verifier.c 153.3 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
A
Alexei Starovoitov 已提交
25

26 27
#include "disasm.h"

28 29 30 31 32 33 34 35 36
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
49
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
77
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
78
 * means the register has some value, but it's not a valid pointer.
79
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
80 81
 *
 * When verifier sees load or store instructions the type of base register
82
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

144
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
145
struct bpf_verifier_stack_elem {
146 147 148 149
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
150
	struct bpf_verifier_state st;
151 152
	int insn_idx;
	int prev_insn_idx;
153
	struct bpf_verifier_stack_elem *next;
154 155
};

156
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
157 158
#define BPF_COMPLEXITY_LIMIT_STACK	1024

159 160
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

161 162
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
163
	bool raw_mode;
164
	bool pkt_access;
165 166
	int regno;
	int access_size;
167 168
};

169 170 171 172 173 174
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
175 176
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
177
{
178
	struct bpf_verifer_log *log = &env->log;
179
	unsigned int n;
180 181
	va_list args;

182
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
183 184 185
		return;

	va_start(args, fmt);
186
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
187
	va_end(args);
188 189 190 191 192 193 194 195 196 197 198

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
199 200
}

201 202 203 204 205 206
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

207 208 209
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
210
	[SCALAR_VALUE]		= "inv",
211 212 213 214 215
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET]		= "pkt",
217
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
218
	[PTR_TO_PACKET_END]	= "pkt_end",
219 220
};

221 222 223 224 225 226 227 228 229 230 231
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

232 233 234 235 236 237 238 239
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

240
static void print_verifier_state(struct bpf_verifier_env *env,
241
				 const struct bpf_func_state *state)
242
{
243
	const struct bpf_reg_state *reg;
244 245 246
	enum bpf_reg_type t;
	int i;

247 248
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
249
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
250 251
		reg = &state->regs[i];
		t = reg->type;
252 253
		if (t == NOT_INIT)
			continue;
254 255 256
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
257 258 259
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
260
			verbose(env, "%lld", reg->var_off.value + reg->off);
261 262
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
263
		} else {
264
			verbose(env, "(id=%d", reg->id);
265
			if (t != SCALAR_VALUE)
266
				verbose(env, ",off=%d", reg->off);
267
			if (type_is_pkt_pointer(t))
268
				verbose(env, ",r=%d", reg->range);
269 270 271
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
272
				verbose(env, ",ks=%d,vs=%d",
273 274
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
275 276 277 278 279
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
280
				verbose(env, ",imm=%llx", reg->var_off.value);
281 282 283
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
284
					verbose(env, ",smin_value=%lld",
285 286 287
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
288
					verbose(env, ",smax_value=%lld",
289 290
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
291
					verbose(env, ",umin_value=%llu",
292 293
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
294
					verbose(env, ",umax_value=%llu",
295 296 297
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
298

299
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
300
					verbose(env, ",var_off=%s", tn_buf);
301
				}
302
			}
303
			verbose(env, ")");
304
		}
305
	}
306
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
307 308 309 310 311
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
312
				reg_type_str[state->stack[i].spilled_ptr.type]);
313
		}
314 315
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
316
	}
317
	verbose(env, "\n");
318 319
}

320 321
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
322
{
323 324 325 326 327 328 329 330 331 332 333 334 335 336
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
337
 * the program calls into realloc_func_state() to grow the stack size.
338 339 340 341
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
342 343
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

376 377 378 379 380 381
static void free_func_state(struct bpf_func_state *state)
{
	kfree(state->stack);
	kfree(state);
}

382 383
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
384
{
385 386 387 388 389 390
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
391 392
	if (free_self)
		kfree(state);
393 394 395 396 397
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
398 399
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
400 401 402
{
	int err;

403
	err = realloc_func_state(dst, src->allocated_stack, false);
404 405
	if (err)
		return err;
406
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
407 408 409
	return copy_stack_state(dst, src);
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

438 439 440 441 442 443
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
444 445

	if (env->head == NULL)
446
		return -ENOENT;
447

448 449 450 451 452 453 454
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
455
	if (prev_insn_idx)
456 457
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
458
	free_verifier_state(&head->st, false);
459
	kfree(head);
460 461
	env->head = elem;
	env->stack_size--;
462
	return 0;
463 464
}

465 466
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
467
{
468
	struct bpf_verifier_state *cur = env->cur_state;
469
	struct bpf_verifier_stack_elem *elem;
470
	int err;
471

472
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
473 474 475 476 477 478 479 480
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
481 482 483
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
484
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
485
		verbose(env, "BPF program is too complex\n");
486 487 488 489 490
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
491
	while (!pop_stack(env, NULL, NULL));
492 493 494 495 496 497 498
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};
499 500 501 502
#define CALLEE_SAVED_REGS 5
static const int callee_saved[CALLEE_SAVED_REGS] = {
	BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9
};
503

504 505
static void __mark_reg_not_init(struct bpf_reg_state *reg);

506 507 508 509 510 511 512 513 514 515 516 517 518
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

519 520 521 522
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
523
{
524
	__mark_reg_known(reg, 0);
525
}
526

