verifier.c 174.1 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
Y
Yonghong Song 已提交
25
#include <linux/perf_event.h>
A
Alexei Starovoitov 已提交
26

27 28
#include "disasm.h"

29 30 31 32 33 34 35 36 37
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
38 39 40 41 42 43 44 45 46 47 48 49
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
50
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
78
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
79
 * means the register has some value, but it's not a valid pointer.
80
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
81 82
 *
 * When verifier sees load or store instructions the type of base register
83
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

145
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
146
struct bpf_verifier_stack_elem {
147 148 149 150
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
151
	struct bpf_verifier_state st;
152 153
	int insn_idx;
	int prev_insn_idx;
154
	struct bpf_verifier_stack_elem *next;
155 156
};

157
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 159
#define BPF_COMPLEXITY_LIMIT_STACK	1024

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#define BPF_MAP_PTR_UNPRIV	1UL
#define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
					  POISON_POINTER_DELTA))
#define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))

static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
{
	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
}

static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
{
	return aux->map_state & BPF_MAP_PTR_UNPRIV;
}

static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
			      const struct bpf_map *map, bool unpriv)
{
	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
	unpriv |= bpf_map_ptr_unpriv(aux);
	aux->map_state = (unsigned long)map |
			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
}
183

184 185
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
186
	bool raw_mode;
187
	bool pkt_access;
188 189
	int regno;
	int access_size;
190 191
	s64 msize_smax_value;
	u64 msize_umax_value;
192 193
};

194 195
static DEFINE_MUTEX(bpf_verifier_lock);

196 197
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
198
{
199
	unsigned int n;
200

201 202 203 204 205 206 207 208 209 210 211 212
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
213
}
214 215 216 217

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
218
 */
219 220 221 222 223
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

224 225 226
	if (!bpf_verifier_log_needed(&env->log))
		return;

227
	va_start(args, fmt);
228
	bpf_verifier_vlog(&env->log, fmt, args);
229 230 231 232 233 234
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
235
	struct bpf_verifier_env *env = private_data;
236 237
	va_list args;

238 239 240
	if (!bpf_verifier_log_needed(&env->log))
		return;

241
	va_start(args, fmt);
242
	bpf_verifier_vlog(&env->log, fmt, args);
243 244
	va_end(args);
}
245

246 247 248 249 250 251
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

252 253 254
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
255
	[SCALAR_VALUE]		= "inv",
256 257 258 259 260
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
261
	[PTR_TO_PACKET]		= "pkt",
262
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
263
	[PTR_TO_PACKET_END]	= "pkt_end",
264 265
};

266 267 268 269 270 271 272 273 274 275 276
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

277 278 279 280 281 282 283 284
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

285
static void print_verifier_state(struct bpf_verifier_env *env,
286
				 const struct bpf_func_state *state)
287
{
288
	const struct bpf_reg_state *reg;
289 290 291
	enum bpf_reg_type t;
	int i;

292 293
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
294
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
295 296
		reg = &state->regs[i];
		t = reg->type;
297 298
		if (t == NOT_INIT)
			continue;
299 300 301
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
302 303 304
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
305
			verbose(env, "%lld", reg->var_off.value + reg->off);
306 307
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
308
		} else {
309
			verbose(env, "(id=%d", reg->id);
310
			if (t != SCALAR_VALUE)
311
				verbose(env, ",off=%d", reg->off);
312
			if (type_is_pkt_pointer(t))
313
				verbose(env, ",r=%d", reg->range);
314 315 316
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
317
				verbose(env, ",ks=%d,vs=%d",
318 319
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
320 321 322 323 324
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
325
				verbose(env, ",imm=%llx", reg->var_off.value);
326 327 328
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
329
					verbose(env, ",smin_value=%lld",
330 331 332
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
333
					verbose(env, ",smax_value=%lld",
334 335
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
336
					verbose(env, ",umin_value=%llu",
337 338
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
339
					verbose(env, ",umax_value=%llu",
340 341 342
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
343

344
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
345
					verbose(env, ",var_off=%s", tn_buf);
346
				}
347
			}
348
			verbose(env, ")");
349
		}
350
	}
351
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
352 353 354 355 356
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
357
				reg_type_str[state->stack[i].spilled_ptr.type]);
358
		}
359 360
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
361
	}
362
	verbose(env, "\n");
363 364
}

365 366
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
367
{
368 369 370 371 372 373 374 375 376 377 378 379 380 381
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
382
 * the program calls into realloc_func_state() to grow the stack size.
383 384 385 386
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
387 388
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

421 422
static void free_func_state(struct bpf_func_state *state)
{
423 424
	if (!state)
		return;
425 426 427 428
	kfree(state->stack);
	kfree(state);
}

429 430
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
431
{
432 433 434 435 436 437
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
438 439
	if (free_self)
		kfree(state);
440 441 442 443 444
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
445 446
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
447 448 449
{
	int err;

450
	err = realloc_func_state(dst, src->allocated_stack, false);
451 452
	if (err)
		return err;
453
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
454 455 456
	return copy_stack_state(dst, src);
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

485 486 487 488 489 490
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
491 492

	if (env->head == NULL)
493
		return -ENOENT;
494

495 496 497 498 499 500 501
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
502
	if (prev_insn_idx)
503 504
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
505
	free_verifier_state(&head->st, false);
506
	kfree(head);
507 508
	env->head = elem;
	env->stack_size--;
509
	return 0;
510 511
}

512 513
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
514
{
515
	struct bpf_verifier_state *cur = env->cur_state;
516
	struct bpf_verifier_stack_elem *elem;
517
	int err;
518

519
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
520 521 522 523 524 525 526 527
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
528 529 530
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
531
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
532
		verbose(env, "BPF program is too complex\n");
533 534 535 536
		goto err;
	}
	return &elem->st;
err:
537 538
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
539
	/* pop all elements and return */
540
	while (!pop_stack(env, NULL, NULL));
541 542 543 544 545 546 547 548
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

549 550
static void __mark_reg_not_init(struct bpf_reg_state *reg);

551 552 553 554 555 556 557 558 559 560 561 562 563
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

564 565 566 567
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
568
{
569
	__mark_reg_known(reg, 0);
570
}
571

572 573 574 575 576 577 578
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

579 580
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
581 582
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
583
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
584 585 586 587 588 589 590 591
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

683 684 685 686 687 688 689
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
690
	reg->frameno = 0;
691
	__mark_reg_unbounded(reg);
692 693
}

694 695
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
696 697
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
698
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
699 700
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
701 702 703 704 705 706 707 708 709 710 711 712
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

713 714
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
715 716
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
717
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
718 719
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
720 721 722 723
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
724 725
}

726
static void init_reg_state(struct bpf_verifier_env *env,
727
			   struct bpf_func_state *state)
728
{
729
	struct bpf_reg_state *regs = state->regs;
730 731
	int i;

732
	for (i = 0; i < MAX_BPF_REG; i++) {
733
		mark_reg_not_init(env, regs, i);
734 735
		regs[i].live = REG_LIVE_NONE;
	}
736 737

	/* frame pointer */
738
	regs[BPF_REG_FP].type = PTR_TO_STACK;
739
	mark_reg_known_zero(env, regs, BPF_REG_FP);
740
	regs[BPF_REG_FP].frameno = state->frameno;
741 742 743

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
744
	mark_reg_known_zero(env, regs, BPF_REG_1);
745 746
}

747 748 749 750 751 752 753 754 755 756 757
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

758 759 760 761 762 763
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

764 765
static int cmp_subprogs(const void *a, const void *b)
{
766 767
	return ((struct bpf_subprog_info *)a)->start -
	       ((struct bpf_subprog_info *)b)->start;
768 769 770 771
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
772
	struct bpf_subprog_info *p;
773

774 775
	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
		    sizeof(env->subprog_info[0]), cmp_subprogs);
776 777
	if (!p)
		return -ENOENT;
778
	return p - env->subprog_info;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
J
Jiong Wang 已提交
794
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
795 796 797
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
798 799 800
	env->subprog_info[env->subprog_cnt++].start = off;
	sort(env->subprog_info, env->subprog_cnt,
	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
801 802 803 804 805 806
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
807
	struct bpf_subprog_info *subprog = env->subprog_info;
808 809 810
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

J
Jiong Wang 已提交
811 812 813 814 815
	/* Add entry function. */
	ret = add_subprog(env, 0);
	if (ret < 0)
		return ret;

816 817 818 819 820 821 822 823 824 825 826
	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
827
			verbose(env, "function calls in offloaded programs are not supported yet\n");
828 829 830 831 832 833 834
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

J
Jiong Wang 已提交
835 836 837 838 839
	/* Add a fake 'exit' subprog which could simplify subprog iteration
	 * logic. 'subprog_cnt' should not be increased.
	 */
	subprog[env->subprog_cnt].start = insn_cnt;

840 841
	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
842
			verbose(env, "func#%d @%d\n", i, subprog[i].start);
843 844

	/* now check that all jumps are within the same subprog */
J
Jiong Wang 已提交
845 846
	subprog_start = subprog[cur_subprog].start;
	subprog_end = subprog[cur_subprog + 1].start;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
J
Jiong Wang 已提交
871 872
			cur_subprog++;
			if (cur_subprog < env->subprog_cnt)
873
				subprog_end = subprog[cur_subprog + 1].start;
874 875 876 877 878
		}
	}
	return 0;
}

879
static
880 881 882 883
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
884
{
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
924
	return NULL;
925 926 927 928 929 930 931 932
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
933

A
Alexei Starovoitov 已提交
934 935
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
936
		return 0;
A
Alexei Starovoitov 已提交
937

938 939
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
940
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
941
			break;
942 943 944
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
945
		/* ... then we depend on parent's value */
946
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
947 948
		state = parent;
		parent = state->parent;
949
		writes = true;
950
	}
951
	return 0;
952 953 954
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
955 956
			 enum reg_arg_type t)
{
957 958 959
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
960

