verifier.c 168.0 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
Y
Yonghong Song 已提交
25
#include <linux/perf_event.h>
A
Alexei Starovoitov 已提交
26

27 28
#include "disasm.h"

29 30 31 32 33 34 35 36 37
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
38 39 40 41 42 43 44 45 46 47 48 49
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
50
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
78
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
79
 * means the register has some value, but it's not a valid pointer.
80
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
81 82
 *
 * When verifier sees load or store instructions the type of base register
83
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

145
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
146
struct bpf_verifier_stack_elem {
147 148 149 150
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
151
	struct bpf_verifier_state st;
152 153
	int insn_idx;
	int prev_insn_idx;
154
	struct bpf_verifier_stack_elem *next;
155 156
};

157
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 159
#define BPF_COMPLEXITY_LIMIT_STACK	1024

160 161
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

162 163
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
164
	bool raw_mode;
165
	bool pkt_access;
166 167
	int regno;
	int access_size;
168 169
	s64 msize_smax_value;
	u64 msize_umax_value;
170 171
};

172 173
static DEFINE_MUTEX(bpf_verifier_lock);

174 175
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
176
{
177
	unsigned int n;
178

179 180 181 182 183 184 185 186 187 188 189 190
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
191
}
192 193 194 195

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
196
 */
197 198 199 200 201
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

202 203 204
	if (!bpf_verifier_log_needed(&env->log))
		return;

205
	va_start(args, fmt);
206
	bpf_verifier_vlog(&env->log, fmt, args);
207 208 209 210 211 212
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
213
	struct bpf_verifier_env *env = private_data;
214 215
	va_list args;

216 217 218
	if (!bpf_verifier_log_needed(&env->log))
		return;

219
	va_start(args, fmt);
220
	bpf_verifier_vlog(&env->log, fmt, args);
221 222
	va_end(args);
}
223

224 225 226 227 228 229
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

230 231 232
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
233
	[SCALAR_VALUE]		= "inv",
234 235 236 237 238
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
239
	[PTR_TO_PACKET]		= "pkt",
240
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
241
	[PTR_TO_PACKET_END]	= "pkt_end",
242 243
};

244 245 246 247 248 249 250 251 252 253 254
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

255 256 257 258 259 260 261 262
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

263
static void print_verifier_state(struct bpf_verifier_env *env,
264
				 const struct bpf_func_state *state)
265
{
266
	const struct bpf_reg_state *reg;
267 268 269
	enum bpf_reg_type t;
	int i;

270 271
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
272
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
273 274
		reg = &state->regs[i];
		t = reg->type;
275 276
		if (t == NOT_INIT)
			continue;
277 278 279
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
280 281 282
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
283
			verbose(env, "%lld", reg->var_off.value + reg->off);
284 285
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
286
		} else {
287
			verbose(env, "(id=%d", reg->id);
288
			if (t != SCALAR_VALUE)
289
				verbose(env, ",off=%d", reg->off);
290
			if (type_is_pkt_pointer(t))
291
				verbose(env, ",r=%d", reg->range);
292 293 294
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
295
				verbose(env, ",ks=%d,vs=%d",
296 297
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
298 299 300 301 302
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
303
				verbose(env, ",imm=%llx", reg->var_off.value);
304 305 306
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
307
					verbose(env, ",smin_value=%lld",
308 309 310
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
311
					verbose(env, ",smax_value=%lld",
312 313
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
314
					verbose(env, ",umin_value=%llu",
315 316
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
317
					verbose(env, ",umax_value=%llu",
318 319 320
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
321

322
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323
					verbose(env, ",var_off=%s", tn_buf);
324
				}
325
			}
326
			verbose(env, ")");
327
		}
328
	}
329
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 331 332 333 334
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
335
				reg_type_str[state->stack[i].spilled_ptr.type]);
336
		}
337 338
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
339
	}
340
	verbose(env, "\n");
341 342
}

343 344
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
345
{
346 347 348 349 350 351 352 353 354 355 356 357 358 359
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
360
 * the program calls into realloc_func_state() to grow the stack size.
361 362 363 364
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
365 366
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

399 400
static void free_func_state(struct bpf_func_state *state)
{
401 402
	if (!state)
		return;
403 404 405 406
	kfree(state->stack);
	kfree(state);
}

407 408
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
409
{
410 411 412 413 414 415
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
416 417
	if (free_self)
		kfree(state);
418 419 420 421 422
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
423 424
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
425 426 427
{
	int err;

428
	err = realloc_func_state(dst, src->allocated_stack, false);
429 430
	if (err)
		return err;
431
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 433 434
	return copy_stack_state(dst, src);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

463 464 465 466 467 468
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
469 470

	if (env->head == NULL)
471
		return -ENOENT;
472

473 474 475 476 477 478 479
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
480
	if (prev_insn_idx)
481 482
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
483
	free_verifier_state(&head->st, false);
484
	kfree(head);
485 486
	env->head = elem;
	env->stack_size--;
487
	return 0;
488 489
}

490 491
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
492
{
493
	struct bpf_verifier_state *cur = env->cur_state;
494
	struct bpf_verifier_stack_elem *elem;
495
	int err;
496

497
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 499 500 501 502 503 504 505
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
506 507 508
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
509
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510
		verbose(env, "BPF program is too complex\n");
511 512 513 514
		goto err;
	}
	return &elem->st;
err:
515 516
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
517
	/* pop all elements and return */
518
	while (!pop_stack(env, NULL, NULL));
519 520 521 522 523 524 525 526
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

527 528
static void __mark_reg_not_init(struct bpf_reg_state *reg);

529 530 531 532 533 534 535 536 537 538 539 540 541
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

542 543 544 545
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
546
{
547
	__mark_reg_known(reg, 0);
548
}
549

550 551 552 553 554 555 556
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

557 558
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
559 560
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
561
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 563 564 565 566 567 568 569
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

661 662 663 664 665 666 667
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
668
	reg->frameno = 0;
669
	__mark_reg_unbounded(reg);
670 671
}

672 673
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
674 675
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
676
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 678
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
679 680 681 682 683 684 685 686 687 688 689 690
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

691 692
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
693 694
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
695
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 697
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
698 699 700 701
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
702 703
}

704
static void init_reg_state(struct bpf_verifier_env *env,
705
			   struct bpf_func_state *state)
706
{
707
	struct bpf_reg_state *regs = state->regs;
708 709
	int i;

710
	for (i = 0; i < MAX_BPF_REG; i++) {
711
		mark_reg_not_init(env, regs, i);
712 713
		regs[i].live = REG_LIVE_NONE;
	}
714 715

	/* frame pointer */
716
	regs[BPF_REG_FP].type = PTR_TO_STACK;
717
	mark_reg_known_zero(env, regs, BPF_REG_FP);
718
	regs[BPF_REG_FP].frameno = state->frameno;
719 720 721

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
722
	mark_reg_known_zero(env, regs, BPF_REG_1);
723 724
}

725 726 727 728 729 730 731 732 733 734 735
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

736 737 738 739 740 741
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static int cmp_subprogs(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
	u32 *p;

	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
		    sizeof(env->subprog_starts[0]), cmp_subprogs);
	if (!p)
		return -ENOENT;
	return p - env->subprog_starts;

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
	env->subprog_starts[env->subprog_cnt++] = off;
	sort(env->subprog_starts, env->subprog_cnt,
	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
798
			verbose(env, "function calls in offloaded programs are not supported yet\n");
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);

	/* now check that all jumps are within the same subprog */
	subprog_start = 0;
	if (env->subprog_cnt == cur_subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[cur_subprog++];
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
			if (env->subprog_cnt == cur_subprog)
				subprog_end = insn_cnt;
			else
				subprog_end = env->subprog_starts[cur_subprog++];
		}
	}
	return 0;
}

849
static
850 851 852 853
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
854
{
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
894
	return NULL;
895 896 897 898 899 900 901 902
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
903

A
Alexei Starovoitov 已提交
904 905
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
906
		return 0;
A
Alexei Starovoitov 已提交
907

908 909
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
910
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
911
			break;
912 913 914
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
915
		/* ... then we depend on parent's value */
916
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
917 918
		state = parent;
		parent = state->parent;
919
		writes = true;
920
	}
921
	return 0;
922 923 924
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
925 926
			 enum reg_arg_type t)
{
927 928 929
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
930

931
	if (regno >= MAX_BPF_REG) {
932
		verbose(env, "R%d is invalid\n", regno);
933 934 935 936 937 938
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
939
			verbose(env, "R%d !read_ok\n", regno);
940 941
			return -EACCES;
		}
942
		return mark_reg_read(env, vstate, vstate->parent, regno);
943 944 945
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
946
			verbose(env, "frame pointer is read only\n");
947 948
			return -EACCES;
		}
949
		regs[regno].live |= REG_LIVE_WRITTEN;
950
		if (t == DST_OP)
951
			mark_reg_unknown(env, regs, regno);
952 953 954 955
	}
	return 0;
}