527 528 529 530 531 532 533
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

534 535
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
536 537
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
538
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
539 540 541 542 543 544 545 546
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

638 639 640 641 642 643 644
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
645
	reg->frameno = 0;
646
	__mark_reg_unbounded(reg);
647 648
}

649 650
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
651 652
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
653
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
654 655
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
656 657 658 659 660 661 662 663 664 665 666 667
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

668 669
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
670 671
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
672
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
673 674
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
675 676 677 678
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
679 680
}

681
static void init_reg_state(struct bpf_verifier_env *env,
682
			   struct bpf_func_state *state)
683
{
684
	struct bpf_reg_state *regs = state->regs;
685 686
	int i;

687
	for (i = 0; i < MAX_BPF_REG; i++) {
688
		mark_reg_not_init(env, regs, i);
689 690
		regs[i].live = REG_LIVE_NONE;
	}
691 692

	/* frame pointer */
693
	regs[BPF_REG_FP].type = PTR_TO_STACK;
694
	mark_reg_known_zero(env, regs, BPF_REG_FP);
695
	regs[BPF_REG_FP].frameno = state->frameno;
696 697 698

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
699
	mark_reg_known_zero(env, regs, BPF_REG_1);
700 701
}

702 703 704 705 706 707 708 709 710 711 712
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

713 714 715 716 717 718
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static int cmp_subprogs(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
	u32 *p;

	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
		    sizeof(env->subprog_starts[0]), cmp_subprogs);
	if (!p)
		return -ENOENT;
	return p - env->subprog_starts;

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
	env->subprog_starts[env->subprog_cnt++] = off;
	sort(env->subprog_starts, env->subprog_cnt,
	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			verbose(env, "funcation calls in offloaded programs are not supported yet\n");
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);

	/* now check that all jumps are within the same subprog */
	subprog_start = 0;
	if (env->subprog_cnt == cur_subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[cur_subprog++];
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
			if (env->subprog_cnt == cur_subprog)
				subprog_end = insn_cnt;
			else
				subprog_end = env->subprog_starts[cur_subprog++];
		}
	}
	return 0;
}

826 827 828 829
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
830
{
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
	return 0;
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
879

A
Alexei Starovoitov 已提交
880 881
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
882
		return 0;
A
Alexei Starovoitov 已提交
883

884 885
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
886
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
887
			break;
888 889 890
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
891
		/* ... then we depend on parent's value */
892
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
893 894
		state = parent;
		parent = state->parent;
895
		writes = true;
896
	}
897
	return 0;
898 899 900
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
901 902
			 enum reg_arg_type t)
{
903 904 905
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
906

907
	if (regno >= MAX_BPF_REG) {
908
		verbose(env, "R%d is invalid\n", regno);
909 910 911 912 913 914
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
915
			verbose(env, "R%d !read_ok\n", regno);
916 917
			return -EACCES;
		}
918
		return mark_reg_read(env, vstate, vstate->parent, regno);
919 920 921
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
922
			verbose(env, "frame pointer is read only\n");
923 924
			return -EACCES;
		}
925
		regs[regno].live |= REG_LIVE_WRITTEN;
926
		if (t == DST_OP)
927
			mark_reg_unknown(env, regs, regno);
928 929 930 931
	}
	return 0;
}

932 933 934 935 936 937 938
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
939
	case PTR_TO_PACKET:
940
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
941
	case PTR_TO_PACKET_END:
942 943 944 945 946 947 948
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

949 950 951 952 953 954
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

955 956 957
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
958
static int check_stack_write(struct bpf_verifier_env *env,
959 960
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
961
{
962
	struct bpf_func_state *cur; /* state of the current function */
963
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
964
	enum bpf_reg_type type;
965

966 967
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
968 969
	if (err)
		return err;
970 971 972
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
973 974 975 976 977 978
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
979

980
	cur = env->cur_state->frame[env->cur_state->curframe];
981
	if (value_regno >= 0 &&
982
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
983 984

		/* register containing pointer is being spilled into stack */
985
		if (size != BPF_REG_SIZE) {
986
			verbose(env, "invalid size of register spill\n");
987 988 989
			return -EACCES;
		}

990 991 992 993 994
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

995
		/* save register state */
996
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
997
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
998

999
		for (i = 0; i < BPF_REG_SIZE; i++)
1000
			state->stack[spi].slot_type[i] = STACK_SPILL;
1001
	} else {
1002 1003
		u8 type = STACK_MISC;

1004
		/* regular write of data into stack */
1005
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1023
		for (i = 0; i < size; i++)
1024
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1025
				type;
1026 1027 1028 1029
	}
	return 0;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1062
{
1063
	bool writes = parent == state->parent; /* Observe write marks */
1064 1065

	while (parent) {
1066 1067 1068 1069 1070 1071 1072 1073
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1074
		/* if read wasn't screened by an earlier write ... */
1075
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1076 1077
			break;
		/* ... then we depend on parent's value */
1078
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1079 1080
		state = parent;
		parent = state->parent;
1081
		writes = true;
1082 1083 1084
	}
}

1085
static int check_stack_read(struct bpf_verifier_env *env,
1086 1087
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1088
{
1089 1090
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1091 1092
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1093