961
	if (regno >= MAX_BPF_REG) {
962
		verbose(env, "R%d is invalid\n", regno);
963 964 965 966 967 968
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
969
			verbose(env, "R%d !read_ok\n", regno);
970 971
			return -EACCES;
		}
972
		return mark_reg_read(env, vstate, vstate->parent, regno);
973 974 975
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
976
			verbose(env, "frame pointer is read only\n");
977 978
			return -EACCES;
		}
979
		regs[regno].live |= REG_LIVE_WRITTEN;
980
		if (t == DST_OP)
981
			mark_reg_unknown(env, regs, regno);
982 983 984 985
	}
	return 0;
}

986 987 988 989 990 991 992
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
993
	case PTR_TO_PACKET:
994
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
995
	case PTR_TO_PACKET_END:
996 997 998 999 1000 1001 1002
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

1003 1004 1005 1006 1007 1008
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

1009 1010 1011
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
1012
static int check_stack_write(struct bpf_verifier_env *env,
1013
			     struct bpf_func_state *state, /* func where register points to */
1014
			     int off, int size, int value_regno, int insn_idx)
1015
{
1016
	struct bpf_func_state *cur; /* state of the current function */
1017
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1018
	enum bpf_reg_type type;
1019

1020 1021
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
1022 1023
	if (err)
		return err;
1024 1025 1026
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
1027 1028 1029 1030 1031 1032
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
1033

1034
	cur = env->cur_state->frame[env->cur_state->curframe];
1035
	if (value_regno >= 0 &&
1036
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1037 1038

		/* register containing pointer is being spilled into stack */
1039
		if (size != BPF_REG_SIZE) {
1040
			verbose(env, "invalid size of register spill\n");
1041 1042 1043
			return -EACCES;
		}

1044 1045 1046 1047 1048
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1049
		/* save register state */
1050
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1051
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		for (i = 0; i < BPF_REG_SIZE; i++) {
			if (state->stack[spi].slot_type[i] == STACK_MISC &&
			    !env->allow_ptr_leaks) {
				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
				int soff = (-spi - 1) * BPF_REG_SIZE;

				/* detected reuse of integer stack slot with a pointer
				 * which means either llvm is reusing stack slot or
				 * an attacker is trying to exploit CVE-2018-3639
				 * (speculative store bypass)
				 * Have to sanitize that slot with preemptive
				 * store of zero.
				 */
				if (*poff && *poff != soff) {
					/* disallow programs where single insn stores
					 * into two different stack slots, since verifier
					 * cannot sanitize them
					 */
					verbose(env,
						"insn %d cannot access two stack slots fp%d and fp%d",
						insn_idx, *poff, soff);
					return -EINVAL;
				}
				*poff = soff;
			}
1078
			state->stack[spi].slot_type[i] = STACK_SPILL;
1079
		}
1080
	} else {
1081 1082
		u8 type = STACK_MISC;

1083
		/* regular write of data into stack */
1084
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1102
		for (i = 0; i < size; i++)
1103
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1104
				type;
1105 1106 1107 1108
	}
	return 0;
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1141
{
1142
	bool writes = parent == state->parent; /* Observe write marks */
1143 1144

	while (parent) {
1145 1146 1147 1148 1149 1150 1151 1152
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1153
		/* if read wasn't screened by an earlier write ... */
1154
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1155 1156
			break;
		/* ... then we depend on parent's value */
1157
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1158 1159
		state = parent;
		parent = state->parent;
1160
		writes = true;
1161 1162 1163
	}
}

1164
static int check_stack_read(struct bpf_verifier_env *env,
1165 1166
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1167
{
1168 1169
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1170 1171
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1172

1173
	if (reg_state->allocated_stack <= slot) {
1174 1175 1176 1177
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1178
	stype = reg_state->stack[spi].slot_type;
1179

1180
	if (stype[0] == STACK_SPILL) {
1181
		if (size != BPF_REG_SIZE) {
1182
			verbose(env, "invalid size of register spill\n");
1183 1184
			return -EACCES;
		}
1185
		for (i = 1; i < BPF_REG_SIZE; i++) {
1186
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1187
				verbose(env, "corrupted spill memory\n");
1188 1189 1190 1191
				return -EACCES;
			}
		}

1192
		if (value_regno >= 0) {
1193
			/* restore register state from stack */
1194
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1195 1196 1197 1198 1199
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1200
		}
1201 1202
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1203 1204
		return 0;
	} else {
1205 1206
		int zeros = 0;

1207
		for (i = 0; i < size; i++) {
1208 1209 1210 1211 1212
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1213
			}
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1231 1232 1233 1234 1235 1236
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1237
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1238
			      int size, bool zero_size_allowed)
1239
{
1240 1241
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1242

1243 1244
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1245
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1246 1247 1248 1249 1250 1251
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1252 1253
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1254
			    int off, int size, bool zero_size_allowed)
1255
{
1256 1257
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1258 1259 1260
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1261 1262 1263
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1264
	 */
1265 1266
	if (env->log.level)
		print_verifier_state(env, state);
1267 1268 1269 1270 1271 1272
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1273
	if (reg->smin_value < 0) {
1274
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1275 1276 1277
			regno);
		return -EACCES;
	}
1278 1279
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1280
	if (err) {
1281 1282
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1283 1284 1285
		return err;
	}

1286 1287 1288
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1289
	 */
1290
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1291
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1292 1293 1294
			regno);
		return -EACCES;
	}
1295 1296
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1297
	if (err)
1298 1299
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1300
	return err;
1301 1302
}

A
Alexei Starovoitov 已提交
1303 1304
#define MAX_PACKET_OFF 0xffff

1305
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1306 1307
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1308
{
1309
	switch (env->prog->type) {
1310 1311
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
1312
	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1313 1314 1315
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1316
		/* fallthrough */
1317 1318
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1319
	case BPF_PROG_TYPE_XDP:
1320
	case BPF_PROG_TYPE_LWT_XMIT:
1321
	case BPF_PROG_TYPE_SK_SKB:
1322
	case BPF_PROG_TYPE_SK_MSG:
1323 1324 1325 1326
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1327 1328 1329 1330 1331 1332
		return true;
	default:
		return false;
	}
}

1333
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1334
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1335
{
1336
	struct bpf_reg_state *regs = cur_regs(env);
1337
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1338

1339 1340
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1341
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1342
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1343 1344 1345 1346 1347
		return -EACCES;
	}
	return 0;
}

1348
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1349
			       int size, bool zero_size_allowed)
1350
{
1351
	struct bpf_reg_state *regs = cur_regs(env);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1363
	if (reg->smin_value < 0) {
1364
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1365 1366 1367
			regno);
		return -EACCES;
	}
1368
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1369
	if (err) {
1370
		verbose(env, "R%d offset is outside of the packet\n", regno);
1371 1372 1373 1374 1375 1376
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1377
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1378
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1379
{
1380 1381 1382
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1383

1384
	if (env->ops->is_valid_access &&
1385
	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1386 1387 1388 1389 1390 1391
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1392
		 */
1393
		*reg_type = info.reg_type;
1394

1395
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1396 1397 1398
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1399
		return 0;
1400
	}
1401

1402
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1403 1404 1405
	return -EACCES;
}

1406 1407
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1408
{
1409
	if (allow_ptr_leaks)
1410 1411
		return false;

1412
	return reg->type != SCALAR_VALUE;
1413 1414
}

1415 1416
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1417
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1418 1419
}

1420 1421 1422 1423 1424 1425 1426
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1427 1428 1429 1430 1431 1432 1433
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1434 1435
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1436
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1437
{
1438
	struct tnum reg_off;
1439
	int ip_align;
1440 1441 1442 1443 1444

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1445 1446 1447 1448 1449 1450 1451
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1452
	 */
1453
	ip_align = 2;
1454 1455 1456 1457 1458 1459

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1460 1461
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1462
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1463 1464
		return -EACCES;
	}
1465

A
Alexei Starovoitov 已提交
1466 1467 1468
	return 0;
}

1469 1470
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1471 1472
				       const char *pointer_desc,
				       int off, int size, bool strict)
1473
{
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1485
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1486
			pointer_desc, tn_buf, reg->off, off, size);
1487 1488 1489
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1490 1491 1492
	return 0;
}

1493
static int check_ptr_alignment(struct bpf_verifier_env *env,
1494 1495
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1496
{
1497
	bool strict = env->strict_alignment || strict_alignment_once;
1498
	const char *pointer_desc = "";
1499

1500 1501
	switch (reg->type) {
	case PTR_TO_PACKET:
1502 1503 1504 1505
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1506
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1507 1508 1509 1510 1511 1512 1513 1514
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1515 1516 1517 1518 1519
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1520
		break;
1521
	default:
1522
		break;
1523
	}
1524 1525
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1526 1527
}

1528 1529 1530 1531
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1532
	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1533 1534 1535 1536 1537

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
1538
	env->subprog_info[func->subprogno].stack_depth = -off;
1539 1540
	return 0;
}
1541

1542 1543 1544 1545 1546 1547 1548 1549
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
1550 1551
	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
	struct bpf_subprog_info *subprog = env->subprog_info;
1552 1553 1554
	struct bpf_insn *insn = env->prog->insnsi;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1555

1556 1557 1558 1559
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
1560
	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1561
	if (depth > MAX_BPF_STACK) {
1562
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1563
			frame + 1, depth);
1564 1565
		return -EACCES;
	}
1566
continue_func:
J
Jiong Wang 已提交
1567
	subprog_end = subprog[idx + 1].start;
1568 1569 1570 1571 1572 1573 1574
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
1575
		ret_prog[frame] = idx;
1576 1577 1578

		/* find the callee */
		i = i + insn[i].imm + 1;
1579 1580
		idx = find_subprog(env, i);
		if (idx < 0) {
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
1597
	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1598 1599
	frame--;
	i = ret_insn[frame];
1600
	idx = ret_prog[frame];
1601
	goto continue_func;
1602 1603
}