956 957 958 959 960 961 962
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
963
	case PTR_TO_PACKET:
964
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
965
	case PTR_TO_PACKET_END:
966 967 968 969 970 971 972
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

973 974 975 976 977 978
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

979 980 981
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
982
static int check_stack_write(struct bpf_verifier_env *env,
983 984
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
985
{
986
	struct bpf_func_state *cur; /* state of the current function */
987
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
988
	enum bpf_reg_type type;
989

990 991
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
992 993
	if (err)
		return err;
994 995 996
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
997 998 999 1000 1001 1002
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
1003

1004
	cur = env->cur_state->frame[env->cur_state->curframe];
1005
	if (value_regno >= 0 &&
1006
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1007 1008

		/* register containing pointer is being spilled into stack */
1009
		if (size != BPF_REG_SIZE) {
1010
			verbose(env, "invalid size of register spill\n");
1011 1012 1013
			return -EACCES;
		}

1014 1015 1016 1017 1018
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1019
		/* save register state */
1020
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1021
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1022

1023
		for (i = 0; i < BPF_REG_SIZE; i++)
1024
			state->stack[spi].slot_type[i] = STACK_SPILL;
1025
	} else {
1026 1027
		u8 type = STACK_MISC;

1028
		/* regular write of data into stack */
1029
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1047
		for (i = 0; i < size; i++)
1048
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1049
				type;
1050 1051 1052 1053
	}
	return 0;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1086
{
1087
	bool writes = parent == state->parent; /* Observe write marks */
1088 1089

	while (parent) {
1090 1091 1092 1093 1094 1095 1096 1097
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1098
		/* if read wasn't screened by an earlier write ... */
1099
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1100 1101
			break;
		/* ... then we depend on parent's value */
1102
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1103 1104
		state = parent;
		parent = state->parent;
1105
		writes = true;
1106 1107 1108
	}
}

1109
static int check_stack_read(struct bpf_verifier_env *env,
1110 1111
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1112
{
1113 1114
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1115 1116
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1117

1118
	if (reg_state->allocated_stack <= slot) {
1119 1120 1121 1122
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1123
	stype = reg_state->stack[spi].slot_type;
1124

1125
	if (stype[0] == STACK_SPILL) {
1126
		if (size != BPF_REG_SIZE) {
1127
			verbose(env, "invalid size of register spill\n");
1128 1129
			return -EACCES;
		}
1130
		for (i = 1; i < BPF_REG_SIZE; i++) {
1131
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1132
				verbose(env, "corrupted spill memory\n");
1133 1134 1135 1136
				return -EACCES;
			}
		}

1137
		if (value_regno >= 0) {
1138
			/* restore register state from stack */
1139
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1140 1141 1142 1143 1144
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1145
		}
1146 1147
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1148 1149
		return 0;
	} else {
1150 1151
		int zeros = 0;

1152
		for (i = 0; i < size; i++) {
1153 1154 1155 1156 1157
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1158
			}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1176 1177 1178 1179 1180 1181
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1182
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1183
			      int size, bool zero_size_allowed)
1184
{
1185 1186
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1187

1188 1189
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1190
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1191 1192 1193 1194 1195 1196
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1197 1198
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1199
			    int off, int size, bool zero_size_allowed)
1200
{
1201 1202
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1203 1204 1205
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1206 1207 1208
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1209
	 */
1210 1211
	if (env->log.level)
		print_verifier_state(env, state);
1212 1213 1214 1215 1216 1217
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1218
	if (reg->smin_value < 0) {
1219
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1220 1221 1222
			regno);
		return -EACCES;
	}
1223 1224
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1225
	if (err) {
1226 1227
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1228 1229 1230
		return err;
	}

1231 1232 1233
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1234
	 */
1235
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1236
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1237 1238 1239
			regno);
		return -EACCES;
	}
1240 1241
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1242
	if (err)
1243 1244
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1245
	return err;
1246 1247
}

A
Alexei Starovoitov 已提交
1248 1249
#define MAX_PACKET_OFF 0xffff

1250
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1251 1252
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1253
{
1254
	switch (env->prog->type) {
1255 1256 1257 1258 1259
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1260
		/* fallthrough */
1261 1262
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1263
	case BPF_PROG_TYPE_XDP:
1264
	case BPF_PROG_TYPE_LWT_XMIT:
1265
	case BPF_PROG_TYPE_SK_SKB:
1266
	case BPF_PROG_TYPE_SK_MSG:
1267 1268 1269 1270
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1271 1272 1273 1274 1275 1276
		return true;
	default:
		return false;
	}
}

1277
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1278
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1279
{
1280
	struct bpf_reg_state *regs = cur_regs(env);
1281
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1282

1283 1284
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1285
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1286
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1287 1288 1289 1290 1291
		return -EACCES;
	}
	return 0;
}

1292
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1293
			       int size, bool zero_size_allowed)
1294
{
1295
	struct bpf_reg_state *regs = cur_regs(env);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1307
	if (reg->smin_value < 0) {
1308
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1309 1310 1311
			regno);
		return -EACCES;
	}
1312
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1313
	if (err) {
1314
		verbose(env, "R%d offset is outside of the packet\n", regno);
1315 1316 1317 1318 1319 1320
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1321
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1322
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1323
{
1324 1325 1326
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1327

1328
	if (env->ops->is_valid_access &&
1329
	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1330 1331 1332 1333 1334 1335
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1336
		 */
1337
		*reg_type = info.reg_type;
1338

1339
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1340 1341 1342
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1343
		return 0;
1344
	}
1345

1346
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1347 1348 1349
	return -EACCES;
}

1350 1351
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1352
{
1353
	if (allow_ptr_leaks)
1354 1355
		return false;

1356
	return reg->type != SCALAR_VALUE;
1357 1358
}

1359 1360
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1361
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1362 1363
}

1364 1365 1366 1367 1368 1369 1370
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1371 1372 1373 1374 1375 1376 1377
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1378 1379
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1380
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1381
{
1382
	struct tnum reg_off;
1383
	int ip_align;
1384 1385 1386 1387 1388

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1389 1390 1391 1392 1393 1394 1395
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1396
	 */
1397
	ip_align = 2;
1398 1399 1400 1401 1402 1403

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1404 1405
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1406
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1407 1408
		return -EACCES;
	}
1409

A
Alexei Starovoitov 已提交
1410 1411 1412
	return 0;
}

1413 1414
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1415 1416
				       const char *pointer_desc,
				       int off, int size, bool strict)
1417
{
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1429
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1430
			pointer_desc, tn_buf, reg->off, off, size);
1431 1432 1433
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1434 1435 1436
	return 0;
}

1437
static int check_ptr_alignment(struct bpf_verifier_env *env,
1438 1439
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1440
{
1441
	bool strict = env->strict_alignment || strict_alignment_once;
1442
	const char *pointer_desc = "";
1443

1444 1445
	switch (reg->type) {
	case PTR_TO_PACKET:
1446 1447 1448 1449
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1450
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1451 1452 1453 1454 1455 1456 1457 1458
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1459 1460 1461 1462 1463
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1464
		break;
1465
	default:
1466
		break;
1467
	}
1468 1469
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1470 1471
}

1472 1473 1474 1475
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1476
	u16 stack = env->subprog_stack_depth[func->subprogno];
1477 1478 1479 1480 1481 1482

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
	env->subprog_stack_depth[func->subprogno] = -off;
1483 1484
	return 0;
}
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
	int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1499

1500 1501 1502 1503 1504 1505
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
	depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	if (depth > MAX_BPF_STACK) {
1506
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1507
			frame + 1, depth);
1508 1509
		return -EACCES;
	}
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
continue_func:
	if (env->subprog_cnt == subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[subprog];
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
		ret_prog[frame] = subprog;

		/* find the callee */
		i = i + insn[i].imm + 1;
		subprog = find_subprog(env, i);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		subprog++;
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
	depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	frame--;
	i = ret_insn[frame];
	subprog = ret_prog[frame];
	goto continue_func;
1550 1551
}

1552
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
	subprog++;
	return env->subprog_stack_depth[subprog];
}
1567
#endif
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1592 1593 1594 1595 1596 1597
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1598 1599 1600
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1601
{
1602 1603
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1604
	struct bpf_func_state *state;
1605 1606 1607 1608 1609 1610
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1611
	/* alignment checks will add in reg->off themselves */
1612
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1613 1614
	if (err)
		return err;
1615