1094
	if (reg_state->allocated_stack <= slot) {
1095 1096 1097 1098
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1099
	stype = reg_state->stack[spi].slot_type;
1100

1101
	if (stype[0] == STACK_SPILL) {
1102
		if (size != BPF_REG_SIZE) {
1103
			verbose(env, "invalid size of register spill\n");
1104 1105
			return -EACCES;
		}
1106
		for (i = 1; i < BPF_REG_SIZE; i++) {
1107
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1108
				verbose(env, "corrupted spill memory\n");
1109 1110 1111 1112
				return -EACCES;
			}
		}

1113
		if (value_regno >= 0) {
1114
			/* restore register state from stack */
1115
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1116 1117 1118 1119 1120
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1121
		}
1122 1123
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1124 1125
		return 0;
	} else {
1126 1127
		int zeros = 0;

1128
		for (i = 0; i < size; i++) {
1129 1130 1131 1132 1133
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1134
			}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1152 1153 1154 1155 1156 1157
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1158
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1159
			      int size, bool zero_size_allowed)
1160
{
1161 1162
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1163

1164 1165
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1166
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1167 1168 1169 1170 1171 1172
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1173 1174
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1175
			    int off, int size, bool zero_size_allowed)
1176
{
1177 1178
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1179 1180 1181
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1182 1183 1184
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1185
	 */
1186 1187
	if (env->log.level)
		print_verifier_state(env, state);
1188 1189 1190 1191 1192 1193
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1194
	if (reg->smin_value < 0) {
1195
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1196 1197 1198
			regno);
		return -EACCES;
	}
1199 1200
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1201
	if (err) {
1202 1203
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1204 1205 1206
		return err;
	}

1207 1208 1209
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1210
	 */
1211
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1212
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1213 1214 1215
			regno);
		return -EACCES;
	}
1216 1217
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1218
	if (err)
1219 1220
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1221
	return err;
1222 1223
}

A
Alexei Starovoitov 已提交
1224 1225
#define MAX_PACKET_OFF 0xffff

1226
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1227 1228
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1229
{
1230
	switch (env->prog->type) {
1231 1232 1233 1234 1235
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1236
		/* fallthrough */
1237 1238
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1239
	case BPF_PROG_TYPE_XDP:
1240
	case BPF_PROG_TYPE_LWT_XMIT:
1241
	case BPF_PROG_TYPE_SK_SKB:
1242 1243 1244 1245
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1246 1247 1248 1249 1250 1251
		return true;
	default:
		return false;
	}
}

1252
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1253
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1254
{
1255
	struct bpf_reg_state *regs = cur_regs(env);
1256
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1257

1258 1259
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1260
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1261
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1262 1263 1264 1265 1266
		return -EACCES;
	}
	return 0;
}

1267
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1268
			       int size, bool zero_size_allowed)
1269
{
1270
	struct bpf_reg_state *regs = cur_regs(env);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1282
	if (reg->smin_value < 0) {
1283
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1284 1285 1286
			regno);
		return -EACCES;
	}
1287
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1288
	if (err) {
1289
		verbose(env, "R%d offset is outside of the packet\n", regno);
1290 1291 1292 1293 1294 1295
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1296
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1297
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1298
{
1299 1300 1301
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1302

1303 1304
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
1305 1306 1307 1308 1309 1310
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1311
		 */
1312
		*reg_type = info.reg_type;
1313

1314
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1315 1316 1317
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1318
		return 0;
1319
	}
1320

1321
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1322 1323 1324
	return -EACCES;
}

1325 1326
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1327
{
1328
	if (allow_ptr_leaks)
1329 1330
		return false;

1331
	return reg->type != SCALAR_VALUE;
1332 1333
}

1334 1335
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1336
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1337 1338
}

1339 1340
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1341
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1342
{
1343
	struct tnum reg_off;
1344
	int ip_align;
1345 1346 1347 1348 1349

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1350 1351 1352 1353 1354 1355 1356
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1357
	 */
1358
	ip_align = 2;
1359 1360 1361 1362 1363 1364

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1365 1366
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1367
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1368 1369
		return -EACCES;
	}
1370

A
Alexei Starovoitov 已提交
1371 1372 1373
	return 0;
}

1374 1375
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1376 1377
				       const char *pointer_desc,
				       int off, int size, bool strict)
1378
{
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1390
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1391
			pointer_desc, tn_buf, reg->off, off, size);
1392 1393 1394
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1395 1396 1397
	return 0;
}

1398 1399
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1400 1401
			       int off, int size)
{
1402
	bool strict = env->strict_alignment;
1403
	const char *pointer_desc = "";
1404

1405 1406
	switch (reg->type) {
	case PTR_TO_PACKET:
1407 1408 1409 1410
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1411
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1412 1413 1414 1415 1416 1417 1418 1419 1420
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1421
	default:
1422
		break;
1423
	}
1424 1425
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
	u16 stack = env->subprog_stack_depth[func->subprogno], total = 0;
	struct bpf_verifier_state *cur = env->cur_state;
	int i;

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
	env->subprog_stack_depth[func->subprogno] = -off;