1604
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
1616
	return env->subprog_info[subprog].stack_depth;
1617
}
1618
#endif
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1643 1644 1645 1646 1647 1648
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1649 1650 1651
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1652
{
1653 1654
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1655
	struct bpf_func_state *state;
1656 1657 1658 1659 1660 1661
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1662
	/* alignment checks will add in reg->off themselves */
1663
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1664 1665
	if (err)
		return err;
1666

1667 1668 1669 1670
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1671 1672
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1673
			verbose(env, "R%d leaks addr into map\n", value_regno);
1674 1675
			return -EACCES;
		}
1676

1677
		err = check_map_access(env, regno, off, size, false);
1678
		if (!err && t == BPF_READ && value_regno >= 0)
1679
			mark_reg_unknown(env, regs, value_regno);
1680

A
Alexei Starovoitov 已提交
1681
	} else if (reg->type == PTR_TO_CTX) {
1682
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1683

1684 1685
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1686
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1687 1688
			return -EACCES;
		}
1689 1690 1691
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1692
		if (reg->off) {
1693 1694
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1695 1696 1697 1698
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1699 1700 1701
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1702 1703
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1704 1705 1706
				tn_buf, off, size);
			return -EACCES;
		}
1707
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1708
		if (!err && t == BPF_READ && value_regno >= 0) {
1709
			/* ctx access returns either a scalar, or a
1710 1711
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1712 1713
			 */
			if (reg_type == SCALAR_VALUE)
1714
				mark_reg_unknown(env, regs, value_regno);
1715
			else
1716
				mark_reg_known_zero(env, regs,
1717
						    value_regno);
1718 1719 1720 1721
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1722
		}
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1733
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1734 1735 1736 1737
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1738
		if (off >= 0 || off < -MAX_BPF_STACK) {
1739 1740
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1741 1742
			return -EACCES;
		}
1743

1744 1745 1746 1747
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1748

1749
		if (t == BPF_WRITE)
1750
			err = check_stack_write(env, state, off, size,
1751
						value_regno, insn_idx);
1752
		else
1753 1754
			err = check_stack_read(env, state, off, size,
					       value_regno);
1755
	} else if (reg_is_pkt_pointer(reg)) {
1756
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1757
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1758 1759
			return -EACCES;
		}
1760 1761
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1762 1763
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1764 1765
			return -EACCES;
		}
1766
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1767
		if (!err && t == BPF_READ && value_regno >= 0)
1768
			mark_reg_unknown(env, regs, value_regno);
1769
	} else {
1770 1771
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1772 1773
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1774

1775
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1776
	    regs[value_regno].type == SCALAR_VALUE) {
1777
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1778
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1779
	}
1780 1781 1782
	return err;
}

1783
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1784 1785 1786 1787 1788
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1789
		verbose(env, "BPF_XADD uses reserved fields\n");
1790 1791 1792 1793
		return -EINVAL;
	}

	/* check src1 operand */
1794
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1795 1796 1797 1798
	if (err)
		return err;

	/* check src2 operand */
1799
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1800 1801 1802
	if (err)
		return err;

1803
	if (is_pointer_value(env, insn->src_reg)) {
1804
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1805 1806 1807
		return -EACCES;
	}

1808 1809 1810 1811 1812
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1813 1814 1815
		return -EACCES;
	}

1816
	/* check whether atomic_add can read the memory */
1817
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1818
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1819 1820 1821 1822
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1823
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1824
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1825 1826 1827 1828
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1829 1830 1831
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1832
 */
1833
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1834 1835
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1836
{
1837
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1838
	struct bpf_func_state *state = func(env, reg);
1839
	int off, i, slot, spi;
1840

1841
	if (reg->type != PTR_TO_STACK) {
1842
		/* Allow zero-byte read from NULL, regardless of pointer type */
1843
		if (zero_size_allowed && access_size == 0 &&
1844
		    register_is_null(reg))
1845 1846
			return 0;

1847
		verbose(env, "R%d type=%s expected=%s\n", regno,
1848
			reg_type_str[reg->type],
1849
			reg_type_str[PTR_TO_STACK]);
1850
		return -EACCES;
1851
	}
1852

1853
	/* Only allow fixed-offset stack reads */
1854
	if (!tnum_is_const(reg->var_off)) {
1855 1856
		char tn_buf[48];

1857
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1858
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1859
			regno, tn_buf);
1860
		return -EACCES;
1861
	}
1862
	off = reg->off + reg->var_off.value;
1863
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1864
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1865
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1866 1867 1868 1869
			regno, off, access_size);
		return -EACCES;
	}

1870 1871 1872 1873 1874 1875
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1876
	for (i = 0; i < access_size; i++) {
1877 1878
		u8 *stype;

1879 1880
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1881 1882 1883 1884 1885 1886 1887 1888 1889
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1890
		}
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1901
	}
1902
	return update_stack_depth(env, state, off);
1903 1904
}

1905 1906 1907 1908
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1909
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1910

1911
	switch (reg->type) {
1912
	case PTR_TO_PACKET:
1913
	case PTR_TO_PACKET_META:
1914 1915
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1916
	case PTR_TO_MAP_VALUE:
1917 1918
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1919
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1920 1921 1922 1923 1924
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1938
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1939 1940
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1941
{
1942
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1943
	enum bpf_reg_type expected_type, type = reg->type;
1944 1945
	int err = 0;

1946
	if (arg_type == ARG_DONTCARE)
1947 1948
		return 0;

1949 1950 1951
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1952

1953 1954
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1955 1956
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1957 1958
			return -EACCES;
		}
1959
		return 0;
1960
	}
1961

1962
	if (type_is_pkt_pointer(type) &&
1963
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1964
		verbose(env, "helper access to the packet is not allowed\n");
1965 1966 1967
		return -EACCES;
	}

1968
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1969 1970
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1971
		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1972
		    type != expected_type)
1973
			goto err_type;
1974 1975
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1976 1977
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1978
			goto err_type;
1979 1980
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1981 1982
		if (type != expected_type)
			goto err_type;
1983 1984
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1985 1986
		if (type != expected_type)
			goto err_type;
1987
	} else if (arg_type_is_mem_ptr(arg_type)) {
1988 1989
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1990
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1991 1992
		 * happens during stack boundary checking.
		 */
1993
		if (register_is_null(reg) &&
1994
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1995
			/* final test in check_stack_boundary() */;
1996 1997
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1998
			 type != expected_type)
1999
			goto err_type;
2000
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2001
	} else {
2002
		verbose(env, "unsupported arg_type %d\n", arg_type);
2003 2004 2005 2006 2007
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2008
		meta->map_ptr = reg->map_ptr;
2009 2010 2011 2012 2013
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
2014
		if (!meta->map_ptr) {
2015 2016 2017 2018 2019
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
2020
			verbose(env, "invalid map_ptr to access map->key\n");
2021 2022
			return -EACCES;
		}
2023 2024 2025
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->key_size, false,
					      NULL);
2026 2027 2028 2029
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
2030
		if (!meta->map_ptr) {
2031
			/* kernel subsystem misconfigured verifier */
2032
			verbose(env, "invalid map_ptr to access map->value\n");
2033 2034
			return -EACCES;
		}
2035 2036 2037
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->value_size, false,
					      NULL);
2038
	} else if (arg_type_is_mem_size(arg_type)) {
2039
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2040

2041 2042 2043 2044 2045 2046
		/* remember the mem_size which may be used later
		 * to refine return values.
		 */
		meta->msize_smax_value = reg->smax_value;
		meta->msize_umax_value = reg->umax_value;

2047 2048
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
2049
		 */
2050
		if (!tnum_is_const(reg->var_off))
2051 2052 2053 2054 2055 2056 2057
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

2058
		if (reg->smin_value < 0) {
2059
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2060 2061 2062
				regno);
			return -EACCES;
		}
2063

2064
		if (reg->umin_value == 0) {
2065 2066 2067
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2068 2069 2070
			if (err)
				return err;
		}
2071

2072
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2073
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2074 2075 2076 2077
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2078
					      reg->umax_value,
2079
					      zero_size_allowed, meta);
2080 2081 2082
	}

	return err;
2083
err_type:
2084
	verbose(env, "R%d type=%s expected=%s\n", regno,
2085 2086
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2087 2088
}

2089 2090
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2091 2092 2093 2094
{
	if (!map)
		return 0;

2095 2096 2097 2098 2099 2100 2101 2102
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2103 2104
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2105 2106 2107 2108 2109 2110
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2111
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2112
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2113
		    func_id != BPF_FUNC_current_task_under_cgroup)
2114 2115
			goto error;
		break;
2116 2117 2118 2119 2120
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2121
		if (func_id != BPF_FUNC_redirect_map)
2122 2123
			goto error;
		break;
2124 2125 2126
	/* Restrict bpf side of cpumap and xskmap, open when use-cases
	 * appear.
	 */
2127
	case BPF_MAP_TYPE_CPUMAP:
2128
	case BPF_MAP_TYPE_XSKMAP:
2129 2130 2131
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2132
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2133
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2134 2135
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2136
		break;
2137 2138 2139
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2140 2141
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2142 2143
			goto error;
		break;
2144 2145 2146 2147 2148 2149 2150
	case BPF_MAP_TYPE_SOCKHASH:
		if (func_id != BPF_FUNC_sk_redirect_hash &&
		    func_id != BPF_FUNC_sock_hash_update &&
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_hash)
			goto error;
		break;
2151 2152 2153 2154 2155 2156 2157 2158 2159
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
J
Jiong Wang 已提交
2160
		if (env->subprog_cnt > 1) {
2161 2162 2163
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2164 2165 2166
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2167
	case BPF_FUNC_perf_event_read_value:
2168 2169 2170 2171 2172 2173 2174
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2175
	case BPF_FUNC_current_task_under_cgroup:
2176
	case BPF_FUNC_skb_under_cgroup:
2177 2178 2179
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2180
	case BPF_FUNC_redirect_map:
2181
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2182 2183
		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2184 2185
			goto error;
		break;
2186
	case BPF_FUNC_sk_redirect_map:
2187
	case BPF_FUNC_msg_redirect_map:
2188
	case BPF_FUNC_sock_map_update:
2189 2190 2191
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2192 2193 2194 2195
	case BPF_FUNC_sk_redirect_hash:
	case BPF_FUNC_msg_redirect_hash:
	case BPF_FUNC_sock_hash_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2196 2197
			goto error;
		break;
2198 2199
	default:
		break;
2200 2201 2202
	}

	return 0;
2203
error:
2204
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2205
		map->map_type, func_id_name(func_id), func_id);
2206
	return -EINVAL;
2207 2208
}