1616 1617 1618 1619
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1620 1621
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1622
			verbose(env, "R%d leaks addr into map\n", value_regno);
1623 1624
			return -EACCES;
		}
1625

1626
		err = check_map_access(env, regno, off, size, false);
1627
		if (!err && t == BPF_READ && value_regno >= 0)
1628
			mark_reg_unknown(env, regs, value_regno);
1629

A
Alexei Starovoitov 已提交
1630
	} else if (reg->type == PTR_TO_CTX) {
1631
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1632

1633 1634
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1635
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1636 1637
			return -EACCES;
		}
1638 1639 1640
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1641
		if (reg->off) {
1642 1643
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1644 1645 1646 1647
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1648 1649 1650
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1651 1652
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1653 1654 1655
				tn_buf, off, size);
			return -EACCES;
		}
1656
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1657
		if (!err && t == BPF_READ && value_regno >= 0) {
1658
			/* ctx access returns either a scalar, or a
1659 1660
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1661 1662
			 */
			if (reg_type == SCALAR_VALUE)
1663
				mark_reg_unknown(env, regs, value_regno);
1664
			else
1665
				mark_reg_known_zero(env, regs,
1666
						    value_regno);
1667 1668 1669 1670
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1671
		}
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1682
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1683 1684 1685 1686
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1687
		if (off >= 0 || off < -MAX_BPF_STACK) {
1688 1689
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1690 1691
			return -EACCES;
		}
1692

1693 1694 1695 1696
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1697

1698
		if (t == BPF_WRITE)
1699 1700
			err = check_stack_write(env, state, off, size,
						value_regno);
1701
		else
1702 1703
			err = check_stack_read(env, state, off, size,
					       value_regno);
1704
	} else if (reg_is_pkt_pointer(reg)) {
1705
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1706
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1707 1708
			return -EACCES;
		}
1709 1710
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1711 1712
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1713 1714
			return -EACCES;
		}
1715
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1716
		if (!err && t == BPF_READ && value_regno >= 0)
1717
			mark_reg_unknown(env, regs, value_regno);
1718
	} else {
1719 1720
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1721 1722
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1723

1724
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1725
	    regs[value_regno].type == SCALAR_VALUE) {
1726
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1727
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1728
	}
1729 1730 1731
	return err;
}

1732
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1733 1734 1735 1736 1737
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1738
		verbose(env, "BPF_XADD uses reserved fields\n");
1739 1740 1741 1742
		return -EINVAL;
	}

	/* check src1 operand */
1743
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1744 1745 1746 1747
	if (err)
		return err;

	/* check src2 operand */
1748
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1749 1750 1751
	if (err)
		return err;

1752
	if (is_pointer_value(env, insn->src_reg)) {
1753
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1754 1755 1756
		return -EACCES;
	}

1757 1758 1759 1760 1761
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1762 1763 1764
		return -EACCES;
	}

1765
	/* check whether atomic_add can read the memory */
1766
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1767
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1768 1769 1770 1771
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1772
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1773
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1774 1775 1776 1777
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1778 1779 1780
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1781
 */
1782
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1783 1784
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1785
{
1786
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1787
	struct bpf_func_state *state = func(env, reg);
1788
	int off, i, slot, spi;
1789

1790
	if (reg->type != PTR_TO_STACK) {
1791
		/* Allow zero-byte read from NULL, regardless of pointer type */
1792
		if (zero_size_allowed && access_size == 0 &&
1793
		    register_is_null(reg))
1794 1795
			return 0;

1796
		verbose(env, "R%d type=%s expected=%s\n", regno,
1797
			reg_type_str[reg->type],
1798
			reg_type_str[PTR_TO_STACK]);
1799
		return -EACCES;
1800
	}
1801

1802
	/* Only allow fixed-offset stack reads */
1803
	if (!tnum_is_const(reg->var_off)) {
1804 1805
		char tn_buf[48];

1806
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1807
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1808
			regno, tn_buf);
1809
		return -EACCES;
1810
	}
1811
	off = reg->off + reg->var_off.value;
1812
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1813
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1814
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1815 1816 1817 1818
			regno, off, access_size);
		return -EACCES;
	}

1819 1820 1821 1822 1823 1824
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1825
	for (i = 0; i < access_size; i++) {
1826 1827
		u8 *stype;

1828 1829
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1830 1831 1832 1833 1834 1835 1836 1837 1838
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1839
		}
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1850
	}
1851
	return update_stack_depth(env, state, off);
1852 1853
}

1854 1855 1856 1857
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1858
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1859

1860
	switch (reg->type) {
1861
	case PTR_TO_PACKET:
1862
	case PTR_TO_PACKET_META:
1863 1864
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1865
	case PTR_TO_MAP_VALUE:
1866 1867
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1868
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1869 1870 1871 1872 1873
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1887
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1888 1889
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1890
{
1891
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1892
	enum bpf_reg_type expected_type, type = reg->type;
1893 1894
	int err = 0;

1895
	if (arg_type == ARG_DONTCARE)
1896 1897
		return 0;

1898 1899 1900
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1901

1902 1903
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1904 1905
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1906 1907
			return -EACCES;
		}
1908
		return 0;
1909
	}
1910

1911
	if (type_is_pkt_pointer(type) &&
1912
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1913
		verbose(env, "helper access to the packet is not allowed\n");
1914 1915 1916
		return -EACCES;
	}

1917
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1918 1919
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1920
		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1921
		    type != expected_type)
1922
			goto err_type;
1923 1924
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1925 1926
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1927
			goto err_type;
1928 1929
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1930 1931
		if (type != expected_type)
			goto err_type;
1932 1933
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1934 1935
		if (type != expected_type)
			goto err_type;
1936
	} else if (arg_type_is_mem_ptr(arg_type)) {
1937 1938
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1939
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1940 1941
		 * happens during stack boundary checking.
		 */
1942
		if (register_is_null(reg) &&
1943
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1944
			/* final test in check_stack_boundary() */;
1945 1946
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1947
			 type != expected_type)
1948
			goto err_type;
1949
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1950
	} else {
1951
		verbose(env, "unsupported arg_type %d\n", arg_type);
1952 1953 1954 1955 1956
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1957
		meta->map_ptr = reg->map_ptr;
1958 1959 1960 1961 1962
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1963
		if (!meta->map_ptr) {
1964 1965 1966 1967 1968
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1969
			verbose(env, "invalid map_ptr to access map->key\n");
1970 1971
			return -EACCES;
		}
1972 1973 1974
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->key_size, false,
					      NULL);
1975 1976 1977 1978
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1979
		if (!meta->map_ptr) {
1980
			/* kernel subsystem misconfigured verifier */
1981
			verbose(env, "invalid map_ptr to access map->value\n");
1982 1983
			return -EACCES;
		}
1984 1985 1986
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->value_size, false,
					      NULL);
1987
	} else if (arg_type_is_mem_size(arg_type)) {
1988
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1989

1990 1991 1992 1993 1994 1995
		/* remember the mem_size which may be used later
		 * to refine return values.
		 */
		meta->msize_smax_value = reg->smax_value;
		meta->msize_umax_value = reg->umax_value;

1996 1997
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1998
		 */
1999
		if (!tnum_is_const(reg->var_off))
2000 2001 2002 2003 2004 2005 2006
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

2007
		if (reg->smin_value < 0) {
2008
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2009 2010 2011
				regno);
			return -EACCES;
		}
2012

2013
		if (reg->umin_value == 0) {
2014 2015 2016
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2017 2018 2019
			if (err)
				return err;
		}
2020

2021
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2022
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2023 2024 2025 2026
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2027
					      reg->umax_value,
2028
					      zero_size_allowed, meta);
2029 2030 2031
	}

	return err;
2032
err_type:
2033
	verbose(env, "R%d type=%s expected=%s\n", regno,
2034 2035
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2036 2037
}

2038 2039
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2040 2041 2042 2043
{
	if (!map)
		return 0;