	/* compute the total for current call chain */
	for (i = 0; i <= cur->curframe; i++) {
		u32 depth = env->subprog_stack_depth[cur->frame[i]->subprogno];

		/* round up to 32-bytes, since this is granularity
		 * of interpreter stack sizes
		 */
		depth = round_up(depth, 32);
		total += depth;
	}

	if (total > MAX_BPF_STACK) {
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
			cur->curframe, total);
		return -EACCES;
	}
	return 0;
}

1461 1462 1463 1464 1465 1466
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1467
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1468 1469 1470
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1471 1472
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1473
	struct bpf_func_state *state;
1474 1475 1476 1477 1478 1479
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1480
	/* alignment checks will add in reg->off themselves */
1481
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1482 1483
	if (err)
		return err;
1484

1485 1486 1487 1488
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1489 1490
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1491
			verbose(env, "R%d leaks addr into map\n", value_regno);
1492 1493
			return -EACCES;
		}
1494

1495
		err = check_map_access(env, regno, off, size, false);
1496
		if (!err && t == BPF_READ && value_regno >= 0)
1497
			mark_reg_unknown(env, regs, value_regno);
1498

A
Alexei Starovoitov 已提交
1499
	} else if (reg->type == PTR_TO_CTX) {
1500
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1501

1502 1503
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1504
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1505 1506
			return -EACCES;
		}
1507 1508 1509
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1510
		if (reg->off) {
1511 1512
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1513 1514 1515 1516
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1517 1518 1519
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1520 1521
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1522 1523 1524
				tn_buf, off, size);
			return -EACCES;
		}
1525
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1526
		if (!err && t == BPF_READ && value_regno >= 0) {
1527
			/* ctx access returns either a scalar, or a
1528 1529
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1530 1531
			 */
			if (reg_type == SCALAR_VALUE)
1532
				mark_reg_unknown(env, regs, value_regno);
1533
			else
1534
				mark_reg_known_zero(env, regs,
1535
						    value_regno);
1536 1537 1538 1539
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1540
		}
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1551
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1552 1553 1554 1555
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1556
		if (off >= 0 || off < -MAX_BPF_STACK) {
1557 1558
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1559 1560
			return -EACCES;
		}
1561

1562 1563 1564 1565
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1566

1567
		if (t == BPF_WRITE)
1568 1569
			err = check_stack_write(env, state, off, size,
						value_regno);
1570
		else
1571 1572
			err = check_stack_read(env, state, off, size,
					       value_regno);
1573
	} else if (reg_is_pkt_pointer(reg)) {
1574
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1575
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1576 1577
			return -EACCES;
		}
1578 1579
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1580 1581
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1582 1583
			return -EACCES;
		}
1584
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1585
		if (!err && t == BPF_READ && value_regno >= 0)
1586
			mark_reg_unknown(env, regs, value_regno);
1587
	} else {
1588 1589
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1590 1591
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1592

1593
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1594
	    regs[value_regno].type == SCALAR_VALUE) {
1595
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1596 1597 1598
		regs[value_regno].var_off =
			tnum_cast(regs[value_regno].var_off, size);
		__update_reg_bounds(&regs[value_regno]);
A
Alexei Starovoitov 已提交
1599
	}
1600 1601 1602
	return err;
}

1603
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1604 1605 1606 1607 1608
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1609
		verbose(env, "BPF_XADD uses reserved fields\n");
1610 1611 1612 1613
		return -EINVAL;
	}

	/* check src1 operand */
1614
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1615 1616 1617 1618
	if (err)
		return err;

	/* check src2 operand */
1619
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1620 1621 1622
	if (err)
		return err;

1623
	if (is_pointer_value(env, insn->src_reg)) {
1624
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1625 1626 1627
		return -EACCES;
	}

1628
	/* check whether atomic_add can read the memory */
1629
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1630 1631 1632 1633 1634
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1635
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1636 1637 1638 1639 1640
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1641 1642 1643
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1644
 */
1645
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1646 1647
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1648
{
1649
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1650
	struct bpf_func_state *state = func(env, reg);
1651
	int off, i, slot, spi;
1652

1653
	if (reg->type != PTR_TO_STACK) {
1654
		/* Allow zero-byte read from NULL, regardless of pointer type */
1655
		if (zero_size_allowed && access_size == 0 &&
1656
		    register_is_null(reg))
1657 1658
			return 0;

1659
		verbose(env, "R%d type=%s expected=%s\n", regno,
1660
			reg_type_str[reg->type],
1661
			reg_type_str[PTR_TO_STACK]);
1662
		return -EACCES;
1663
	}
1664

1665
	/* Only allow fixed-offset stack reads */
1666
	if (!tnum_is_const(reg->var_off)) {
1667 1668
		char tn_buf[48];

1669
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1670
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1671 1672
			regno, tn_buf);
	}
1673
	off = reg->off + reg->var_off.value;
1674
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1675
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1676
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1677 1678 1679 1680
			regno, off, access_size);
		return -EACCES;
	}

1681 1682 1683 1684 1685 1686
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1687
	for (i = 0; i < access_size; i++) {
1688 1689
		u8 *stype;

