0;
}

3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

4035
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4036

4037 4038 4039 4040 4041 4042 4043 4044 4045
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
4046
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4047 4048 4049 4050 4051 4052 4053 4054
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
4055
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4056 4057 4058
		return -EINVAL;
	}

4059 4060 4061 4062
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

4063 4064 4065 4066 4067 4068 4069 4070 4071
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4072
		verbose(env, "back-edge from insn %d to %d\n", t, w);
4073 4074 4075 4076 4077
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4078
		verbose(env, "insn state internal bug\n");
4079 4080 4081 4082 4083 4084 4085 4086
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4087
static int check_cfg(struct bpf_verifier_env *env)
4088 4089 4090 4091 4092 4093
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4094 4095 4096 4097
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4128 4129
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4130 4131 4132 4133 4134 4135 4136 4137
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4150 4151 4152
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4153 4154
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4155 4156
		} else {
			/* conditional jump with two edges */
4157
			env->explored_states[t] = STATE_LIST_MARK;
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4184
		verbose(env, "pop stack internal bug\n");
4185 4186 4187 4188 4189 4190 4191 4192
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4193
			verbose(env, "unreachable insn %d\n", i);
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4206 4207 4208 4209
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4210 4211 4212 4213
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4232
 */
4233
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4234
{
4235
	unsigned int i;
A
Alexei Starovoitov 已提交
4236

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4253 4254
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4255
{
4256 4257
	bool equal;

4258 4259 4260 4261
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4262 4263 4264 4265 4266 4267 4268 4269 4270
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4271 4272
		return true;

4273 4274
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4275
		return true;
4276 4277 4278 4279 4280 4281 4282 4283 4284
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4285 4286 4287 4288 4289 4290
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4291
			 */
4292
			return false;
4293 4294
		}
	case PTR_TO_MAP_VALUE:
4295 4296 4297 4298 4299 4300 4301 4302
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4317
	case PTR_TO_PACKET_META:
4318
	case PTR_TO_PACKET:
4319
		if (rcur->type != rold->type)
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4350

4351 4352
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4353 4354 4355
	return false;
}

4356 4357
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4375 4376
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4377
			continue;
4378

4379 4380
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4381 4382 4383 4384 4385 4386 4387
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4444 4445
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4446
{
4447 4448
	struct idpair *idmap;
	bool ret = false;
4449 4450
	int i;

4451 4452 4453
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4454
		return false;
4455 4456

	for (i = 0; i < MAX_BPF_REG; i++) {
4457
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4458
			goto out_free;
4459 4460
	}

4461 4462
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4463 4464 4465 4466
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4467 4468
}

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4490
/* A write screens off any subsequent reads; but write marks come from the
4491 4492 4493 4494 4495
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4496
 */
4497 4498 4499
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4500
{
4501 4502
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4503

4504 4505 4506 4507 4508
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4509 4510 4511 4512
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4513
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4514
			continue;
4515 4516 4517 4518
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4519 4520
		}
	}
4521

4522
	/* ... and stack slots */
4523 4524 4525 4526 4527 4528 4529 4530 4531
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4532 4533
		}
	}
4534
	return err;
4535 4536
}

4537
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4538
{
4539 4540
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4541
	struct bpf_verifier_state *cur = env->cur_state;
4542
	int i, j, err;
4543 4544 4545 4546 4547 4548 4549 4550 4551

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4552
		if (states_equal(env, &sl->state, cur)) {
4553
			/* reached equivalent register/stack state,
4554 4555
			 * prune the search.
			 * Registers read by the continuation are read by us.
4556 4557 4558 4559 4560 4561
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4562
			 */
4563 4564 4565
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4566
			return 1;
4567
		}
4568 4569 4570 4571 4572
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4573 4574 4575 4576
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4577
	 */
4578
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4579 4580 4581 4582
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4583 4584 4585 4586 4587 4588
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4589 4590
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4591
	/* connect new state to parentage chain */
4592
	cur->parent = &new_sl->state;
4593 4594 4595 4596 4597 4598
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4599
	for (i = 0; i < BPF_REG_FP; i++)
4600 4601 4602 4603 4604 4605 4606
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4607
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4608
	}
4609 4610 4611
	return 0;
}