2209
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2210 2211 2212
{
	int count = 0;

2213
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2214
		count++;
2215
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2216
		count++;
2217
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2218
		count++;
2219
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2220
		count++;
2221
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2222 2223
		count++;

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2262 2263
}

2264 2265
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2266
 */
2267 2268
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2269
{
2270
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2271 2272 2273
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2274
		if (reg_is_pkt_pointer_any(&regs[i]))
2275
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2276

2277 2278
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2279
			continue;
2280
		reg = &state->stack[i].spilled_ptr;
2281 2282
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2283 2284 2285
	}
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2302
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2303
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2304
			state->curframe + 2);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
J
Jiong Wang 已提交
2336
			subprog /* subprog number within this prog */);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
				   int func_id,
				   struct bpf_call_arg_meta *meta)
{
	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];

	if (ret_type != RET_INTEGER ||
	    (func_id != BPF_FUNC_get_stack &&
	     func_id != BPF_FUNC_probe_read_str))
		return;

	ret_reg->smax_value = meta->msize_smax_value;
	ret_reg->umax_value = meta->msize_umax_value;
	__reg_deduce_bounds(ret_reg);
	__reg_bound_offset(ret_reg);
}

2417 2418 2419 2420 2421 2422 2423
static int
record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
		int func_id, int insn_idx)
{
	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];

	if (func_id != BPF_FUNC_tail_call &&
2424 2425 2426
	    func_id != BPF_FUNC_map_lookup_elem &&
	    func_id != BPF_FUNC_map_update_elem &&
	    func_id != BPF_FUNC_map_delete_elem)
2427
		return 0;
2428

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (meta->map_ptr == NULL) {
		verbose(env, "kernel subsystem misconfigured verifier\n");
		return -EINVAL;
	}

	if (!BPF_MAP_PTR(aux->map_state))
		bpf_map_ptr_store(aux, meta->map_ptr,
				  meta->map_ptr->unpriv_array);
	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
				  meta->map_ptr->unpriv_array);
	return 0;
}

2443
static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2444 2445
{
	const struct bpf_func_proto *fn = NULL;
2446
	struct bpf_reg_state *regs;
2447
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2448
	bool changes_data;
2449 2450 2451 2452
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2453 2454
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2455 2456 2457
		return -EINVAL;
	}

2458
	if (env->ops->get_func_proto)
2459
		fn = env->ops->get_func_proto(func_id, env->prog);
2460
	if (!fn) {
2461 2462
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2463 2464 2465 2466
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2467
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2468
		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2469 2470 2471
		return -EINVAL;
	}

2472
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2473
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2474 2475 2476 2477 2478
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2479

2480
	memset(&meta, 0, sizeof(meta));
2481
	meta.pkt_access = fn->pkt_access;
2482

2483
	err = check_func_proto(fn);
2484
	if (err) {
2485
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2486
			func_id_name(func_id), func_id);
2487 2488 2489
		return err;
	}

2490
	/* check args */
2491
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2492 2493
	if (err)
		return err;
2494
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2495 2496
	if (err)
		return err;
2497
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2498 2499
	if (err)
		return err;
2500
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2501 2502
	if (err)
		return err;
2503
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2504 2505 2506
	if (err)
		return err;

2507 2508 2509 2510
	err = record_func_map(env, &meta, func_id, insn_idx);
	if (err)
		return err;

2511 2512 2513 2514
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2515 2516
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2517 2518 2519 2520
		if (err)
			return err;
	}

2521
	regs = cur_regs(env);
2522
	/* reset caller saved regs */
2523
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2524
		mark_reg_not_init(env, regs, caller_saved[i]);
2525 2526
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2527

2528
	/* update return register (already marked as written above) */
2529
	if (fn->ret_type == RET_INTEGER) {
2530
		/* sets type to SCALAR_VALUE */
2531
		mark_reg_unknown(env, regs, BPF_REG_0);
2532 2533 2534 2535
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2536
		/* There is no offset yet applied, variable or fixed */
2537
		mark_reg_known_zero(env, regs, BPF_REG_0);
2538
		regs[BPF_REG_0].off = 0;
2539 2540 2541 2542
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2543
		if (meta.map_ptr == NULL) {
2544 2545
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2546 2547
			return -EINVAL;
		}
2548
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2549
		regs[BPF_REG_0].id = ++env->id_gen;
2550
	} else {
2551
		verbose(env, "unknown return type %d of func %s#%d\n",
2552
			fn->ret_type, func_id_name(func_id), func_id);
2553 2554
		return -EINVAL;
	}
2555

2556 2557
	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);

2558
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2559 2560
	if (err)
		return err;
2561

Y
Yonghong Song 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
		const char *err_str;

#ifdef CONFIG_PERF_EVENTS
		err = get_callchain_buffers(sysctl_perf_event_max_stack);
		err_str = "cannot get callchain buffer for func %s#%d\n";
#else
		err = -ENOTSUPP;
		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
		if (err) {
			verbose(env, err_str, func_id_name(func_id), func_id);
			return err;
		}

		env->prog->has_callchain_buf = true;
	}

A
Alexei Starovoitov 已提交
2580 2581 2582 2583 2584
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2603 2604
}

A
Alexei Starovoitov 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2640 2641 2642 2643 2644 2645 2646 2647 2648
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2649
{
2650 2651 2652
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2653
	bool known = tnum_is_const(off_reg->var_off);
2654 2655 2656 2657
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2658
	u8 opcode = BPF_OP(insn->code);
2659
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2660

2661
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2662

2663 2664 2665 2666 2667 2668 2669
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2670 2671 2672 2673
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2674 2675 2676
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2677
		return -EACCES;
A
Alexei Starovoitov 已提交
2678 2679
	}

2680
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2681 2682
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2683 2684 2685
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2686 2687
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2688 2689 2690
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2691 2692
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2693 2694 2695 2696 2697
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2698
	 */
2699 2700
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2701

A
Alexei Starovoitov 已提交
2702 2703 2704 2705
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2706 2707 2708 2709
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2710
		 */
2711 2712
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2713
			/* pointer += K.  Accumulate it into fixed offset */
2714 2715 2716 2717
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2718
			dst_reg->var_off = ptr_reg->var_off;
2719
			dst_reg->off = ptr_reg->off + smin_val;
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2731
		 */
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2748 2749
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2750
		if (reg_is_pkt_pointer(ptr_reg)) {
2751 2752 2753 2754 2755 2756 2757 2758
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2759 2760
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2761 2762 2763 2764 2765
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2766
		 */
2767
		if (ptr_reg->type == PTR_TO_STACK) {
2768 2769
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2770 2771
			return -EACCES;
		}
2772 2773
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2774
			/* pointer -= K.  Subtract it from fixed offset */
2775 2776 2777 2778
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2779 2780
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2781
			dst_reg->off = ptr_reg->off - smin_val;
2782 2783 2784 2785 2786
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2787
		 */
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2806 2807
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2808
		if (reg_is_pkt_pointer(ptr_reg)) {
2809 2810
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2811
			if (smin_val < 0)
2812
				dst_reg->range = 0;
2813
		}
2814 2815 2816 2817
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2818 2819 2820
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2821 2822 2823
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2824 2825
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2826
		return -EACCES;
2827 2828
	}

A
Alexei Starovoitov 已提交
2829 2830 2831
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2832 2833 2834
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2835 2836 2837
	return 0;
}

J
Jann Horn 已提交
2838 2839 2840 2841
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2842 2843 2844 2845
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2846
{
2847
	struct bpf_reg_state *regs = cur_regs(env);
2848
	u8 opcode = BPF_OP(insn->code);
2849
	bool src_known, dst_known;
2850 2851
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2852
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2853

2854 2855 2856 2857
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2858 2859
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2870 2871 2872 2873 2874 2875
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2876 2877
	switch (opcode) {
	case BPF_ADD:
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2894
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2895 2896
		break;
	case BPF_SUB:
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2915
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2916 2917
		break;
	case BPF_MUL:
2918 2919
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2920
			/* Ain't nobody got time to multiply that sign */
2921 2922
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2923 2924
			break;
		}
2925 2926
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2927
		 */
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2945 2946
		break;
	case BPF_AND:
2947
		if (src_known && dst_known) {
2948 2949
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2950 2951
			break;
		}
2952 2953
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2954
		 */
2955
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2973 2974 2975
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2976 2977
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2978 2979
			break;
		}
2980 2981
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2982 2983
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2984 2985 2986 2987 2988 2989 2990 2991 2992
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2993
		} else {
2994 2995 2996 2997 2998
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2999
		}
3000 3001
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
3002 3003
		break;
	case BPF_LSH:
J
Jann Horn 已提交
3004 3005 3006
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
3007
			 */
3008
			mark_reg_unknown(env, regs, insn->dst_reg);
3009 3010
			break;
		}
3011 3012
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
3013
		 */
3014 3015 3016 3017 3018 3019
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
3020
		} else {
3021 3022
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
3023
		}
3024
		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3025 3026
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
3027 3028
		break;
	case BPF_RSH:
J
Jann Horn 已提交
3029 3030 3031
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
3032
			 */
3033
			mark_reg_unknown(env, regs, insn->dst_reg);
3034 3035
			break;
		}
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
3052
		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3053 3054 3055 3056
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
3057
		break;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	case BPF_ARSH:
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
			 */
			mark_reg_unknown(env, regs, insn->dst_reg);
			break;
		}