1690 1691
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1692 1693 1694 1695 1696 1697 1698 1699 1700
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1701
		}
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1712
	}
1713
	return update_stack_depth(env, state, off);
1714 1715
}

1716 1717 1718 1719
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1720
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1721

1722
	switch (reg->type) {
1723
	case PTR_TO_PACKET:
1724
	case PTR_TO_PACKET_META:
1725 1726
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1727
	case PTR_TO_MAP_VALUE:
1728 1729
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1730
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1731 1732 1733 1734 1735
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1736
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1737 1738
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1739
{
1740
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1741
	enum bpf_reg_type expected_type, type = reg->type;
1742 1743
	int err = 0;

1744
	if (arg_type == ARG_DONTCARE)
1745 1746
		return 0;

1747 1748 1749
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1750

1751 1752
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1753 1754
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1755 1756
			return -EACCES;
		}
1757
		return 0;
1758
	}
1759

1760
	if (type_is_pkt_pointer(type) &&
1761
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1762
		verbose(env, "helper access to the packet is not allowed\n");
1763 1764 1765
		return -EACCES;
	}

1766
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1767 1768
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1769 1770
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1771
			goto err_type;
1772 1773
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1774 1775
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1776
			goto err_type;
1777 1778
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1779 1780
		if (type != expected_type)
			goto err_type;
1781 1782
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1783 1784
		if (type != expected_type)
			goto err_type;
1785
	} else if (arg_type == ARG_PTR_TO_MEM ||
1786
		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1787
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1788 1789
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1790
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1791 1792
		 * happens during stack boundary checking.
		 */
1793
		if (register_is_null(reg) &&
1794
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1795
			/* final test in check_stack_boundary() */;
1796 1797
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1798
			 type != expected_type)
1799
			goto err_type;
1800
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1801
	} else {
1802
		verbose(env, "unsupported arg_type %d\n", arg_type);
1803 1804 1805 1806 1807
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1808
		meta->map_ptr = reg->map_ptr;
1809 1810 1811 1812 1813
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1814
		if (!meta->map_ptr) {
1815 1816 1817 1818 1819
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1820
			verbose(env, "invalid map_ptr to access map->key\n");
1821 1822
			return -EACCES;
		}
1823
		if (type_is_pkt_pointer(type))
1824
			err = check_packet_access(env, regno, reg->off,
1825 1826
						  meta->map_ptr->key_size,
						  false);
1827 1828 1829 1830
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1831 1832 1833 1834
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1835
		if (!meta->map_ptr) {
1836
			/* kernel subsystem misconfigured verifier */
1837
			verbose(env, "invalid map_ptr to access map->value\n");
1838 1839
			return -EACCES;
		}
1840
		if (type_is_pkt_pointer(type))
1841
			err = check_packet_access(env, regno, reg->off,
1842 1843
						  meta->map_ptr->value_size,
						  false);
1844 1845 1846 1847
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1848 1849 1850
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1851 1852 1853 1854 1855 1856 1857

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1858 1859
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1860 1861
			return -EACCES;
		}
1862

1863 1864
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1865
		 */
1866 1867

		if (!tnum_is_const(reg->var_off))
1868 1869 1870 1871 1872 1873 1874
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1875
		if (reg->smin_value < 0) {
1876
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1877 1878 1879
				regno);
			return -EACCES;
		}
1880

1881
		if (reg->umin_value == 0) {
1882 1883 1884
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1885 1886 1887
			if (err)
				return err;
		}
1888

1889
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1890
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1891 1892 1893 1894
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1895
					      reg->umax_value,
1896
					      zero_size_allowed, meta);
1897 1898 1899
	}

	return err;
1900
err_type:
1901
	verbose(env, "R%d type=%s expected=%s\n", regno,
1902 1903
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1904 1905
}

1906 1907
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1908 1909 1910 1911
{
	if (!map)
		return 0;

1912 1913 1914 1915 1916 1917 1918 1919
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1920 1921
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1922 1923 1924 1925 1926 1927
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1928
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1929
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1930
		    func_id != BPF_FUNC_current_task_under_cgroup)
1931 1932
			goto error;
		break;
1933 1934 1935 1936 1937
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1938
		if (func_id != BPF_FUNC_redirect_map)
1939 1940
			goto error;
		break;
1941 1942 1943 1944 1945
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1946
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1947
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1948 1949
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1950
		break;
1951 1952 1953 1954 1955 1956
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1957 1958 1959 1960 1961 1962 1963 1964 1965
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
1966 1967 1968 1969
		if (env->subprog_cnt) {
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
1970 1971 1972
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1973
	case BPF_FUNC_perf_event_read_value:
1974 1975 1976 1977 1978 1979 1980
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1981
	case BPF_FUNC_current_task_under_cgroup:
1982
	case BPF_FUNC_skb_under_cgroup:
1983 1984 1985
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1986
	case BPF_FUNC_redirect_map:
1987 1988
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1989 1990
			goto error;
		break;
1991 1992 1993 1994 1995 1996 1997 1998
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1999 2000
	default:
		break;
2001 2002 2003
	}

	return 0;
2004
error:
2005
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2006
		map->map_type, func_id_name(func_id), func_id);
2007
	return -EINVAL;
2008 2009
}