2044 2045 2046 2047 2048 2049 2050 2051
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2052 2053
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2054 2055 2056 2057 2058 2059
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2060
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2061
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2062
		    func_id != BPF_FUNC_current_task_under_cgroup)
2063 2064
			goto error;
		break;
2065 2066 2067 2068 2069
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2070
		if (func_id != BPF_FUNC_redirect_map)
2071 2072
			goto error;
		break;
2073 2074 2075 2076 2077
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2078
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2079
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2080 2081
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2082
		break;
2083 2084 2085
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2086 2087
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2088 2089
			goto error;
		break;
2090 2091 2092 2093 2094 2095 2096 2097 2098
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
2099 2100 2101 2102
		if (env->subprog_cnt) {
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2103 2104 2105
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2106
	case BPF_FUNC_perf_event_read_value:
2107 2108 2109 2110 2111 2112 2113
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2114
	case BPF_FUNC_current_task_under_cgroup:
2115
	case BPF_FUNC_skb_under_cgroup:
2116 2117 2118
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2119
	case BPF_FUNC_redirect_map:
2120 2121
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
2122 2123
			goto error;
		break;
2124
	case BPF_FUNC_sk_redirect_map:
2125
	case BPF_FUNC_msg_redirect_map:
2126 2127 2128 2129 2130 2131 2132
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2133 2134
	default:
		break;
2135 2136 2137
	}

	return 0;
2138
error:
2139
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2140
		map->map_type, func_id_name(func_id), func_id);
2141
	return -EINVAL;
2142 2143
}

2144
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2145 2146 2147
{
	int count = 0;

2148
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2149
		count++;
2150
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2151
		count++;
2152
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2153
		count++;
2154
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2155
		count++;
2156
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2157 2158
		count++;

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2197 2198
}

2199 2200
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2201
 */
2202 2203
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2204
{
2205
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2206 2207 2208
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2209
		if (reg_is_pkt_pointer_any(&regs[i]))
2210
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2211

2212 2213
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2214
			continue;
2215
		reg = &state->stack[i].spilled_ptr;
2216 2217
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2218 2219 2220
	}
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2237
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2238
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2239
			state->curframe + 2);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
			subprog + 1 /* subprog number within this prog */);

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
				   int func_id,
				   struct bpf_call_arg_meta *meta)
{
	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];

	if (ret_type != RET_INTEGER ||
	    (func_id != BPF_FUNC_get_stack &&
	     func_id != BPF_FUNC_probe_read_str))
		return;

	ret_reg->smax_value = meta->msize_smax_value;
	ret_reg->umax_value = meta->msize_umax_value;
	__reg_deduce_bounds(ret_reg);
	__reg_bound_offset(ret_reg);
}

2352
static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2353 2354
{
	const struct bpf_func_proto *fn = NULL;
2355
	struct bpf_reg_state *regs;
2356
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2357
	bool changes_data;
2358 2359 2360 2361
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2362 2363
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2364 2365 2366
		return -EINVAL;
	}

2367
	if (env->ops->get_func_proto)
2368
		fn = env->ops->get_func_proto(func_id, env->prog);
2369
	if (!fn) {
2370 2371
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2372 2373 2374 2375
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2376
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2377
		verbose(env, "cannot call GPL only function from proprietary program\n");
2378 2379 2380
		return -EINVAL;
	}

2381
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2382
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2383 2384 2385 2386 2387
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2388

2389
	memset(&meta, 0, sizeof(meta));
2390
	meta.pkt_access = fn->pkt_access;
2391

2392
	err = check_func_proto(fn);
2393
	if (err) {
2394
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2395
			func_id_name(func_id), func_id);
2396 2397 2398
		return err;
	}

2399
	/* check args */
2400
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2401 2402
	if (err)
		return err;
2403
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2404 2405
	if (err)
		return err;
2406 2407 2408 2409 2410 2411 2412
	if (func_id == BPF_FUNC_tail_call) {
		if (meta.map_ptr == NULL) {
			verbose(env, "verifier bug\n");
			return -EINVAL;
		}
		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
	}
2413
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2414 2415
	if (err)
		return err;
2416
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2417 2418
	if (err)
		return err;
2419
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2420 2421 2422
	if (err)
		return err;

2423 2424 2425 2426
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2427 2428
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2429 2430 2431 2432
		if (err)
			return err;
	}

2433
	regs = cur_regs(env);
2434
	/* reset caller saved regs */
2435
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2436
		mark_reg_not_init(env, regs, caller_saved[i]);
2437 2438
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2439

2440
	/* update return register (already marked as written above) */
2441
	if (fn->ret_type == RET_INTEGER) {
2442
		/* sets type to SCALAR_VALUE */
2443
		mark_reg_unknown(env, regs, BPF_REG_0);
2444 2445 2446
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2447 2448
		struct bpf_insn_aux_data *insn_aux;

2449
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2450
		/* There is no offset yet applied, variable or fixed */
2451
		mark_reg_known_zero(env, regs, BPF_REG_0);
2452
		regs[BPF_REG_0].off = 0;
2453 2454 2455 2456
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2457
		if (meta.map_ptr == NULL) {
2458 2459
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2460 2461
			return -EINVAL;
		}
2462
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2463
		regs[BPF_REG_0].id = ++env->id_gen;
2464 2465 2466 2467 2468
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2469
	} else {
2470
		verbose(env, "unknown return type %d of func %s#%d\n",
2471
			fn->ret_type, func_id_name(func_id), func_id);
2472 2473
		return -EINVAL;
	}
2474

2475 2476
	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);

2477
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2478 2479
	if (err)
		return err;
2480

Y
Yonghong Song 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
		const char *err_str;

#ifdef CONFIG_PERF_EVENTS
		err = get_callchain_buffers(sysctl_perf_event_max_stack);
		err_str = "cannot get callchain buffer for func %s#%d\n";
#else
		err = -ENOTSUPP;
		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
		if (err) {
			verbose(env, err_str, func_id_name(func_id), func_id);
			return err;
		}

		env->prog->has_callchain_buf = true;
	}

A
Alexei Starovoitov 已提交
2499 2500 2501 2502 2503
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2522 2523
}

A
Alexei Starovoitov 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2559 2560 2561 2562 2563 2564 2565 2566 2567
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2568
{
2569 2570 2571
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2572
	bool known = tnum_is_const(off_reg->var_off);
2573 2574 2575 2576
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2577
	u8 opcode = BPF_OP(insn->code);
2578
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2579

2580
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2581

2582 2583 2584 2585 2586 2587 2588
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2589 2590 2591 2592
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2593 2594 2595
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2596
		return -EACCES;
A
Alexei Starovoitov 已提交
2597 2598
	}

2599
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2600 2601
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2602 2603 2604
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2605 2606
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2607 2608 2609
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2610 2611
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2612 2613 2614 2615 2616
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2617
	 */
2618 2619
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2620

A
Alexei Starovoitov 已提交
2621 2622 2623 2624
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2625 2626 2627 2628
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2629
		 */
2630 2631
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2632
			/* pointer += K.  Accumulate it into fixed offset */
2633 2634 2635 2636
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2637
			dst_reg->var_off = ptr_reg->var_off;
2638
			dst_reg->off = ptr_reg->off + smin_val;
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2650
		 */
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2667 2668
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2669
		if (reg_is_pkt_pointer(ptr_reg)) {
2670 2671 2672 2673 2674 2675 2676 2677
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2678 2679
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2680 2681 2682 2683 2684
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2685
		 */
2686
		if (ptr_reg->type == PTR_TO_STACK) {
2687 2688
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2689 2690
			return -EACCES;
		}
2691 2692
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2693
			/* pointer -= K.  Subtract it from fixed offset */
2694 2695 2696 2697
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2698 2699
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2700
			dst_reg->off = ptr_reg->off - smin_val;
2701 2702 2703 2704 2705
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2706
		 */
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2725 2726
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2727
		if (reg_is_pkt_pointer(ptr_reg)) {
2728 2729
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2730
			if (smin_val < 0)
2731
				dst_reg->range = 0;
2732
		}
2733 2734 2735 2736
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2737 2738 2739
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2740 2741 2742
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2743 2744
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2745
		return -EACCES;
2746 2747
	}

A
Alexei Starovoitov 已提交
2748 2749 2750
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2751 2752 2753
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2754 2755 2756
	return 0;
}

J
Jann Horn 已提交
2757 2758 2759 2760
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2761 2762 2763 2764
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2765
{
2766
	struct bpf_reg_state *regs = cur_regs(env);
2767
	u8 opcode = BPF_OP(insn->code);
2768
	bool src_known, dst_known;
2769 2770
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2771
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2772

2773 2774 2775 2776
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2777 2778
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2779