		/* Upon reaching here, src_known is true and
		 * umax_val is equal to umin_val.
		 */
		dst_reg->smin_value >>= umin_val;
		dst_reg->smax_value >>= umin_val;
		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);

		/* blow away the dst_reg umin_value/umax_value and rely on
		 * dst_reg var_off to refine the result.
		 */
		dst_reg->umin_value = 0;
		dst_reg->umax_value = U64_MAX;
		__update_reg_bounds(dst_reg);
		break;
3081
	default:
3082
		mark_reg_unknown(env, regs, insn->dst_reg);
3083 3084 3085
		break;
	}

J
Jann Horn 已提交
3086 3087 3088 3089 3090 3091
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

3092 3093
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
3094 3095 3096 3097 3098 3099 3100 3101 3102
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
3103 3104 3105
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
3118 3119
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
3120
				 */
3121 3122 3123
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
3124
				}
3125 3126 3127 3128
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
3129 3130 3131 3132 3133
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
3134 3135
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3136 3137 3138
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3139 3140
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3141 3142 3143 3144 3145 3146
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3147
		__mark_reg_known(&off_reg, insn->imm);
3148
		src_reg = &off_reg;
3149 3150 3151
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3152 3153 3154 3155
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3156
		print_verifier_state(env, state);
3157
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3158 3159 3160
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3161
		print_verifier_state(env, state);
3162
		verbose(env, "verifier internal error: no src_reg\n");
3163 3164 3165
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3166 3167
}

3168
/* check validity of 32-bit and 64-bit arithmetic operations */
3169
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3170
{
3171
	struct bpf_reg_state *regs = cur_regs(env);
3172 3173 3174 3175 3176 3177 3178 3179
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3180
				verbose(env, "BPF_NEG uses reserved fields\n");
3181 3182 3183 3184
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3185 3186
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3187
				verbose(env, "BPF_END uses reserved fields\n");
3188 3189 3190 3191 3192
				return -EINVAL;
			}
		}

		/* check src operand */
3193
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3194 3195 3196
		if (err)
			return err;

3197
		if (is_pointer_value(env, insn->dst_reg)) {
3198
			verbose(env, "R%d pointer arithmetic prohibited\n",
3199 3200 3201 3202
				insn->dst_reg);
			return -EACCES;
		}

3203
		/* check dest operand */
3204
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3205 3206 3207 3208 3209 3210 3211
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3212
				verbose(env, "BPF_MOV uses reserved fields\n");
3213 3214 3215 3216
				return -EINVAL;
			}

			/* check src operand */
3217
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3218 3219 3220 3221
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3222
				verbose(env, "BPF_MOV uses reserved fields\n");
3223 3224 3225 3226 3227
				return -EINVAL;
			}
		}

		/* check dest operand */
3228
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3229 3230 3231 3232 3233 3234 3235 3236 3237
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3238
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3239
			} else {
3240
				/* R1 = (u32) R2 */
3241
				if (is_pointer_value(env, insn->src_reg)) {
3242 3243
					verbose(env,
						"R%d partial copy of pointer\n",
3244 3245 3246
						insn->src_reg);
					return -EACCES;
				}
3247
				mark_reg_unknown(env, regs, insn->dst_reg);
3248
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3249 3250 3251 3252 3253
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3254
			regs[insn->dst_reg].type = SCALAR_VALUE;
3255 3256 3257 3258 3259 3260 3261
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3262 3263 3264
		}

	} else if (opcode > BPF_END) {
3265
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3266 3267 3268 3269 3270 3271
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3272
				verbose(env, "BPF_ALU uses reserved fields\n");
3273 3274 3275
				return -EINVAL;
			}
			/* check src1 operand */
3276
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3277 3278 3279 3280
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3281
				verbose(env, "BPF_ALU uses reserved fields\n");
3282 3283 3284 3285 3286
				return -EINVAL;
			}
		}

		/* check src2 operand */
3287
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3288 3289 3290 3291 3292
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3293
			verbose(env, "div by zero\n");
3294 3295 3296
			return -EINVAL;
		}

3297 3298 3299 3300 3301
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3302 3303 3304 3305 3306
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3307
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3308 3309 3310 3311
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3312
		/* check dest operand */
3313
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3314 3315 3316
		if (err)
			return err;

3317
		return adjust_reg_min_max_vals(env, insn);
3318 3319 3320 3321 3322
	}

	return 0;
}

3323
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3324
				   struct bpf_reg_state *dst_reg,
3325
				   enum bpf_reg_type type,
3326
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3327
{
3328
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3329
	struct bpf_reg_state *regs = state->regs, *reg;
3330
	u16 new_range;
3331
	int i, j;
3332

3333 3334
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3335 3336 3337
		/* This doesn't give us any range */
		return;

3338 3339
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3340 3341 3342 3343 3344
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3345 3346 3347 3348 3349
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3350
	 *
3351
	 * pkt_data in dst register:
3352 3353 3354 3355 3356 3357
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3358 3359 3360 3361 3362
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3363 3364 3365 3366 3367
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3368
	 * pkt_data in src register:
3369 3370 3371 3372 3373 3374
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3375 3376 3377 3378 3379
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3380 3381 3382 3383 3384 3385
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3386 3387 3388
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3389
	 */
3390

3391 3392 3393 3394 3395
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3396
	for (i = 0; i < MAX_BPF_REG; i++)
3397
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3398
			/* keep the maximum range already checked */
3399
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3400

3401 3402 3403 3404 3405 3406 3407 3408 3409
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3410 3411 3412
	}
}

3413 3414 3415
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3416
 * In JEQ/JNE cases we also adjust the var_off values.
3417 3418 3419 3420 3421
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3422 3423 3424 3425 3426 3427 3428 3429
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3430

3431 3432 3433 3434 3435
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3436
		__mark_reg_known(true_reg, val);
3437 3438 3439 3440 3441
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3442
		__mark_reg_known(false_reg, val);
3443 3444
		break;
	case BPF_JGT:
3445 3446 3447
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3448
	case BPF_JSGT:
3449 3450
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3451
		break;
3452 3453 3454 3455 3456 3457 3458 3459
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3460
	case BPF_JGE:
3461 3462 3463
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3464
	case BPF_JSGE:
3465 3466
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3467
		break;
3468 3469 3470 3471 3472 3473 3474 3475
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3476 3477 3478 3479
	default:
		break;
	}

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3491 3492
}

3493 3494
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3495 3496 3497 3498 3499
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3500 3501
	if (__is_pointer_value(false, false_reg))
		return;
3502

3503 3504 3505 3506 3507
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3508
		__mark_reg_known(true_reg, val);
3509 3510 3511 3512 3513
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3514
		__mark_reg_known(false_reg, val);
3515 3516
		break;
	case BPF_JGT:
3517 3518 3519
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3520
	case BPF_JSGT:
3521 3522
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3523
		break;
3524 3525 3526 3527 3528 3529 3530 3531
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3532
	case BPF_JGE:
3533 3534 3535
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3536
	case BPF_JSGE:
3537 3538
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3539
		break;
3540 3541 3542 3543 3544 3545 3546 3547
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3548 3549 3550 3551
	default:
		break;
	}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3563 3564 3565 3566 3567 3568
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3569 3570 3571 3572 3573 3574 3575 3576
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3577 3578
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3608
		break;
3609
	}
3610 3611
}

3612
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3613
			 bool is_null)
3614 3615 3616 3617
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3618 3619 3620 3621
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3622 3623
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3624
				 reg->off)) {
3625 3626
			__mark_reg_known_zero(reg);
			reg->off = 0;
3627 3628 3629
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3630 3631 3632 3633
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3634
			reg->type = PTR_TO_MAP_VALUE;
3635
		}
3636 3637 3638 3639 3640
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3641 3642 3643 3644 3645 3646
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3647
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3648
			  bool is_null)
3649
{
3650
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3651
	struct bpf_reg_state *regs = state->regs;
3652
	u32 id = regs[regno].id;
3653
	int i, j;
3654 3655

	for (i = 0; i < MAX_BPF_REG; i++)
3656
		mark_map_reg(regs, i, id, is_null);
3657

3658 3659 3660 3661 3662 3663 3664
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3665 3666 3667
	}
}

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3761
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3762 3763
			     struct bpf_insn *insn, int *insn_idx)
{
3764 3765 3766 3767
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3768 3769 3770
	u8 opcode = BPF_OP(insn->code);
	int err;

3771
	if (opcode > BPF_JSLE) {
3772
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3773 3774 3775 3776 3777
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3778
			verbose(env, "BPF_JMP uses reserved fields\n");
3779 3780 3781 3782
			return -EINVAL;
		}

		/* check src1 operand */
3783
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3784 3785
		if (err)
			return err;
3786 3787

		if (is_pointer_value(env, insn->src_reg)) {
3788
			verbose(env, "R%d pointer comparison prohibited\n",
3789 3790 3791
				insn->src_reg);
			return -EACCES;
		}
3792 3793
	} else {
		if (insn->src_reg != BPF_REG_0) {
3794
			verbose(env, "BPF_JMP uses reserved fields\n");
3795 3796 3797 3798 3799
			return -EINVAL;
		}
	}

	/* check src2 operand */
3800
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3801 3802 3803
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3804 3805
	dst_reg = &regs[insn->dst_reg];

3806 3807 3808
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3809
	    dst_reg->type == SCALAR_VALUE &&
3810 3811 3812
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3830
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3831