2010 2011 2012 2013
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

2014
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2015
		count++;
2016
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2017
		count++;
2018
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2019
		count++;
2020
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2021
		count++;
2022
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2023 2024 2025 2026 2027
		count++;

	return count > 1 ? -EINVAL : 0;
}

2028 2029
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2030
 */
2031 2032
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2033
{
2034
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2035 2036 2037
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2038
		if (reg_is_pkt_pointer_any(&regs[i]))
2039
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2040

2041 2042
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2043
			continue;
2044
		reg = &state->stack[i].spilled_ptr;
2045 2046
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2047 2048 2049
	}
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

	if (state->curframe >= MAX_CALL_FRAMES) {
		verbose(env, "the call stack of %d frames is too deep\n",
			state->curframe);
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
			subprog + 1 /* subprog number within this prog */);

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2165 2166
{
	const struct bpf_func_proto *fn = NULL;
2167
	struct bpf_reg_state *regs;
2168
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2169
	bool changes_data;
2170 2171 2172 2173
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2174 2175
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2176 2177 2178
		return -EINVAL;
	}

2179 2180
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
2181 2182

	if (!fn) {
2183 2184
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2185 2186 2187 2188
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2189
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2190
		verbose(env, "cannot call GPL only function from proprietary program\n");
2191 2192 2193
		return -EINVAL;
	}

2194
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
2195

2196
	memset(&meta, 0, sizeof(meta));
2197
	meta.pkt_access = fn->pkt_access;
2198

2199 2200 2201 2202 2203
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
2204
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2205
			func_id_name(func_id), func_id);
2206 2207 2208
		return err;
	}

2209
	/* check args */
2210
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2211 2212
	if (err)
		return err;
2213
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2214 2215
	if (err)
		return err;
2216
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2217 2218
	if (err)
		return err;
2219
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2220 2221
	if (err)
		return err;
2222
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2223 2224 2225
	if (err)
		return err;

2226 2227 2228 2229
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2230
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
2231 2232 2233 2234
		if (err)
			return err;
	}

2235
	regs = cur_regs(env);
2236
	/* reset caller saved regs */
2237
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2238
		mark_reg_not_init(env, regs, caller_saved[i]);
2239 2240
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2241

2242
	/* update return register (already marked as written above) */
2243
	if (fn->ret_type == RET_INTEGER) {
2244
		/* sets type to SCALAR_VALUE */
2245
		mark_reg_unknown(env, regs, BPF_REG_0);
2246 2247 2248
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2249 2250
		struct bpf_insn_aux_data *insn_aux;

2251
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2252
		/* There is no offset yet applied, variable or fixed */
2253
		mark_reg_known_zero(env, regs, BPF_REG_0);
2254
		regs[BPF_REG_0].off = 0;
2255 2256 2257 2258
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2259
		if (meta.map_ptr == NULL) {
2260 2261
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2262 2263
			return -EINVAL;
		}
2264
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2265
		regs[BPF_REG_0].id = ++env->id_gen;
2266 2267 2268 2269 2270
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2271
	} else {
2272
		verbose(env, "unknown return type %d of func %s#%d\n",
2273
			fn->ret_type, func_id_name(func_id), func_id);
2274 2275
		return -EINVAL;
	}
2276

2277
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2278 2279
	if (err)
		return err;
2280

A
Alexei Starovoitov 已提交
2281 2282 2283 2284 2285
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2286 2287 2288 2289
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2312 2313
}

2314 2315 2316 2317 2318 2319 2320 2321 2322
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2323
{
2324 2325 2326
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2327
	bool known = tnum_is_const(off_reg->var_off);
2328 2329 2330 2331
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2332
	u8 opcode = BPF_OP(insn->code);
2333
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2334

2335
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2336

2337
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
2338
		print_verifier_state(env, state);
2339 2340
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
2341 2342 2343
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
2344
		print_verifier_state(env, state);
2345 2346
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
2347 2348 2349 2350 2351 2352
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
2353 2354
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
2355 2356
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
2357 2358
	}

2359 2360
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
2361
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2362 2363 2364 2365 2366
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
2367
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2368 2369 2370 2371 2372
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
2373
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2374 2375 2376 2377 2378 2379
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2380
	 */
2381 2382
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2383

2384 2385 2386 2387
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2388
		 */
2389 2390
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2391
			/* pointer += K.  Accumulate it into fixed offset */
2392 2393 2394 2395
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2396
			dst_reg->var_off = ptr_reg->var_off;
2397
			dst_reg->off = ptr_reg->off + smin_val;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2409
		 */
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2426 2427
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2428
		if (reg_is_pkt_pointer(ptr_reg)) {
2429 2430 2431 2432 2433 2434 2435 2436 2437
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
2438
				verbose(env, "R%d tried to subtract pointer from scalar\n",
2439 2440 2441 2442 2443 2444
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2445
		 */
2446 2447
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
2448
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
2449 2450 2451
					dst);
			return -EACCES;
		}
2452 2453
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2454
			/* pointer -= K.  Subtract it from fixed offset */
2455 2456 2457 2458
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2459 2460
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2461
			dst_reg->off = ptr_reg->off - smin_val;
2462 2463 2464 2465 2466
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2467
		 */
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2486 2487
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2488
		if (reg_is_pkt_pointer(ptr_reg)) {
2489 2490
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2491
			if (smin_val < 0)
2492
				dst_reg->range = 0;
2493
		}
2494 2495 2496 2497 2498 2499 2500 2501 2502
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
2503
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2504 2505 2506 2507 2508
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
2509
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2510 2511
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
2512 2513
	}