2780 2781 2782 2783 2784 2785 2786 2787 2788
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2789 2790 2791 2792 2793 2794
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2795 2796
	switch (opcode) {
	case BPF_ADD:
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2813
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2814 2815
		break;
	case BPF_SUB:
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2834
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2835 2836
		break;
	case BPF_MUL:
2837 2838
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2839
			/* Ain't nobody got time to multiply that sign */
2840 2841
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2842 2843
			break;
		}
2844 2845
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2846
		 */
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2864 2865
		break;
	case BPF_AND:
2866
		if (src_known && dst_known) {
2867 2868
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2869 2870
			break;
		}
2871 2872
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2873
		 */
2874
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2892 2893 2894
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2895 2896
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2897 2898
			break;
		}
2899 2900
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2901 2902
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2903 2904 2905 2906 2907 2908 2909 2910 2911
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2912
		} else {
2913 2914 2915 2916 2917
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2918
		}
2919 2920
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2921 2922
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2923 2924 2925
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2926
			 */
2927
			mark_reg_unknown(env, regs, insn->dst_reg);
2928 2929
			break;
		}
2930 2931
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2932
		 */
2933 2934 2935 2936 2937 2938
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2939
		} else {
2940 2941
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2942
		}
2943
		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2944 2945
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2946 2947
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2948 2949 2950
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2951
			 */
2952
			mark_reg_unknown(env, regs, insn->dst_reg);
2953 2954
			break;
		}
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2971
		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2972 2973 2974 2975
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2976 2977
		break;
	default:
2978
		mark_reg_unknown(env, regs, insn->dst_reg);
2979 2980 2981
		break;
	}

J
Jann Horn 已提交
2982 2983 2984 2985 2986 2987
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

2988 2989
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2990 2991 2992 2993 2994 2995 2996 2997 2998
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2999 3000 3001
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
3014 3015
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
3016
				 */
3017 3018 3019
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
3020
				}
3021 3022 3023 3024
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
3025 3026 3027 3028 3029
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
3030 3031
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3032 3033 3034
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3035 3036
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3037 3038 3039 3040 3041 3042
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3043
		__mark_reg_known(&off_reg, insn->imm);
3044
		src_reg = &off_reg;
3045 3046 3047
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3048 3049 3050 3051
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3052
		print_verifier_state(env, state);
3053
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3054 3055 3056
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3057
		print_verifier_state(env, state);
3058
		verbose(env, "verifier internal error: no src_reg\n");
3059 3060 3061
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3062 3063
}

3064
/* check validity of 32-bit and 64-bit arithmetic operations */
3065
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3066
{
3067
	struct bpf_reg_state *regs = cur_regs(env);
3068 3069 3070 3071 3072 3073 3074 3075
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3076
				verbose(env, "BPF_NEG uses reserved fields\n");
3077 3078 3079 3080
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3081 3082
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3083
				verbose(env, "BPF_END uses reserved fields\n");
3084 3085 3086 3087 3088
				return -EINVAL;
			}
		}

		/* check src operand */
3089
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3090 3091 3092
		if (err)
			return err;

3093
		if (is_pointer_value(env, insn->dst_reg)) {
3094
			verbose(env, "R%d pointer arithmetic prohibited\n",
3095 3096 3097 3098
				insn->dst_reg);
			return -EACCES;
		}

3099
		/* check dest operand */
3100
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3101 3102 3103 3104 3105 3106 3107
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3108
				verbose(env, "BPF_MOV uses reserved fields\n");
3109 3110 3111 3112
				return -EINVAL;
			}

			/* check src operand */
3113
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3114 3115 3116 3117
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3118
				verbose(env, "BPF_MOV uses reserved fields\n");
3119 3120 3121 3122 3123
				return -EINVAL;
			}
		}

		/* check dest operand */
3124
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3125 3126 3127 3128 3129 3130 3131 3132 3133
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3134
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3135
			} else {
3136
				/* R1 = (u32) R2 */
3137
				if (is_pointer_value(env, insn->src_reg)) {
3138 3139
					verbose(env,
						"R%d partial copy of pointer\n",
3140 3141 3142
						insn->src_reg);
					return -EACCES;
				}
3143
				mark_reg_unknown(env, regs, insn->dst_reg);
3144
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3145 3146 3147 3148 3149
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3150
			regs[insn->dst_reg].type = SCALAR_VALUE;
3151 3152 3153 3154 3155 3156 3157
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3158 3159 3160
		}

	} else if (opcode > BPF_END) {
3161
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3162 3163 3164 3165 3166 3167
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3168
				verbose(env, "BPF_ALU uses reserved fields\n");
3169 3170 3171
				return -EINVAL;
			}
			/* check src1 operand */
3172
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3173 3174 3175 3176
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3177
				verbose(env, "BPF_ALU uses reserved fields\n");
3178 3179 3180 3181 3182
				return -EINVAL;
			}
		}

		/* check src2 operand */
3183
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3184 3185 3186 3187 3188
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3189
			verbose(env, "div by zero\n");
3190 3191 3192
			return -EINVAL;
		}

3193 3194 3195 3196 3197
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3198 3199 3200 3201 3202
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3203
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3204 3205 3206 3207
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3208
		/* check dest operand */
3209
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3210 3211 3212
		if (err)
			return err;

3213
		return adjust_reg_min_max_vals(env, insn);
3214 3215 3216 3217 3218
	}

	return 0;
}

3219
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3220
				   struct bpf_reg_state *dst_reg,
3221
				   enum bpf_reg_type type,
3222
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3223
{
3224
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3225
	struct bpf_reg_state *regs = state->regs, *reg;
3226
	u16 new_range;
3227
	int i, j;
3228

3229 3230
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3231 3232 3233
		/* This doesn't give us any range */
		return;

3234 3235
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3236 3237 3238 3239 3240
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3241 3242 3243 3244 3245
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3246
	 *
3247
	 * pkt_data in dst register:
3248 3249 3250 3251 3252 3253
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3254 3255 3256 3257 3258
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3259 3260 3261 3262 3263
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3264
	 * pkt_data in src register:
3265 3266 3267 3268 3269 3270
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3271 3272 3273 3274 3275
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3276 3277 3278 3279 3280 3281
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3282 3283 3284
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3285
	 */
3286

3287 3288 3289 3290 3291
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3292
	for (i = 0; i < MAX_BPF_REG; i++)
3293
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3294
			/* keep the maximum range already checked */
3295
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3296

3297 3298 3299 3300 3301 3302 3303 3304 3305
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3306 3307 3308
	}
}

3309 3310 3311
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3312
 * In JEQ/JNE cases we also adjust the var_off values.
3313 3314 3315 3316 3317
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3318 3319 3320 3321 3322 3323 3324 3325
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3326

3327 3328 3329 3330 3331
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3332
		__mark_reg_known(true_reg, val);
3333 3334 3335 3336 3337
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3338
		__mark_reg_known(false_reg, val);
3339 3340
		break;
	case BPF_JGT:
3341 3342 3343
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3344
	case BPF_JSGT:
3345 3346
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3347
		break;
3348 3349 3350 3351 3352 3353 3354 3355
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3356
	case BPF_JGE:
3357 3358 3359
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3360
	case BPF_JSGE:
3361 3362
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3363
		break;
3364 3365 3366 3367 3368 3369 3370 3371
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3372 3373 3374 3375
	default:
		break;
	}

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3387 3388
}

3389 3390
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3391 3392 3393 3394 3395
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3396 3397
	if (__is_pointer_value(false, false_reg))
		return;
3398

3399 3400 3401 3402 3403
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3404
		__mark_reg_known(true_reg, val);
3405 3406 3407 3408 3409
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3410
		__mark_reg_known(false_reg, val);
3411 3412
		break;
	case BPF_JGT:
3413 3414 3415
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3416
	case BPF_JSGT:
3417 3418
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3419
		break;
3420 3421 3422 3423 3424 3425 3426 3427
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3428
	case BPF_JGE:
3429 3430 3431
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3432
	case BPF_JSGE:
3433 3434
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3435
		break;
3436 3437 3438 3439 3440 3441 3442 3443
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3444 3445 3446 3447
	default:
		break;
	}

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3459 3460 3461 3462 3463 3464
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3465 3466 3467 3468 3469 3470 3471 3472
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3473 3474
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3504
		break;
3505
	}
3506 3507
}

3508
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3509
			 bool is_null)
3510 3511 3512 3513
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3514 3515 3516 3517
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3518 3519
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3520
				 reg->off)) {
3521 3522
			__mark_reg_known_zero(reg);
			reg->off = 0;
3523 3524 3525
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3526 3527 3528 3529
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3530
			reg->type = PTR_TO_MAP_VALUE;
3531
		}
3532 3533 3534 3535 3536
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3537 3538 3539 3540 3541 3542
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3543
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3544
			  bool is_null)
3545
{
3546
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3547
	struct bpf_reg_state *regs = state->regs;
3548
	u32 id = regs[regno].id;
3549
	int i, j;
3550 3551

	for (i = 0; i < MAX_BPF_REG; i++)
3552
		mark_map_reg(regs, i, id, is_null);
3553

3554 3555 3556 3557 3558 3559 3560
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3561 3562 3563
	}
}

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3657
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3658 3659
			     struct bpf_insn *insn, int *insn_idx)
{
3660 3661 3662 3663
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3664 3665 3666
	u8 opcode = BPF_OP(insn->code);
	int err;