4612
static int do_check(struct bpf_verifier_env *env)
4613
{
4614
	struct bpf_verifier_state *state;
4615
	struct bpf_insn *insns = env->prog->insnsi;
4616
	struct bpf_reg_state *regs;
4617
	int insn_cnt = env->prog->len, i;
4618 4619 4620 4621
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4622 4623 4624
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4625
	state->curframe = 0;
4626
	state->parent = NULL;
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4637 4638 4639 4640 4641 4642 4643
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4644
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4645 4646 4647 4648 4649 4650 4651
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4652
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4653 4654
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4655 4656 4657 4658
				insn_processed);
			return -E2BIG;
		}

4659 4660 4661 4662 4663
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4664
			if (env->log.level) {
4665
				if (do_print_state)
4666
					verbose(env, "\nfrom %d to %d: safe\n",
4667 4668
						prev_insn_idx, insn_idx);
				else
4669
					verbose(env, "%d: safe\n", insn_idx);
4670 4671 4672 4673
			}
			goto process_bpf_exit;
		}

4674 4675 4676
		if (need_resched())
			cond_resched();

4677 4678 4679
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4680
			else
4681
				verbose(env, "\nfrom %d to %d:",
4682
					prev_insn_idx, insn_idx);
4683
			print_verifier_state(env, state->frame[state->curframe]);
4684 4685 4686
			do_print_state = false;
		}

4687
		if (env->log.level) {
4688 4689
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4690
				.private_data	= env,
4691 4692
			};

4693
			verbose(env, "%d: ", insn_idx);
4694
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4695 4696
		}

4697 4698 4699 4700 4701 4702
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4703

4704
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4705
		env->insn_aux_data[insn_idx].seen = true;
4706
		if (class == BPF_ALU || class == BPF_ALU64) {
4707
			err = check_alu_op(env, insn);
4708 4709 4710 4711
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4712
			enum bpf_reg_type *prev_src_type, src_reg_type;
4713 4714 4715

			/* check for reserved fields is already done */

4716
			/* check src operand */
4717
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4718 4719 4720
			if (err)
				return err;

4721
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4722 4723 4724
			if (err)
				return err;

4725 4726
			src_reg_type = regs[insn->src_reg].type;

4727 4728 4729
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4730
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4731
					       BPF_SIZE(insn->code), BPF_READ,
4732
					       insn->dst_reg, false);
4733 4734 4735
			if (err)
				return err;

4736 4737 4738
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4739 4740
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4741
				 * save type to validate intersecting paths
4742
				 */
4743
				*prev_src_type = src_reg_type;
4744

4745
			} else if (src_reg_type != *prev_src_type &&
4746
				   (src_reg_type == PTR_TO_CTX ||
4747
				    *prev_src_type == PTR_TO_CTX)) {
4748 4749 4750 4751 4752 4753 4754
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4755
				verbose(env, "same insn cannot be used with different pointers\n");
4756 4757 4758
				return -EINVAL;
			}

4759
		} else if (class == BPF_STX) {
4760
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4761

4762
			if (BPF_MODE(insn->code) == BPF_XADD) {
4763
				err = check_xadd(env, insn_idx, insn);
4764 4765 4766 4767 4768 4769 4770
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4771
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4772 4773 4774
			if (err)
				return err;
			/* check src2 operand */
4775
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4776 4777 4778
			if (err)
				return err;

4779 4780
			dst_reg_type = regs[insn->dst_reg].type;

4781
			/* check that memory (dst_reg + off) is writeable */
4782
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4783
					       BPF_SIZE(insn->code), BPF_WRITE,
4784
					       insn->src_reg, false);
4785 4786 4787
			if (err)
				return err;