2514 2515 2516
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2517 2518 2519
	return 0;
}

2520 2521 2522 2523
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2524
{
2525
	struct bpf_reg_state *regs = cur_regs(env);
2526
	u8 opcode = BPF_OP(insn->code);
2527
	bool src_known, dst_known;
2528 2529
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
2530

2531 2532 2533 2534
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
2535
	}
2536 2537 2538 2539
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2540 2541
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2542

2543 2544
	switch (opcode) {
	case BPF_ADD:
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2561
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2562 2563
		break;
	case BPF_SUB:
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2582
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2583 2584
		break;
	case BPF_MUL:
2585 2586
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2587
			/* Ain't nobody got time to multiply that sign */
2588 2589
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2590 2591
			break;
		}
2592 2593
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2594
		 */
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2612 2613
		break;
	case BPF_AND:
2614
		if (src_known && dst_known) {
2615 2616
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2617 2618
			break;
		}
2619 2620
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2621
		 */
2622
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2640 2641 2642
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2643 2644
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2645 2646
			break;
		}
2647 2648
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2649 2650
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2651 2652 2653 2654 2655 2656 2657 2658 2659
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2660
		} else {
2661 2662 2663 2664 2665
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2666
		}
2667 2668
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2669 2670
		break;
	case BPF_LSH:
2671 2672 2673 2674
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2675
			mark_reg_unknown(env, regs, insn->dst_reg);
2676 2677
			break;
		}
2678 2679
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2680
		 */
2681 2682 2683 2684 2685 2686
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2687
		} else {
2688 2689
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2690
		}
2691 2692 2693 2694 2695 2696
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2697 2698
		break;
	case BPF_RSH:
2699 2700 2701 2702
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2703
			mark_reg_unknown(env, regs, insn->dst_reg);
2704 2705 2706
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2707 2708
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2709
				/* Sign bit will be cleared */
2710 2711 2712 2713 2714 2715
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2716
		} else {
2717 2718
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2719
		}
2720
		if (src_known)
2721 2722
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2723
		else
2724 2725 2726 2727 2728
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2729 2730
		break;
	default:
2731
		mark_reg_unknown(env, regs, insn->dst_reg);
2732 2733 2734
		break;
	}

2735 2736
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2737 2738 2739 2740 2741 2742 2743 2744 2745
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2746 2747 2748
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2765
					verbose(env, "R%d pointer %s pointer prohibited\n",
2766 2767 2768 2769
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2770
				mark_reg_unknown(env, regs, insn->dst_reg);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2805
		__mark_reg_known(&off_reg, insn->imm);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2822
		print_verifier_state(env, state);
2823
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2824 2825 2826
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2827
		print_verifier_state(env, state);
2828
		verbose(env, "verifier internal error: no src_reg\n");
2829 2830 2831
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2832 2833
}

2834
/* check validity of 32-bit and 64-bit arithmetic operations */
2835
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2836
{
2837
	struct bpf_reg_state *regs = cur_regs(env);
2838 2839 2840 2841 2842 2843 2844 2845
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2846
				verbose(env, "BPF_NEG uses reserved fields\n");
2847 2848 2849 2850
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2851 2852
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2853
				verbose(env, "BPF_END uses reserved fields\n");
2854 2855 2856 2857 2858
				return -EINVAL;
			}
		}

		/* check src operand */
2859
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2860 2861 2862
		if (err)
			return err;

2863
		if (is_pointer_value(env, insn->dst_reg)) {
2864
			verbose(env, "R%d pointer arithmetic prohibited\n",
2865 2866 2867 2868
				insn->dst_reg);
			return -EACCES;
		}

2869
		/* check dest operand */
2870
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2871 2872 2873 2874 2875 2876 2877
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2878
				verbose(env, "BPF_MOV uses reserved fields\n");
2879 2880 2881 2882
				return -EINVAL;
			}

			/* check src operand */
2883
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2884 2885 2886 2887
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2888
				verbose(env, "BPF_MOV uses reserved fields\n");
2889 2890 2891 2892 2893
				return -EINVAL;
			}
		}

		/* check dest operand */
2894
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2895 2896 2897 2898 2899 2900 2901 2902 2903
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2904
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2905
			} else {
2906
				/* R1 = (u32) R2 */
2907
				if (is_pointer_value(env, insn->src_reg)) {
2908 2909
					verbose(env,
						"R%d partial copy of pointer\n",
2910 2911 2912
						insn->src_reg);
					return -EACCES;
				}
2913
				mark_reg_unknown(env, regs, insn->dst_reg);
2914
				/* high 32 bits are known zero. */
2915 2916
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2917
				__update_reg_bounds(&regs[insn->dst_reg]);
2918 2919 2920 2921 2922
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2923
			regs[insn->dst_reg].type = SCALAR_VALUE;
2924
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2925 2926 2927
		}