3667
	if (opcode > BPF_JSLE) {
3668
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3669 3670 3671 3672 3673
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3674
			verbose(env, "BPF_JMP uses reserved fields\n");
3675 3676 3677 3678
			return -EINVAL;
		}

		/* check src1 operand */
3679
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3680 3681
		if (err)
			return err;
3682 3683

		if (is_pointer_value(env, insn->src_reg)) {
3684
			verbose(env, "R%d pointer comparison prohibited\n",
3685 3686 3687
				insn->src_reg);
			return -EACCES;
		}
3688 3689
	} else {
		if (insn->src_reg != BPF_REG_0) {
3690
			verbose(env, "BPF_JMP uses reserved fields\n");
3691 3692 3693 3694 3695
			return -EINVAL;
		}
	}

	/* check src2 operand */
3696
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3697 3698 3699
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3700 3701
	dst_reg = &regs[insn->dst_reg];

3702 3703 3704
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3705
	    dst_reg->type == SCALAR_VALUE &&
3706 3707 3708
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3726
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3727

3728 3729
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3730 3731 3732 3733
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3734 3735
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3736 3737 3738
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3739
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3740 3741 3742
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3743
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3744 3745 3746 3747
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3748 3749
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3750 3751 3752 3753
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3754
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3755 3756 3757
					dst_reg, insn->imm, opcode);
	}

3758
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3759
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3760 3761
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3762 3763 3764
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3765 3766
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3767 3768 3769
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3770 3771
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3772
		return -EACCES;
3773
	}
3774
	if (env->log.level)
3775
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3776 3777 3778
	return 0;
}

3779 3780 3781 3782 3783 3784 3785 3786
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3787
/* verify BPF_LD_IMM64 instruction */
3788
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3789
{
3790
	struct bpf_reg_state *regs = cur_regs(env);
3791 3792 3793
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3794
		verbose(env, "invalid BPF_LD_IMM insn\n");
3795 3796 3797
		return -EINVAL;
	}
	if (insn->off != 0) {
3798
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3799 3800 3801
		return -EINVAL;
	}

3802
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3803 3804 3805
	if (err)
		return err;

3806 3807 3808
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3809
		regs[insn->dst_reg].type = SCALAR_VALUE;
3810
		__mark_reg_known(&regs[insn->dst_reg], imm);
3811
		return 0;
3812
	}
3813 3814 3815 3816 3817 3818 3819 3820 3821

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3822 3823 3824 3825 3826
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3827
	case BPF_PROG_TYPE_SCHED_ACT:
3828 3829 3830 3831 3832 3833
		return true;
	default:
		return false;
	}
}

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3849
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3850
{
3851
	struct bpf_reg_state *regs = cur_regs(env);
3852 3853 3854
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3855
	if (!may_access_skb(env->prog->type)) {
3856
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3857 3858 3859
		return -EINVAL;
	}

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	if (env->subprog_cnt) {
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3872
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3873
	    BPF_SIZE(insn->code) == BPF_DW ||
3874
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3875
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3876 3877 3878 3879
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3880
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3881 3882 3883 3884
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3885 3886
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3887 3888 3889 3890 3891
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3892
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3893 3894 3895 3896 3897
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3898
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3899
		mark_reg_not_init(env, regs, caller_saved[i]);
3900 3901
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3902 3903

	/* mark destination R0 register as readable, since it contains
3904 3905
	 * the value fetched from the packet.
	 * Already marked as written above.
3906
	 */
3907
	mark_reg_unknown(env, regs, BPF_REG_0);
3908 3909 3910
	return 0;
}

3911 3912 3913 3914 3915 3916 3917 3918
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
A
Andrey Ignatov 已提交
3919
	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3920
	case BPF_PROG_TYPE_SOCK_OPS:
3921
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3922 3923 3924 3925 3926
		break;
	default:
		return 0;
	}

3927
	reg = cur_regs(env) + BPF_REG_0;
3928
	if (reg->type != SCALAR_VALUE) {
3929
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3930 3931 3932 3933 3934
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3935
		verbose(env, "At program exit the register R0 ");
3936 3937 3938 3939
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3940
			verbose(env, "has value %s", tn_buf);
3941
		} else {
3942
			verbose(env, "has unknown scalar value");
3943
		}
3944
		verbose(env, " should have been 0 or 1\n");
3945 3946 3947 3948 3949
		return -EINVAL;
	}
	return 0;
}

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3990
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3991

3992 3993 3994 3995 3996 3997 3998 3999 4000
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
4001
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4002 4003 4004 4005 4006 4007 4008 4009
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
4010
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4011 4012 4013
		return -EINVAL;
	}

4014 4015 4016 4017
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4027
		verbose(env, "back-edge from insn %d to %d\n", t, w);
4028 4029 4030 4031 4032
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4033
		verbose(env, "insn state internal bug\n");
4034 4035 4036 4037 4038 4039 4040 4041
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4042
static int check_cfg(struct bpf_verifier_env *env)
4043 4044 4045 4046 4047 4048
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4049 4050 4051 4052
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4083 4084
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4085 4086 4087 4088 4089 4090 4091 4092
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4105 4106 4107
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4108 4109
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4110 4111
		} else {
			/* conditional jump with two edges */
4112
			env->explored_states[t] = STATE_LIST_MARK;
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4139
		verbose(env, "pop stack internal bug\n");
4140 4141 4142 4143 4144 4145 4146 4147
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4148
			verbose(env, "unreachable insn %d\n", i);
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4161 4162 4163 4164
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4165 4166 4167 4168
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4187
 */
4188
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4189
{
4190
	unsigned int i;
A
Alexei Starovoitov 已提交
4191

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4208 4209
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4210
{
4211 4212
	bool equal;

4213 4214 4215 4216
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4217 4218 4219 4220 4221 4222 4223 4224 4225
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4226 4227
		return true;

4228 4229
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4230
		return true;
4231 4232 4233 4234 4235 4236 4237 4238 4239
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4240 4241 4242 4243 4244 4245
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4246
			 */
4247
			return false;
4248 4249
		}
	case PTR_TO_MAP_VALUE:
4250 4251 4252 4253 4254 4255 4256 4257
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4272
	case PTR_TO_PACKET_META:
4273
	case PTR_TO_PACKET:
4274
		if (rcur->type != rold->type)
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4305

4306 4307
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4308 4309 4310
	return false;
}

4311 4312
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4330 4331
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4332
			continue;
4333

4334 4335
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4336 4337 4338 4339 4340 4341 4342
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4399 4400
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4401
{
4402 4403
	struct idpair *idmap;
	bool ret = false;
4404 4405
	int i;

4406 4407 4408
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4409
		return false;
4410 4411

	for (i = 0; i < MAX_BPF_REG; i++) {
4412
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4413
			goto out_free;
4414 4415
	}

4416 4417
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4418 4419 4420 4421
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4422 4423
}

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4445
/* A write screens off any subsequent reads; but write marks come from the
4446 4447 4448 4449 4450
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4451
 */
4452 4453 4454
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4455
{
4456 4457
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4458

4459 4460 4461 4462 4463
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4464 4465 4466 4467
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4468
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4469
			continue;
4470 4471 4472 4473
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4474 4475
		}
	}
4476

4477
	/* ... and stack slots */
4478 4479 4480 4481 4482 4483 4484 4485 4486
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4487 4488
		}
	}
4489
	return err;
4490 4491
}

4492
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4493
{
4494 4495
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4496
	struct bpf_verifier_state *cur = env->cur_state;
4497
	int i, j, err;
4498 4499 4500 4501 4502 4503 4504 4505 4506

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4507
		if (states_equal(env, &sl->state, cur)) {
4508
			/* reached equivalent register/stack state,
4509 4510
			 * prune the search.
			 * Registers read by the continuation are read by us.
4511 4512 4513 4514 4515 4516
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4517
			 */
4518 4519 4520
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4521
			return 1;
4522
		}
4523 4524 4525 4526 4527
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4528 4529 4530 4531
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4532
	 */
4533
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4534 4535 4536 4537
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4538 4539 4540 4541 4542 4543
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4544 4545
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4546
	/* connect new state to parentage chain */
4547
	cur->parent = &new_sl->state;
4548 4549 4550 4551 4552 4553
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4554
	for (i = 0; i < BPF_REG_FP; i++)
4555 4556 4557 4558 4559 4560 4561
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4562
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4563
	}
4564 4565 4566
	return 0;
}