4788 4789 4790 4791 4792
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4793
				   (dst_reg_type == PTR_TO_CTX ||
4794
				    *prev_dst_type == PTR_TO_CTX)) {
4795
				verbose(env, "same insn cannot be used with different pointers\n");
4796 4797 4798
				return -EINVAL;
			}

4799 4800 4801
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4802
				verbose(env, "BPF_ST uses reserved fields\n");
4803 4804 4805
				return -EINVAL;
			}
			/* check src operand */
4806
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4807 4808 4809
			if (err)
				return err;

4810 4811 4812 4813 4814 4815
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4816
			/* check that memory (dst_reg + off) is writeable */
4817
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4818
					       BPF_SIZE(insn->code), BPF_WRITE,
4819
					       -1, false);
4820 4821 4822 4823 4824 4825 4826 4827 4828
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4829 4830
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4831
				    insn->dst_reg != BPF_REG_0) {
4832
					verbose(env, "BPF_CALL uses reserved fields\n");
4833 4834 4835
					return -EINVAL;
				}

4836 4837 4838 4839
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4840 4841 4842 4843 4844 4845 4846 4847
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4848
					verbose(env, "BPF_JA uses reserved fields\n");
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4860
					verbose(env, "BPF_EXIT uses reserved fields\n");
4861 4862 4863
					return -EINVAL;
				}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4874 4875 4876 4877 4878 4879
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4880
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4881 4882 4883
				if (err)
					return err;

4884
				if (is_pointer_value(env, BPF_REG_0)) {
4885
					verbose(env, "R0 leaks addr as return value\n");
4886 4887 4888
					return -EACCES;
				}

4889 4890 4891
				err = check_return_code(env);
				if (err)
					return err;
4892
process_bpf_exit:
4893 4894 4895 4896
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4911 4912 4913 4914
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4915 4916 4917 4918 4919 4920
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4921
				env->insn_aux_data[insn_idx].seen = true;
4922
			} else {
4923
				verbose(env, "invalid BPF_LD mode\n");
4924 4925 4926
				return -EINVAL;
			}
		} else {
4927
			verbose(env, "unknown insn class %d\n", class);
4928 4929 4930 4931 4932 4933
			return -EINVAL;
		}

		insn_idx++;
	}

4934 4935
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
J
Jiong Wang 已提交
4936
	for (i = 0; i < env->subprog_cnt; i++) {
4937
		u32 depth = env->subprog_info[i].stack_depth;
4938 4939

		verbose(env, "%d", depth);
J
Jiong Wang 已提交
4940
		if (i + 1 < env->subprog_cnt)
4941 4942 4943
			verbose(env, "+");
	}
	verbose(env, "\n");
4944
	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
4945 4946 4947
	return 0;
}

4948 4949 4950
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4951 4952
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4953 4954 4955
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4956 4957
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4958 4959 4960
					struct bpf_prog *prog)

{
4961 4962 4963 4964 4965 4966 4967
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4968
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4969 4970 4971 4972
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4973
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4974 4975
			return -EINVAL;
		}
4976
	}
4977 4978 4979 4980 4981 4982 4983

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

4984 4985 4986
	return 0;
}

4987 4988 4989
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4990
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4991 4992 4993
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4994
	int i, j, err;
4995

4996
	err = bpf_prog_calc_tag(env->prog);
4997 4998 4999
	if (err)
		return err;

5000
	for (i = 0; i < insn_cnt; i++, insn++) {
5001
		if (BPF_CLASS(insn->code) == BPF_LDX &&
5002
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5003
			verbose(env, "BPF_LDX uses reserved fields\n");
5004 5005 5006
			return -EINVAL;
		}

5007 5008 5009
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5010
			verbose(env, "BPF_STX uses reserved fields\n");
5011 5012 5013
			return -EINVAL;
		}

5014 5015 5016 5017 5018 5019 5020
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
5021
				verbose(env, "invalid bpf_ld_imm64 insn\n");
5022 5023 5024 5025 5026 5027 5028 5029
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5030 5031
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
5032 5033 5034 5035
				return -EINVAL;
			}

			f = fdget(insn->imm);
5036
			map = __bpf_map_get(f);
5037
			if (IS_ERR(map)) {
5038
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5039 5040 5041 5042
					insn->imm);
				return PTR_ERR(map);
			}