3832 3833
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3834 3835 3836 3837
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3838 3839
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3840 3841 3842
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3843
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3844 3845 3846
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3847
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3848 3849 3850 3851
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3852 3853
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3854 3855 3856 3857
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3858
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3859 3860 3861
					dst_reg, insn->imm, opcode);
	}

3862
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3863
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3864 3865
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3866 3867 3868
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3869 3870
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3871 3872 3873
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3874 3875
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3876
		return -EACCES;
3877
	}
3878
	if (env->log.level)
3879
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3880 3881 3882
	return 0;
}

3883 3884 3885 3886 3887 3888 3889 3890
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3891
/* verify BPF_LD_IMM64 instruction */
3892
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3893
{
3894
	struct bpf_reg_state *regs = cur_regs(env);
3895 3896 3897
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3898
		verbose(env, "invalid BPF_LD_IMM insn\n");
3899 3900 3901
		return -EINVAL;
	}
	if (insn->off != 0) {
3902
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3903 3904 3905
		return -EINVAL;
	}

3906
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3907 3908 3909
	if (err)
		return err;

3910 3911 3912
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3913
		regs[insn->dst_reg].type = SCALAR_VALUE;
3914
		__mark_reg_known(&regs[insn->dst_reg], imm);
3915
		return 0;
3916
	}
3917 3918 3919 3920 3921 3922 3923 3924 3925

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3926 3927 3928 3929 3930
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3931
	case BPF_PROG_TYPE_SCHED_ACT:
3932 3933 3934 3935 3936 3937
		return true;
	default:
		return false;
	}
}

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3953
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3954
{
3955
	struct bpf_reg_state *regs = cur_regs(env);
3956 3957 3958
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3959
	if (!may_access_skb(env->prog->type)) {
3960
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3961 3962 3963
		return -EINVAL;
	}

3964 3965 3966 3967 3968
	if (!env->ops->gen_ld_abs) {
		verbose(env, "bpf verifier is misconfigured\n");
		return -EINVAL;
	}

J
Jiong Wang 已提交
3969
	if (env->subprog_cnt > 1) {
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3981
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3982
	    BPF_SIZE(insn->code) == BPF_DW ||
3983
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3984
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3985 3986 3987 3988
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3989
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3990 3991 3992 3993
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3994 3995
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3996 3997 3998 3999 4000
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
4001
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4002 4003 4004 4005 4006
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
4007
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4008
		mark_reg_not_init(env, regs, caller_saved[i]);
4009 4010
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
4011 4012

	/* mark destination R0 register as readable, since it contains
4013 4014
	 * the value fetched from the packet.
	 * Already marked as written above.
4015
	 */
4016
	mark_reg_unknown(env, regs, BPF_REG_0);
4017 4018 4019
	return 0;
}

4020 4021 4022 4023 4024 4025 4026 4027
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
A
Andrey Ignatov 已提交
4028
	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4029
	case BPF_PROG_TYPE_SOCK_OPS:
4030
	case BPF_PROG_TYPE_CGROUP_DEVICE:
4031 4032 4033 4034 4035
		break;
	default:
		return 0;
	}

4036
	reg = cur_regs(env) + BPF_REG_0;
4037
	if (reg->type != SCALAR_VALUE) {
4038
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4039 4040 4041 4042 4043
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
4044
		verbose(env, "At program exit the register R0 ");
4045 4046 4047 4048
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4049
			verbose(env, "has value %s", tn_buf);
4050
		} else {
4051
			verbose(env, "has unknown scalar value");
4052
		}
4053
		verbose(env, " should have been 0 or 1\n");
4054 4055 4056 4057 4058
		return -EINVAL;
	}
	return 0;
}

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

4099
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
4110
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4111 4112 4113 4114 4115 4116 4117 4118
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
4119
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4120 4121 4122
		return -EINVAL;
	}

4123 4124 4125 4126
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

4127 4128 4129 4130 4131 4132 4133 4134 4135
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4136
		verbose(env, "back-edge from insn %d to %d\n", t, w);
4137 4138 4139 4140 4141
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4142
		verbose(env, "insn state internal bug\n");
4143 4144 4145 4146 4147 4148 4149 4150
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4151
static int check_cfg(struct bpf_verifier_env *env)
4152 4153 4154 4155 4156 4157
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4158 4159 4160 4161
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4192 4193
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4194 4195 4196 4197 4198 4199 4200 4201
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4214 4215 4216
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4217 4218
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4219 4220
		} else {
			/* conditional jump with two edges */
4221
			env->explored_states[t] = STATE_LIST_MARK;
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4248
		verbose(env, "pop stack internal bug\n");
4249 4250 4251 4252 4253 4254 4255 4256
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4257
			verbose(env, "unreachable insn %d\n", i);
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4270 4271 4272 4273
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4274 4275 4276 4277
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4296
 */
4297
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4298
{
4299
	unsigned int i;
A
Alexei Starovoitov 已提交
4300

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4317 4318
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4319
{
4320 4321
	bool equal;

4322 4323 4324 4325
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4326 4327 4328 4329 4330 4331 4332 4333 4334
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4335 4336
		return true;

4337 4338
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4339
		return true;
4340 4341 4342 4343 4344 4345 4346 4347 4348
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4349 4350 4351 4352 4353 4354
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4355
			 */
4356
			return false;
4357 4358
		}
	case PTR_TO_MAP_VALUE:
4359 4360 4361 4362 4363 4364 4365 4366
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4381
	case PTR_TO_PACKET_META:
4382
	case PTR_TO_PACKET:
4383
		if (rcur->type != rold->type)
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4414

4415 4416
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4417 4418 4419
	return false;
}

4420 4421
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4439 4440
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4441
			continue;
4442

4443 4444
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4445 4446 4447 4448 4449 4450 4451
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4508 4509
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4510
{
4511 4512
	struct idpair *idmap;
	bool ret = false;
4513 4514
	int i;

4515 4516 4517
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4518
		return false;
4519 4520

	for (i = 0; i < MAX_BPF_REG; i++) {
4521
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4522
			goto out_free;
4523 4524
	}

4525 4526
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4527 4528 4529 4530
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4531 4532
}

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4554
/* A write screens off any subsequent reads; but write marks come from the
4555 4556 4557 4558 4559
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4560
 */
4561 4562 4563
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4564
{
4565 4566
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4567

4568 4569 4570 4571 4572
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4573 4574 4575 4576
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4577
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4578
			continue;
4579 4580 4581 4582
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4583 4584
		}
	}
4585

4586
	/* ... and stack slots */
4587 4588 4589 4590 4591 4592 4593 4594 4595
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4596 4597
		}
	}
4598
	return err;
4599 4600
}

4601
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4602
{
4603 4604
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4605
	struct bpf_verifier_state *cur = env->cur_state;
4606
	int i, j, err;
4607 4608 4609 4610 4611 4612 4613 4614 4615

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4616
		if (states_equal(env, &sl->state, cur)) {
4617
			/* reached equivalent register/stack state,
4618 4619
			 * prune the search.
			 * Registers read by the continuation are read by us.
4620 4621 4622 4623 4624 4625
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4626
			 */
4627 4628 4629
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4630
			return 1;
4631
		}
4632 4633 4634 4635 4636
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4637 4638 4639 4640
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4641
	 */
4642
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4643 4644 4645 4646
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4647 4648 4649 4650 4651 4652
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4653 4654
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4655
	/* connect new state to parentage chain */
4656
	cur->parent = &new_sl->state;
4657 4658 4659 4660 4661 4662
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4663
	for (i = 0; i < BPF_REG_FP; i++)
4664 4665 4666 4667 4668 4669 4670
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4671
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4672
	}
4673 4674 4675
	return 0;
}

4676
static int do_check(struct bpf_verifier_env *env)
4677
{
4678
	struct bpf_verifier_state *state;
4679
	struct bpf_insn *insns = env->prog->insnsi;
4680
	struct bpf_reg_state *regs;
4681
	int insn_cnt = env->prog->len, i;
4682 4683 4684 4685
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4686 4687 4688
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4689
	state->curframe = 0;
4690
	state->parent = NULL;
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4701 4702 4703 4704 4705 4706 4707
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4708
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4709 4710 4711 4712 4713 4714 4715
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4716
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4717 4718
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4719 4720 4721 4722
				insn_processed);
			return -E2BIG;
		}

4723 4724 4725 4726 4727
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4728
			if (env->log.level) {
4729
				if (do_print_state)
4730
					verbose(env, "\nfrom %d to %d: safe\n",
4731 4732
						prev_insn_idx, insn_idx);
				else
4733
					verbose(env, "%d: safe\n", insn_idx);
4734 4735 4736 4737
			}
			goto process_bpf_exit;
		}

4738 4739 4740
		if (need_resched())
			cond_resched();

4741 4742 4743
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4744
			else
4745
				verbose(env, "\nfrom %d to %d:",
4746
					prev_insn_idx, insn_idx);
4747
			print_verifier_state(env, state->frame[state->curframe]);
4748 4749 4750
			do_print_state = false;
		}

4751
		if (env->log.level) {
4752 4753
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4754
				.private_data	= env,
4755 4756
			};

4757
			verbose(env, "%d: ", insn_idx);
4758
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4759 4760
		}

4761 4762 4763 4764 4765 4766
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4767

4768
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4769
		env->insn_aux_data[insn_idx].seen = true;
4770
		if (class == BPF_ALU || class == BPF_ALU64) {
4771
			err = check_alu_op(env, insn);
4772 4773 4774 4775
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4776
			enum bpf_reg_type *prev_src_type, src_reg_type;
4777 4778 4779

			/* check for reserved fields is already done */

4780
			/* check src operand */
4781
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4782 4783 4784
			if (err)
				return err;

4785
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4786 4787 4788
			if (err)
				return err;

4789 4790
			src_reg_type = regs[insn->src_reg].type;

4791 4792 4793
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4794
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4795
					       BPF_SIZE(insn->code), BPF_READ,
4796
					       insn->dst_reg, false);
4797 4798 4799
			if (err)
				return err;