4567
static int do_check(struct bpf_verifier_env *env)
4568
{
4569
	struct bpf_verifier_state *state;
4570
	struct bpf_insn *insns = env->prog->insnsi;
4571
	struct bpf_reg_state *regs;
4572
	int insn_cnt = env->prog->len, i;
4573 4574 4575 4576
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4577 4578 4579
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4580
	state->curframe = 0;
4581
	state->parent = NULL;
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4592 4593 4594 4595 4596 4597 4598
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4599
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4600 4601 4602 4603 4604 4605 4606
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4607
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4608 4609
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4610 4611 4612 4613
				insn_processed);
			return -E2BIG;
		}

4614 4615 4616 4617 4618
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4619
			if (env->log.level) {
4620
				if (do_print_state)
4621
					verbose(env, "\nfrom %d to %d: safe\n",
4622 4623
						prev_insn_idx, insn_idx);
				else
4624
					verbose(env, "%d: safe\n", insn_idx);
4625 4626 4627 4628
			}
			goto process_bpf_exit;
		}

4629 4630 4631
		if (need_resched())
			cond_resched();

4632 4633 4634
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4635
			else
4636
				verbose(env, "\nfrom %d to %d:",
4637
					prev_insn_idx, insn_idx);
4638
			print_verifier_state(env, state->frame[state->curframe]);
4639 4640 4641
			do_print_state = false;
		}

4642
		if (env->log.level) {
4643 4644
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4645
				.private_data	= env,
4646 4647
			};

4648
			verbose(env, "%d: ", insn_idx);
4649
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4650 4651
		}

4652 4653 4654 4655 4656 4657
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4658

4659
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4660
		env->insn_aux_data[insn_idx].seen = true;
4661
		if (class == BPF_ALU || class == BPF_ALU64) {
4662
			err = check_alu_op(env, insn);
4663 4664 4665 4666
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4667
			enum bpf_reg_type *prev_src_type, src_reg_type;
4668 4669 4670

			/* check for reserved fields is already done */

4671
			/* check src operand */
4672
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4673 4674 4675
			if (err)
				return err;

4676
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4677 4678 4679
			if (err)
				return err;

4680 4681
			src_reg_type = regs[insn->src_reg].type;

4682 4683 4684
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4685
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4686
					       BPF_SIZE(insn->code), BPF_READ,
4687
					       insn->dst_reg, false);
4688 4689 4690
			if (err)
				return err;

4691 4692 4693
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4694 4695
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4696
				 * save type to validate intersecting paths
4697
				 */
4698
				*prev_src_type = src_reg_type;
4699

4700
			} else if (src_reg_type != *prev_src_type &&
4701
				   (src_reg_type == PTR_TO_CTX ||
4702
				    *prev_src_type == PTR_TO_CTX)) {
4703 4704 4705 4706 4707 4708 4709
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4710
				verbose(env, "same insn cannot be used with different pointers\n");
4711 4712 4713
				return -EINVAL;
			}

4714
		} else if (class == BPF_STX) {
4715
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4716

4717
			if (BPF_MODE(insn->code) == BPF_XADD) {
4718
				err = check_xadd(env, insn_idx, insn);
4719 4720 4721 4722 4723 4724 4725
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4726
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4727 4728 4729
			if (err)
				return err;
			/* check src2 operand */
4730
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4731 4732 4733
			if (err)
				return err;

4734 4735
			dst_reg_type = regs[insn->dst_reg].type;

4736
			/* check that memory (dst_reg + off) is writeable */
4737
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4738
					       BPF_SIZE(insn->code), BPF_WRITE,
4739
					       insn->src_reg, false);
4740 4741 4742
			if (err)
				return err;

4743 4744 4745 4746 4747
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4748
				   (dst_reg_type == PTR_TO_CTX ||
4749
				    *prev_dst_type == PTR_TO_CTX)) {
4750
				verbose(env, "same insn cannot be used with different pointers\n");
4751 4752 4753
				return -EINVAL;
			}

4754 4755 4756
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4757
				verbose(env, "BPF_ST uses reserved fields\n");
4758 4759 4760
				return -EINVAL;
			}
			/* check src operand */
4761
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4762 4763 4764
			if (err)
				return err;

4765 4766 4767 4768 4769 4770
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4771
			/* check that memory (dst_reg + off) is writeable */
4772
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4773
					       BPF_SIZE(insn->code), BPF_WRITE,
4774
					       -1, false);
4775 4776 4777 4778 4779 4780 4781 4782 4783
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4784 4785
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4786
				    insn->dst_reg != BPF_REG_0) {
4787
					verbose(env, "BPF_CALL uses reserved fields\n");
4788 4789 4790
					return -EINVAL;
				}

4791 4792 4793 4794
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4795 4796 4797 4798 4799 4800 4801 4802
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4803
					verbose(env, "BPF_JA uses reserved fields\n");
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4815
					verbose(env, "BPF_EXIT uses reserved fields\n");
4816 4817 4818
					return -EINVAL;
				}

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4829 4830 4831 4832 4833 4834
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4835
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4836 4837 4838
				if (err)
					return err;

4839
				if (is_pointer_value(env, BPF_REG_0)) {
4840
					verbose(env, "R0 leaks addr as return value\n");
4841 4842 4843
					return -EACCES;
				}

4844 4845 4846
				err = check_return_code(env);
				if (err)
					return err;
4847
process_bpf_exit:
4848 4849 4850 4851
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4866 4867 4868 4869
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4870 4871 4872 4873 4874 4875
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4876
				env->insn_aux_data[insn_idx].seen = true;
4877
			} else {
4878
				verbose(env, "invalid BPF_LD mode\n");
4879 4880 4881
				return -EINVAL;
			}
		} else {
4882
			verbose(env, "unknown insn class %d\n", class);
4883 4884 4885 4886 4887 4888
			return -EINVAL;
		}

		insn_idx++;
	}

4889 4890
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4891 4892 4893 4894 4895 4896 4897 4898 4899
	for (i = 0; i < env->subprog_cnt + 1; i++) {
		u32 depth = env->subprog_stack_depth[i];

		verbose(env, "%d", depth);
		if (i + 1 < env->subprog_cnt + 1)
			verbose(env, "+");
	}
	verbose(env, "\n");
	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4900 4901 4902
	return 0;
}

4903 4904 4905
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4906 4907
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4908 4909 4910
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4911 4912
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4913 4914 4915
					struct bpf_prog *prog)

{
4916 4917 4918 4919 4920 4921 4922
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4923
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4924 4925 4926 4927
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4928
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4929 4930
			return -EINVAL;
		}
4931
	}
4932 4933 4934 4935 4936 4937 4938

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

4939 4940 4941
	return 0;
}

4942 4943 4944
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4945
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4946 4947 4948
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4949
	int i, j, err;
4950

4951
	err = bpf_prog_calc_tag(env->prog);
4952 4953 4954
	if (err)
		return err;

4955
	for (i = 0; i < insn_cnt; i++, insn++) {
4956
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4957
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4958
			verbose(env, "BPF_LDX uses reserved fields\n");
4959 4960 4961
			return -EINVAL;
		}

4962 4963 4964
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4965
			verbose(env, "BPF_STX uses reserved fields\n");
4966 4967 4968
			return -EINVAL;
		}

4969 4970 4971 4972 4973 4974 4975
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4976
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4977 4978 4979 4980 4981 4982 4983 4984
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4985 4986
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4987 4988 4989 4990
				return -EINVAL;
			}

			f = fdget(insn->imm);
4991
			map = __bpf_map_get(f);
4992
			if (IS_ERR(map)) {
4993
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4994 4995 4996 4997
					insn->imm);
				return PTR_ERR(map);
			}

4998
			err = check_map_prog_compatibility(env, map, env->prog);
4999 5000 5001 5002 5003
			if (err) {
				fdput(f);
				return err;
			}

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
5025 5026 5027 5028 5029 5030 5031
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

5032 5033 5034 5035
			fdput(f);
next_insn:
			insn++;
			i++;
5036 5037 5038 5039 5040 5041 5042
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5054
static void release_maps(struct bpf_verifier_env *env)
5055 5056 5057 5058 5059 5060 5061 5062
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5063
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5074 5075 5076 5077 5078 5079 5080 5081
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5082
	int i;
5083 5084 5085 5086 5087 5088 5089 5090 5091

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5092 5093
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5094 5095 5096 5097 5098
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
	for (i = 0; i < env->subprog_cnt; i++) {
		if (env->subprog_starts[i] < off)
			continue;
		env->subprog_starts[i] += len - 1;
	}
}

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5122
	adjust_subprog_starts(env, off, len);
5123 5124 5125
	return new_prog;
}

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5136 5137 5138 5139
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5140
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5141 5142 5143 5144 5145 5146 5147
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5148
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5149 5150 5151
	}
}