5043
			err = check_map_prog_compatibility(env, map, env->prog);
5044 5045 5046 5047 5048
			if (err) {
				fdput(f);
				return err;
			}

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
5068
			 * and all maps are released in free_used_maps()
5069
			 */
A
Alexei Starovoitov 已提交
5070 5071 5072 5073 5074 5075 5076
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

5077 5078 5079 5080
			fdput(f);
next_insn:
			insn++;
			i++;
5081 5082 5083 5084 5085 5086 5087
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5099
static void release_maps(struct bpf_verifier_env *env)
5100 5101 5102 5103 5104 5105 5106 5107
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5108
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5119 5120 5121 5122 5123 5124 5125 5126
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5127
	int i;
5128 5129 5130 5131 5132 5133 5134 5135 5136

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5137 5138
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5139 5140 5141 5142 5143
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5144 5145 5146 5147 5148 5149
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
J
Jiong Wang 已提交
5150 5151
	/* NOTE: fake 'exit' subprog should be updated as well. */
	for (i = 0; i <= env->subprog_cnt; i++) {
5152
		if (env->subprog_info[i].start < off)
5153
			continue;
5154
		env->subprog_info[i].start += len - 1;
5155 5156 5157
	}
}

5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5168
	adjust_subprog_starts(env, off, len);
5169 5170 5171
	return new_prog;
}

5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5182 5183 5184 5185
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5186
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5187 5188 5189 5190 5191 5192 5193
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5194
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5195 5196 5197
	}
}

5198 5199 5200
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5201
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5202
{
5203
	const struct bpf_verifier_ops *ops = env->ops;
5204
	int i, cnt, size, ctx_field_size, delta = 0;
5205
	const int insn_cnt = env->prog->len;
5206
	struct bpf_insn insn_buf[16], *insn;
5207
	struct bpf_prog *new_prog;
5208
	enum bpf_access_type type;
5209 5210
	bool is_narrower_load;
	u32 target_size;
5211

5212 5213 5214 5215
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5216
			verbose(env, "bpf verifier is misconfigured\n");
5217 5218
			return -EINVAL;
		} else if (cnt) {
5219
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5220 5221
			if (!new_prog)
				return -ENOMEM;
5222

5223
			env->prog = new_prog;
5224
			delta += cnt - 1;
5225 5226 5227
		}
	}

5228
	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5229 5230
		return 0;

5231
	insn = env->prog->insnsi + delta;
5232

5233
	for (i = 0; i < insn_cnt; i++, insn++) {
5234 5235 5236
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5237
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5238
			type = BPF_READ;
5239 5240 5241
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5242
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5243 5244
			type = BPF_WRITE;
		else
5245 5246
			continue;

5247
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5248 5249
			continue;

5250
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5251
		size = BPF_LDST_BYTES(insn);
5252 5253 5254 5255 5256 5257

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5258
		is_narrower_load = size < ctx_field_size;
5259
		if (is_narrower_load) {
5260 5261 5262 5263
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5264
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5265 5266
				return -EINVAL;
			}
5267

5268
			size_code = BPF_H;
5269 5270 5271 5272
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5273

5274 5275 5276
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5277 5278 5279 5280 5281 5282

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5283
			verbose(env, "bpf verifier is misconfigured\n");
5284 5285
			return -EINVAL;
		}
5286 5287

		if (is_narrower_load && size < target_size) {
5288 5289
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5290
								(1 << size * 8) - 1);
5291 5292
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5293
								(1 << size * 8) - 1);
5294
		}
5295

5296
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5297 5298 5299
		if (!new_prog)
			return -ENOMEM;