4800 4801 4802
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4803 4804
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4805
				 * save type to validate intersecting paths
4806
				 */
4807
				*prev_src_type = src_reg_type;
4808

4809
			} else if (src_reg_type != *prev_src_type &&
4810
				   (src_reg_type == PTR_TO_CTX ||
4811
				    *prev_src_type == PTR_TO_CTX)) {
4812 4813 4814 4815 4816 4817 4818
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4819
				verbose(env, "same insn cannot be used with different pointers\n");
4820 4821 4822
				return -EINVAL;
			}

4823
		} else if (class == BPF_STX) {
4824
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4825

4826
			if (BPF_MODE(insn->code) == BPF_XADD) {
4827
				err = check_xadd(env, insn_idx, insn);
4828 4829 4830 4831 4832 4833 4834
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4835
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4836 4837 4838
			if (err)
				return err;
			/* check src2 operand */
4839
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4840 4841 4842
			if (err)
				return err;

4843 4844
			dst_reg_type = regs[insn->dst_reg].type;

4845
			/* check that memory (dst_reg + off) is writeable */
4846
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4847
					       BPF_SIZE(insn->code), BPF_WRITE,
4848
					       insn->src_reg, false);
4849 4850 4851
			if (err)
				return err;

4852 4853 4854 4855 4856
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4857
				   (dst_reg_type == PTR_TO_CTX ||
4858
				    *prev_dst_type == PTR_TO_CTX)) {
4859
				verbose(env, "same insn cannot be used with different pointers\n");
4860 4861 4862
				return -EINVAL;
			}

4863 4864 4865
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4866
				verbose(env, "BPF_ST uses reserved fields\n");
4867 4868 4869
				return -EINVAL;
			}
			/* check src operand */
4870
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4871 4872 4873
			if (err)
				return err;

4874 4875 4876 4877 4878 4879
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4880
			/* check that memory (dst_reg + off) is writeable */
4881
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4882
					       BPF_SIZE(insn->code), BPF_WRITE,
4883
					       -1, false);
4884 4885 4886 4887 4888 4889 4890 4891 4892
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4893 4894
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4895
				    insn->dst_reg != BPF_REG_0) {
4896
					verbose(env, "BPF_CALL uses reserved fields\n");
4897 4898 4899
					return -EINVAL;
				}

4900 4901 4902 4903
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4904 4905 4906 4907 4908 4909 4910 4911
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4912
					verbose(env, "BPF_JA uses reserved fields\n");
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4924
					verbose(env, "BPF_EXIT uses reserved fields\n");
4925 4926 4927
					return -EINVAL;
				}

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4938 4939 4940 4941 4942 4943
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4944
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4945 4946 4947
				if (err)
					return err;

4948
				if (is_pointer_value(env, BPF_REG_0)) {
4949
					verbose(env, "R0 leaks addr as return value\n");
4950 4951 4952
					return -EACCES;
				}

4953 4954 4955
				err = check_return_code(env);
				if (err)
					return err;
4956
process_bpf_exit:
4957 4958 4959 4960
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4975 4976 4977 4978
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4979 4980 4981 4982 4983 4984
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4985
				env->insn_aux_data[insn_idx].seen = true;
4986
			} else {
4987
				verbose(env, "invalid BPF_LD mode\n");
4988 4989 4990
				return -EINVAL;
			}
		} else {
4991
			verbose(env, "unknown insn class %d\n", class);
4992 4993 4994 4995 4996 4997
			return -EINVAL;
		}

		insn_idx++;
	}

4998 4999
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
J
Jiong Wang 已提交
5000
	for (i = 0; i < env->subprog_cnt; i++) {
5001
		u32 depth = env->subprog_info[i].stack_depth;
5002 5003

		verbose(env, "%d", depth);
J
Jiong Wang 已提交
5004
		if (i + 1 < env->subprog_cnt)
5005 5006 5007
			verbose(env, "+");
	}
	verbose(env, "\n");
5008
	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5009 5010 5011
	return 0;
}

5012 5013 5014
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
5015 5016
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5017 5018 5019
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

5020 5021
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
5022 5023 5024
					struct bpf_prog *prog)

{
5025 5026 5027 5028 5029 5030 5031
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
5032
			verbose(env, "perf_event programs can only use preallocated hash map\n");
5033 5034 5035 5036
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
5037
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5038 5039
			return -EINVAL;
		}
5040
	}
5041 5042 5043 5044 5045 5046 5047

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

5048 5049 5050
	return 0;
}

5051 5052 5053
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
5054
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5055 5056 5057
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
5058
	int i, j, err;
5059

5060
	err = bpf_prog_calc_tag(env->prog);
5061 5062 5063
	if (err)
		return err;

5064
	for (i = 0; i < insn_cnt; i++, insn++) {
5065
		if (BPF_CLASS(insn->code) == BPF_LDX &&
5066
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5067
			verbose(env, "BPF_LDX uses reserved fields\n");
5068 5069 5070
			return -EINVAL;
		}

5071 5072 5073
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5074
			verbose(env, "BPF_STX uses reserved fields\n");
5075 5076 5077
			return -EINVAL;
		}

5078 5079 5080 5081 5082 5083 5084
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
5085
				verbose(env, "invalid bpf_ld_imm64 insn\n");
5086 5087 5088 5089 5090 5091 5092 5093
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5094 5095
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
5096 5097 5098 5099
				return -EINVAL;
			}

			f = fdget(insn->imm);
5100
			map = __bpf_map_get(f);
5101
			if (IS_ERR(map)) {
5102
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5103 5104 5105 5106
					insn->imm);
				return PTR_ERR(map);
			}

5107
			err = check_map_prog_compatibility(env, map, env->prog);
5108 5109 5110 5111 5112
			if (err) {
				fdput(f);
				return err;
			}

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
5132
			 * and all maps are released in free_used_maps()
5133
			 */
A
Alexei Starovoitov 已提交
5134 5135 5136 5137 5138 5139 5140
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

5141 5142 5143 5144
			fdput(f);
next_insn:
			insn++;
			i++;
5145 5146 5147 5148 5149 5150 5151
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5163
static void release_maps(struct bpf_verifier_env *env)
5164 5165 5166 5167 5168 5169 5170 5171
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5172
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5183 5184 5185 5186 5187 5188 5189 5190
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5191
	int i;
5192 5193 5194 5195 5196 5197 5198 5199 5200

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5201 5202
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5203 5204 5205 5206 5207
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5208 5209 5210 5211 5212 5213
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
J
Jiong Wang 已提交
5214 5215
	/* NOTE: fake 'exit' subprog should be updated as well. */
	for (i = 0; i <= env->subprog_cnt; i++) {
5216
		if (env->subprog_info[i].start < off)
5217
			continue;
5218
		env->subprog_info[i].start += len - 1;
5219 5220 5221
	}
}

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5232
	adjust_subprog_starts(env, off, len);
5233 5234 5235
	return new_prog;
}

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5246 5247 5248 5249
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5250
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5251 5252 5253 5254 5255 5256 5257
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5258
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5259 5260 5261
	}
}

5262 5263 5264
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5265
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5266
{
5267
	const struct bpf_verifier_ops *ops = env->ops;
5268
	int i, cnt, size, ctx_field_size, delta = 0;
5269
	const int insn_cnt = env->prog->len;
5270
	struct bpf_insn insn_buf[16], *insn;
5271
	struct bpf_prog *new_prog;
5272
	enum bpf_access_type type;
5273 5274
	bool is_narrower_load;
	u32 target_size;
5275

5276 5277 5278 5279
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5280
			verbose(env, "bpf verifier is misconfigured\n");
5281 5282
			return -EINVAL;
		} else if (cnt) {
5283
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5284 5285
			if (!new_prog)
				return -ENOMEM;
5286

5287
			env->prog = new_prog;
5288
			delta += cnt - 1;
5289 5290 5291
		}
	}

5292
	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5293 5294
		return 0;

5295
	insn = env->prog->insnsi + delta;
5296

5297
	for (i = 0; i < insn_cnt; i++, insn++) {
5298 5299 5300
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5301
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5302
			type = BPF_READ;
5303 5304 5305
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5306
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5307 5308
			type = BPF_WRITE;
		else
5309 5310
			continue;

5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
		if (type == BPF_WRITE &&
		    env->insn_aux_data[i + delta].sanitize_stack_off) {
			struct bpf_insn patch[] = {
				/* Sanitize suspicious stack slot with zero.
				 * There are no memory dependencies for this store,
				 * since it's only using frame pointer and immediate
				 * constant of zero
				 */
				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
					   env->insn_aux_data[i + delta].sanitize_stack_off,
					   0),
				/* the original STX instruction will immediately
				 * overwrite the same stack slot with appropriate value
				 */
				*insn,
			};

			cnt = ARRAY_SIZE(patch);
			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5339
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5340 5341
			continue;

5342
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5343
		size = BPF_LDST_BYTES(insn);
5344 5345 5346 5347 5348 5349

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5350
		is_narrower_load = size < ctx_field_size;
5351
		if (is_narrower_load) {
5352
			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5353 5354 5355 5356
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5357
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5358 5359
				return -EINVAL;
			}
5360

5361
			size_code = BPF_H;
5362 5363 5364 5365
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5366

5367
			insn->off = off & ~(size_default - 1);
5368 5369
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5370 5371 5372 5373 5374 5375

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5376
			verbose(env, "bpf verifier is misconfigured\n");
5377 5378
			return -EINVAL;
		}
5379 5380

		if (is_narrower_load && size < target_size) {
5381 5382
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5383
								(1 << size * 8) - 1);
5384 5385
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5386
								(1 << size * 8) - 1);
5387
		}
5388

5389
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5390 5391 5392
		if (!new_prog)
			return -ENOMEM;