5152 5153 5154
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5155
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5156
{
5157
	const struct bpf_verifier_ops *ops = env->ops;
5158
	int i, cnt, size, ctx_field_size, delta = 0;
5159
	const int insn_cnt = env->prog->len;
5160
	struct bpf_insn insn_buf[16], *insn;
5161
	struct bpf_prog *new_prog;
5162
	enum bpf_access_type type;
5163 5164
	bool is_narrower_load;
	u32 target_size;
5165

5166 5167 5168 5169
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5170
			verbose(env, "bpf verifier is misconfigured\n");
5171 5172
			return -EINVAL;
		} else if (cnt) {
5173
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5174 5175
			if (!new_prog)
				return -ENOMEM;
5176

5177
			env->prog = new_prog;
5178
			delta += cnt - 1;
5179 5180 5181 5182
		}
	}

	if (!ops->convert_ctx_access)
5183 5184
		return 0;

5185
	insn = env->prog->insnsi + delta;
5186

5187
	for (i = 0; i < insn_cnt; i++, insn++) {
5188 5189 5190
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5191
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5192
			type = BPF_READ;
5193 5194 5195
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5196
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5197 5198
			type = BPF_WRITE;
		else
5199 5200
			continue;

5201
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5202 5203
			continue;

5204
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5205
		size = BPF_LDST_BYTES(insn);
5206 5207 5208 5209 5210 5211

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5212
		is_narrower_load = size < ctx_field_size;
5213
		if (is_narrower_load) {
5214 5215 5216 5217
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5218
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5219 5220
				return -EINVAL;
			}
5221

5222
			size_code = BPF_H;
5223 5224 5225 5226
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5227

5228 5229 5230
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5231 5232 5233 5234 5235 5236

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5237
			verbose(env, "bpf verifier is misconfigured\n");
5238 5239
			return -EINVAL;
		}
5240 5241

		if (is_narrower_load && size < target_size) {
5242 5243
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5244
								(1 << size * 8) - 1);
5245 5246
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5247
								(1 << size * 8) - 1);
5248
		}
5249

5250
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5251 5252 5253
		if (!new_prog)
			return -ENOMEM;

5254
		delta += cnt - 1;
5255 5256 5257

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5258
		insn      = new_prog->insnsi + i + delta;
5259 5260 5261 5262 5263
	}

	return 0;
}

5264 5265 5266 5267
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5268
	struct bpf_insn *insn;
5269 5270 5271 5272 5273 5274
	void *old_bpf_func;
	int err = -ENOMEM;

	if (env->subprog_cnt == 0)
		return 0;

5275
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
		insn->off = subprog + 1;
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

	func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
	if (!func)
		return -ENOMEM;

	for (i = 0; i <= env->subprog_cnt; i++) {
		subprog_start = subprog_end;
		if (env->subprog_cnt == i)
			subprog_end = prog->len;
		else
			subprog_end = env->subprog_starts[i];

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5314
		func[i]->type = prog->type;
5315
		func[i]->len = len;
5316 5317
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
		func[i]->aux->stack_depth = env->subprog_stack_depth[i];
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->off = 0;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
	}
	for (i = 0; i <= env->subprog_cnt; i++) {
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		unsigned long addr;

		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
		addr  = (unsigned long)func[subprog + 1]->bpf_func;
		addr &= PAGE_MASK;
		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
			    addr - __bpf_call_base;
	}

5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
	prog->aux->func_cnt = env->subprog_cnt + 1;
	return 0;
out_free:
	for (i = 0; i <= env->subprog_cnt; i++)
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5408 5409
static int fixup_call_args(struct bpf_verifier_env *env)
{
5410
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5411 5412 5413
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5414 5415
#endif
	int err;
5416

5417 5418 5419 5420
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5421
			return 0;
5422 5423
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5424 5425 5426 5427 5428 5429 5430 5431 5432
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5433 5434 5435
	err = 0;
#endif
	return err;
5436 5437
}

5438
/* fixup insn->imm field of bpf_call instructions
5439
 * and inline eligible helpers as explicit sequence of BPF instructions
5440 5441 5442
 *
 * this function is called after eBPF program passed verification
 */
5443
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5444
{
5445 5446
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5447
	const struct bpf_func_proto *fn;
5448
	const int insn_cnt = prog->len;
5449 5450 5451 5452
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5453

5454
	for (i = 0; i < insn_cnt; i++, insn++) {
5455 5456 5457
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5458
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5486 5487 5488 5489 5490 5491 5492 5493 5494
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5495 5496
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5497 5498
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5499

5500 5501 5502 5503
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5504 5505
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5506
		if (insn->imm == BPF_FUNC_tail_call) {
5507 5508 5509 5510 5511 5512
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5513
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5514

5515 5516 5517 5518
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5519
			 */
5520
			insn->imm = 0;
5521
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5522 5523 5524 5525 5526 5527 5528 5529 5530

			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
			if (map_ptr == BPF_MAP_PTR_POISON) {
5531
				verbose(env, "tail_call abusing map_ptr\n");
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
				return -EINVAL;
			}
			if (!map_ptr->unpriv_array)
				continue;
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5551 5552
			continue;
		}
5553

5554 5555 5556
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
5557
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5558
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5559
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5560 5561
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5562 5563 5564 5565
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5566
				verbose(env, "bpf verifier is misconfigured\n");
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5583
		if (insn->imm == BPF_FUNC_redirect_map) {
5584 5585 5586 5587 5588 5589
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5604
patch_call_imm:
5605
		fn = env->ops->get_func_proto(insn->imm, env->prog);
5606 5607 5608 5609
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5610 5611
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5612 5613
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5614
		}
5615
		insn->imm = fn->func - __bpf_call_base;
5616 5617
	}

5618 5619
	return 0;
}
5620

5621
static void free_states(struct bpf_verifier_env *env)
5622
{
5623
	struct bpf_verifier_state_list *sl, *sln;
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5635
				free_verifier_state(&sl->state, false);
5636 5637 5638 5639 5640 5641 5642 5643
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5644
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5645
{
5646
	struct bpf_verifier_env *env;
M
Martin KaFai Lau 已提交
5647
	struct bpf_verifier_log *log;
A
Alexei Starovoitov 已提交
5648 5649
	int ret = -EINVAL;

5650 5651 5652 5653
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5654
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5655 5656
	 * allocate/free it every time bpf_check() is called
	 */
5657
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5658 5659
	if (!env)
		return -ENOMEM;
5660
	log = &env->log;
5661

5662 5663 5664 5665 5666
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5667
	env->prog = *prog;
5668
	env->ops = bpf_verifier_ops[env->prog->type];
5669

5670 5671 5672 5673 5674 5675 5676
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5677 5678 5679
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5680 5681

		ret = -EINVAL;
5682 5683 5684
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5685
			goto err_unlock;
5686
	}
5687 5688 5689

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5690
		env->strict_alignment = true;
5691

5692
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5693 5694 5695 5696 5697
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5698 5699 5700 5701
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5702
	env->explored_states = kcalloc(env->prog->len,
5703
				       sizeof(struct bpf_verifier_state_list *),
5704 5705 5706 5707 5708
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5709 5710
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5711 5712 5713 5714
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5715
	ret = do_check(env);
5716 5717 5718 5719
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5720

5721
skip_full_check:
5722
	while (!pop_stack(env, NULL, NULL));
5723
	free_states(env);
5724

A
Alexei Starovoitov 已提交
5725 5726 5727
	if (ret == 0)
		sanitize_dead_code(env);

5728 5729 5730
	if (ret == 0)
		ret = check_max_stack_depth(env);

5731 5732 5733 5734
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5735
	if (ret == 0)
5736
		ret = fixup_bpf_calls(env);
5737

5738 5739 5740
	if (ret == 0)
		ret = fixup_call_args(env);

5741
	if (log->level && bpf_verifier_log_full(log))
5742
		ret = -ENOSPC;
5743
	if (log->level && !log->ubuf) {
5744
		ret = -EFAULT;
5745
		goto err_release_maps;
5746 5747
	}

5748 5749
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5750 5751 5752
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5753

5754
		if (!env->prog->aux->used_maps) {
5755
			ret = -ENOMEM;
5756
			goto err_release_maps;
5757 5758
		}

5759
		memcpy(env->prog->aux->used_maps, env->used_maps,
5760
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5761
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5762 5763 5764 5765 5766 5767

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5768

5769
err_release_maps:
5770
	if (!env->prog->aux->used_maps)
5771 5772 5773 5774
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5775
	*prog = env->prog;
5776
err_unlock:
5777
	mutex_unlock(&bpf_verifier_lock);
5778 5779 5780
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5781 5782
	return ret;
}