5300
		delta += cnt - 1;
5301 5302 5303

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5304
		insn      = new_prog->insnsi + i + delta;
5305 5306 5307 5308 5309
	}

	return 0;
}

5310 5311 5312 5313
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5314
	struct bpf_insn *insn;
5315 5316 5317
	void *old_bpf_func;
	int err = -ENOMEM;

J
Jiong Wang 已提交
5318
	if (env->subprog_cnt <= 1)
5319 5320
		return 0;

5321
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
J
Jiong Wang 已提交
5334
		insn->off = subprog;
5335 5336 5337 5338 5339 5340 5341 5342
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

J
Jiong Wang 已提交
5343
	func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5344 5345 5346
	if (!func)
		return -ENOMEM;

J
Jiong Wang 已提交
5347
	for (i = 0; i < env->subprog_cnt; i++) {
5348
		subprog_start = subprog_end;
J
Jiong Wang 已提交
5349
		subprog_end = env->subprog_info[i + 1].start;
5350 5351 5352 5353 5354 5355 5356

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5357
		func[i]->type = prog->type;
5358
		func[i]->len = len;
5359 5360
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5361 5362 5363 5364 5365
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
5366
		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
J
Jiong Wang 已提交
5379
	for (i = 0; i < env->subprog_cnt; i++) {
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

		/* we use the aux data to keep a list of the start addresses
		 * of the JITed images for each function in the program
		 *
		 * for some architectures, such as powerpc64, the imm field
		 * might not be large enough to hold the offset of the start
		 * address of the callee's JITed image from __bpf_call_base
		 *
		 * in such cases, we can lookup the start address of a callee
		 * by using its subprog id, available from the off field of
		 * the call instruction, as an index for this list
		 */
		func[i]->aux->func = func;
		func[i]->aux->func_cnt = env->subprog_cnt;
5404
	}
J
Jiong Wang 已提交
5405
	for (i = 0; i < env->subprog_cnt; i++) {
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
J
Jiong Wang 已提交
5419
	for (i = 0; i < env->subprog_cnt; i++) {
5420 5421 5422
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
5434
		insn->imm = subprog;
5435 5436
	}

5437 5438 5439
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
J
Jiong Wang 已提交
5440
	prog->aux->func_cnt = env->subprog_cnt;
5441 5442
	return 0;
out_free:
J
Jiong Wang 已提交
5443
	for (i = 0; i < env->subprog_cnt; i++)
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5459 5460
static int fixup_call_args(struct bpf_verifier_env *env)
{
5461
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5462 5463 5464
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5465 5466
#endif
	int err;
5467

5468 5469 5470 5471
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5472
			return 0;
5473 5474
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5475 5476 5477 5478 5479 5480 5481 5482 5483
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5484 5485 5486
	err = 0;
#endif
	return err;
5487 5488
}

5489
/* fixup insn->imm field of bpf_call instructions
5490
 * and inline eligible helpers as explicit sequence of BPF instructions
5491 5492 5493
 *
 * this function is called after eBPF program passed verification
 */
5494
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5495
{
5496 5497
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5498
	const struct bpf_func_proto *fn;
5499
	const int insn_cnt = prog->len;
5500 5501 5502 5503
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5504

5505
	for (i = 0; i < insn_cnt; i++, insn++) {
5506 5507 5508
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5509
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5537 5538 5539 5540 5541 5542 5543 5544 5545
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
		if (BPF_CLASS(insn->code) == BPF_LD &&
		    (BPF_MODE(insn->code) == BPF_ABS ||
		     BPF_MODE(insn->code) == BPF_IND)) {
			cnt = env->ops->gen_ld_abs(insn, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose(env, "bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5565 5566
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5567 5568
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5569

5570 5571 5572 5573
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5574 5575
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5576
		if (insn->imm == BPF_FUNC_tail_call) {
5577 5578 5579 5580 5581 5582
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5583
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5584

5585 5586 5587 5588
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5589
			 */
5590
			insn->imm = 0;
5591
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5592 5593 5594 5595 5596 5597 5598 5599 5600