5393
		delta += cnt - 1;
5394 5395 5396

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5397
		insn      = new_prog->insnsi + i + delta;
5398 5399 5400 5401 5402
	}

	return 0;
}

5403 5404 5405 5406
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5407
	struct bpf_insn *insn;
5408 5409 5410
	void *old_bpf_func;
	int err = -ENOMEM;

J
Jiong Wang 已提交
5411
	if (env->subprog_cnt <= 1)
5412 5413
		return 0;

5414
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
J
Jiong Wang 已提交
5427
		insn->off = subprog;
5428 5429 5430 5431 5432 5433 5434 5435
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

J
Jiong Wang 已提交
5436
	func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5437 5438 5439
	if (!func)
		return -ENOMEM;

J
Jiong Wang 已提交
5440
	for (i = 0; i < env->subprog_cnt; i++) {
5441
		subprog_start = subprog_end;
J
Jiong Wang 已提交
5442
		subprog_end = env->subprog_info[i + 1].start;
5443 5444 5445 5446 5447 5448 5449

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5450
		func[i]->type = prog->type;
5451
		func[i]->len = len;
5452 5453
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5454 5455 5456 5457 5458
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
5459
		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
J
Jiong Wang 已提交
5472
	for (i = 0; i < env->subprog_cnt; i++) {
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

		/* we use the aux data to keep a list of the start addresses
		 * of the JITed images for each function in the program
		 *
		 * for some architectures, such as powerpc64, the imm field
		 * might not be large enough to hold the offset of the start
		 * address of the callee's JITed image from __bpf_call_base
		 *
		 * in such cases, we can lookup the start address of a callee
		 * by using its subprog id, available from the off field of
		 * the call instruction, as an index for this list
		 */
		func[i]->aux->func = func;
		func[i]->aux->func_cnt = env->subprog_cnt;
5497
	}
J
Jiong Wang 已提交
5498
	for (i = 0; i < env->subprog_cnt; i++) {
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
J
Jiong Wang 已提交
5512
	for (i = 0; i < env->subprog_cnt; i++) {
5513 5514 5515
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
5527
		insn->imm = subprog;
5528 5529
	}

5530 5531 5532
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
J
Jiong Wang 已提交
5533
	prog->aux->func_cnt = env->subprog_cnt;
5534 5535
	return 0;
out_free:
J
Jiong Wang 已提交
5536
	for (i = 0; i < env->subprog_cnt; i++)
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5552 5553
static int fixup_call_args(struct bpf_verifier_env *env)
{
5554
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5555 5556 5557
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5558 5559
#endif
	int err;
5560

5561 5562 5563 5564
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5565
			return 0;
5566 5567
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5568 5569 5570 5571 5572 5573 5574 5575 5576
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5577 5578 5579
	err = 0;
#endif
	return err;
5580 5581
}

5582
/* fixup insn->imm field of bpf_call instructions
5583
 * and inline eligible helpers as explicit sequence of BPF instructions
5584 5585 5586
 *
 * this function is called after eBPF program passed verification
 */
5587
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5588
{
5589 5590
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5591
	const struct bpf_func_proto *fn;
5592
	const int insn_cnt = prog->len;
5593
	const struct bpf_map_ops *ops;
5594
	struct bpf_insn_aux_data *aux;
5595 5596 5597 5598
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5599

5600
	for (i = 0; i < insn_cnt; i++, insn++) {
5601 5602 5603
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5604
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5632 5633 5634 5635 5636 5637 5638 5639 5640
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
		if (BPF_CLASS(insn->code) == BPF_LD &&
		    (BPF_MODE(insn->code) == BPF_ABS ||
		     BPF_MODE(insn->code) == BPF_IND)) {
			cnt = env->ops->gen_ld_abs(insn, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose(env, "bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5660 5661
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5662 5663
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5664

5665 5666 5667 5668
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5669 5670
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5671
		if (insn->imm == BPF_FUNC_tail_call) {
5672 5673 5674 5675 5676 5677
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5678
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5679

5680 5681 5682 5683
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5684
			 */
5685
			insn->imm = 0;
5686
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5687

5688 5689 5690 5691
			aux = &env->insn_aux_data[i + delta];
			if (!bpf_map_ptr_unpriv(aux))
				continue;

5692 5693 5694 5695 5696 5697
			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
5698
			if (bpf_map_ptr_poisoned(aux)) {
5699
				verbose(env, "tail_call abusing map_ptr\n");
5700 5701
				return -EINVAL;
			}
5702 5703

			map_ptr = BPF_MAP_PTR(aux->map_state);
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5719 5720
			continue;
		}
5721

5722
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5723 5724
		 * and other inlining handlers are currently limited to 64 bit
		 * only.
5725
		 */
5726
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5727 5728 5729
		    (insn->imm == BPF_FUNC_map_lookup_elem ||
		     insn->imm == BPF_FUNC_map_update_elem ||
		     insn->imm == BPF_FUNC_map_delete_elem)) {
5730 5731 5732 5733 5734
			aux = &env->insn_aux_data[i + delta];
			if (bpf_map_ptr_poisoned(aux))
				goto patch_call_imm;

			map_ptr = BPF_MAP_PTR(aux->map_state);
5735 5736 5737 5738 5739 5740 5741 5742
			ops = map_ptr->ops;
			if (insn->imm == BPF_FUNC_map_lookup_elem &&
			    ops->map_gen_lookup) {
				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
					verbose(env, "bpf verifier is misconfigured\n");
					return -EINVAL;
				}
5743

5744 5745 5746 5747
				new_prog = bpf_patch_insn_data(env, i + delta,
							       insn_buf, cnt);
				if (!new_prog)
					return -ENOMEM;
5748

5749 5750 5751 5752 5753
				delta    += cnt - 1;
				env->prog = prog = new_prog;
				insn      = new_prog->insnsi + i + delta;
				continue;
			}
5754

5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
				     (void *(*)(struct bpf_map *map, void *key))NULL));
			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
				     (int (*)(struct bpf_map *map, void *key))NULL));
			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
				     (int (*)(struct bpf_map *map, void *key, void *value,
					      u64 flags))NULL));
			switch (insn->imm) {
			case BPF_FUNC_map_lookup_elem:
				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
					    __bpf_call_base;
				continue;
			case BPF_FUNC_map_update_elem:
				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
					    __bpf_call_base;
				continue;
			case BPF_FUNC_map_delete_elem:
				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
					    __bpf_call_base;
				continue;
			}
5776

5777
			goto patch_call_imm;
5778 5779
		}

5780
		if (insn->imm == BPF_FUNC_redirect_map) {
5781 5782 5783 5784 5785 5786
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5801
patch_call_imm:
5802
		fn = env->ops->get_func_proto(insn->imm, env->prog);
5803 5804 5805 5806
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5807 5808
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5809 5810
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5811
		}
5812
		insn->imm = fn->func - __bpf_call_base;
5813 5814
	}

5815 5816
	return 0;
}
5817

5818
static void free_states(struct bpf_verifier_env *env)
5819
{
5820
	struct bpf_verifier_state_list *sl, *sln;
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5832
				free_verifier_state(&sl->state, false);
5833 5834 5835 5836 5837 5838 5839 5840
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5841
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5842
{
5843
	struct bpf_verifier_env *env;
M
Martin KaFai Lau 已提交
5844
	struct bpf_verifier_log *log;
A
Alexei Starovoitov 已提交
5845 5846
	int ret = -EINVAL;

5847 5848 5849 5850
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5851
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5852 5853
	 * allocate/free it every time bpf_check() is called
	 */
5854
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5855 5856
	if (!env)
		return -ENOMEM;
5857
	log = &env->log;
5858

5859 5860 5861 5862 5863
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5864
	env->prog = *prog;
5865
	env->ops = bpf_verifier_ops[env->prog->type];
5866

5867 5868 5869 5870 5871 5872 5873
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5874 5875 5876
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5877 5878

		ret = -EINVAL;
5879 5880 5881
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5882
			goto err_unlock;
5883
	}
5884 5885 5886

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5887
		env->strict_alignment = true;
5888

5889 5890 5891 5892
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5893
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5894 5895
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
5896
			goto skip_full_check;
5897 5898
	}

5899
	env->explored_states = kcalloc(env->prog->len,
5900
				       sizeof(struct bpf_verifier_state_list *),
5901 5902 5903 5904 5905
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5906 5907
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5908 5909 5910 5911
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5912
	ret = do_check(env);
5913 5914 5915 5916
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5917

5918
skip_full_check:
5919
	while (!pop_stack(env, NULL, NULL));
5920
	free_states(env);
5921

A
Alexei Starovoitov 已提交
5922 5923 5924
	if (ret == 0)
		sanitize_dead_code(env);

5925 5926 5927
	if (ret == 0)
		ret = check_max_stack_depth(env);

5928 5929 5930 5931
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5932
	if (ret == 0)
5933
		ret = fixup_bpf_calls(env);
5934

5935 5936 5937
	if (ret == 0)
		ret = fixup_call_args(env);

5938
	if (log->level && bpf_verifier_log_full(log))
5939
		ret = -ENOSPC;
5940
	if (log->level && !log->ubuf) {
5941
		ret = -EFAULT;
5942
		goto err_release_maps;
5943 5944
	}

5945 5946
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5947 5948 5949
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5950

5951
		if (!env->prog->aux->used_maps) {
5952
			ret = -ENOMEM;
5953
			goto err_release_maps;
5954 5955
		}

5956
		memcpy(env->prog->aux->used_maps, env->used_maps,
5957
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5958
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5959 5960 5961 5962 5963 5964

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5965

5966
err_release_maps:
5967
	if (!env->prog->aux->used_maps)
5968
		/* if we didn't copy map pointers into bpf_prog_info, release
5969
		 * them now. Otherwise free_used_maps() will release them.
5970 5971
		 */
		release_maps(env);
5972
	*prog = env->prog;
5973
err_unlock:
5974
	mutex_unlock(&bpf_verifier_lock);
5975 5976 5977
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5978 5979
	return ret;
}