			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
			if (map_ptr == BPF_MAP_PTR_POISON) {
5601
				verbose(env, "tail_call abusing map_ptr\n");
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
				return -EINVAL;
			}
			if (!map_ptr->unpriv_array)
				continue;
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5621 5622
			continue;
		}
5623

5624 5625 5626
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
5627
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5628
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5629
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5630 5631
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5632 5633 5634 5635
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5636
				verbose(env, "bpf verifier is misconfigured\n");
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5653
		if (insn->imm == BPF_FUNC_redirect_map) {
5654 5655 5656 5657 5658 5659
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5674
patch_call_imm:
5675
		fn = env->ops->get_func_proto(insn->imm, env->prog);
5676 5677 5678 5679
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5680 5681
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5682 5683
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5684
		}
5685
		insn->imm = fn->func - __bpf_call_base;
5686 5687
	}

5688 5689
	return 0;
}
5690

5691
static void free_states(struct bpf_verifier_env *env)
5692
{
5693
	struct bpf_verifier_state_list *sl, *sln;
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5705
				free_verifier_state(&sl->state, false);
5706 5707 5708 5709 5710 5711 5712 5713
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5714
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5715
{
5716
	struct bpf_verifier_env *env;
M
Martin KaFai Lau 已提交
5717
	struct bpf_verifier_log *log;
A
Alexei Starovoitov 已提交
5718 5719
	int ret = -EINVAL;

5720 5721 5722 5723
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5724
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5725 5726
	 * allocate/free it every time bpf_check() is called
	 */
5727
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5728 5729
	if (!env)
		return -ENOMEM;
5730
	log = &env->log;
5731

5732 5733 5734 5735 5736
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5737
	env->prog = *prog;
5738
	env->ops = bpf_verifier_ops[env->prog->type];
5739

5740 5741 5742 5743 5744 5745 5746
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5747 5748 5749
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5750 5751

		ret = -EINVAL;
5752 5753 5754
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5755
			goto err_unlock;
5756
	}
5757 5758 5759

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5760
		env->strict_alignment = true;
5761

5762 5763 5764 5765
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5766
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5767 5768
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
5769
			goto skip_full_check;
5770 5771
	}

5772
	env->explored_states = kcalloc(env->prog->len,
5773
				       sizeof(struct bpf_verifier_state_list *),
5774 5775 5776 5777 5778
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5779 5780
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5781 5782 5783 5784
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5785
	ret = do_check(env);
5786 5787 5788 5789
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5790

5791
skip_full_check:
5792
	while (!pop_stack(env, NULL, NULL));
5793
	free_states(env);
5794

A
Alexei Starovoitov 已提交
5795 5796 5797
	if (ret == 0)
		sanitize_dead_code(env);

5798 5799 5800
	if (ret == 0)
		ret = check_max_stack_depth(env);

5801 5802 5803 5804
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5805
	if (ret == 0)
5806
		ret = fixup_bpf_calls(env);
5807

5808 5809 5810
	if (ret == 0)
		ret = fixup_call_args(env);

5811
	if (log->level && bpf_verifier_log_full(log))
5812
		ret = -ENOSPC;
5813
	if (log->level && !log->ubuf) {
5814
		ret = -EFAULT;
5815
		goto err_release_maps;
5816 5817
	}

5818 5819
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5820 5821 5822
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5823

5824
		if (!env->prog->aux->used_maps) {
5825
			ret = -ENOMEM;
5826
			goto err_release_maps;
5827 5828
		}

5829
		memcpy(env->prog->aux->used_maps, env->used_maps,
5830
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5831
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5832 5833 5834 5835 5836 5837

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5838

5839
err_release_maps:
5840
	if (!env->prog->aux->used_maps)
5841
		/* if we didn't copy map pointers into bpf_prog_info, release
5842
		 * them now. Otherwise free_used_maps() will release them.
5843 5844
		 */
		release_maps(env);
5845
	*prog = env->prog;
5846
err_unlock:
5847
	mutex_unlock(&bpf_verifier_lock);
5848 5849 5850
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5851 5852
	return ret;
}