	} else if (opcode > BPF_END) {
2928
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2929 2930 2931 2932 2933 2934
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2935
				verbose(env, "BPF_ALU uses reserved fields\n");
2936 2937 2938
				return -EINVAL;
			}
			/* check src1 operand */
2939
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2940 2941 2942 2943
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2944
				verbose(env, "BPF_ALU uses reserved fields\n");
2945 2946 2947 2948 2949
				return -EINVAL;
			}
		}

		/* check src2 operand */
2950
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2951 2952 2953 2954 2955
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2956
			verbose(env, "div by zero\n");
2957 2958 2959
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2960 2961 2962 2963 2964
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2965
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2966 2967 2968 2969
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2970
		/* check dest operand */
2971
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2972 2973 2974
		if (err)
			return err;

2975
		return adjust_reg_min_max_vals(env, insn);
2976 2977 2978 2979 2980
	}

	return 0;
}

2981
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
2982
				   struct bpf_reg_state *dst_reg,
2983
				   enum bpf_reg_type type,
2984
				   bool range_right_open)
A
Alexei Starovoitov 已提交
2985
{
2986
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2987
	struct bpf_reg_state *regs = state->regs, *reg;
2988
	u16 new_range;
2989
	int i, j;
2990

2991 2992
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
2993 2994 2995
		/* This doesn't give us any range */
		return;

2996 2997
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2998 2999 3000 3001 3002
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3003 3004 3005 3006 3007
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3008
	 *
3009
	 * pkt_data in dst register:
3010 3011 3012 3013 3014 3015
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3016 3017 3018 3019 3020
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3021 3022 3023 3024 3025
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3026
	 * pkt_data in src register:
3027 3028 3029 3030 3031 3032
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3033 3034 3035 3036 3037
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3038 3039 3040 3041 3042 3043
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3044 3045 3046
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3047
	 */
3048

3049 3050 3051 3052 3053
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3054
	for (i = 0; i < MAX_BPF_REG; i++)
3055
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3056
			/* keep the maximum range already checked */
3057
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3068 3069 3070
	}
}

3071 3072 3073
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3074
 * In JEQ/JNE cases we also adjust the var_off values.
3075 3076 3077 3078 3079
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3080 3081 3082 3083 3084 3085 3086 3087
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3088

3089 3090 3091 3092 3093
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3094
		__mark_reg_known(true_reg, val);
3095 3096 3097 3098 3099
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3100
		__mark_reg_known(false_reg, val);
3101 3102
		break;
	case BPF_JGT:
3103 3104 3105
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3106
	case BPF_JSGT:
3107 3108
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3109
		break;
3110 3111 3112 3113 3114 3115 3116 3117
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3118
	case BPF_JGE:
3119 3120 3121
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3122
	case BPF_JSGE:
3123 3124
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3125
		break;
3126 3127 3128 3129 3130 3131 3132 3133
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3134 3135 3136 3137
	default:
		break;
	}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3149 3150
}

3151 3152
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3153 3154 3155 3156 3157
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3158 3159
	if (__is_pointer_value(false, false_reg))
		return;
3160

3161 3162 3163 3164 3165
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3166
		__mark_reg_known(true_reg, val);
3167 3168 3169 3170 3171
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3172
		__mark_reg_known(false_reg, val);
3173 3174
		break;
	case BPF_JGT:
3175 3176 3177
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3178
	case BPF_JSGT:
3179 3180
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3181
		break;
3182 3183 3184 3185 3186 3187 3188 3189
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3190
	case BPF_JGE:
3191 3192 3193
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3194
	case BPF_JSGE:
3195 3196
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3197
		break;
3198 3199 3200 3201 3202 3203 3204 3205
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3206 3207 3208 3209
	default:
		break;
	}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3221 3222 3223 3224 3225 3226
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3227 3228 3229 3230 3231 3232 3233 3234
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3235 3236
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3266
		break;
3267
	}
3268 3269
}

3270
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3271
			 bool is_null)
3272 3273 3274 3275
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3276 3277 3278 3279
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3280 3281
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3282
				 reg->off)) {
3283 3284
			__mark_reg_known_zero(reg);
			reg->off = 0;
3285 3286 3287
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3288 3289 3290 3291
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3292
			reg->type = PTR_TO_MAP_VALUE;
3293
		}
3294 3295 3296 3297 3298
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3299 3300 3301 3302 3303 3304
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3305
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3306
			  bool is_null)
3307
{
3308
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3309
	struct bpf_reg_state *regs = state->regs;
3310
	u32 id = regs[regno].id;
3311
	int i, j;
3312 3313

	for (i = 0; i < MAX_BPF_REG; i++)
3314
		mark_map_reg(regs, i, id, is_null);
3315

3316 3317 3318 3319 3320 3321 3322
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3323 3324 3325
	}
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3419
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3420 3421
			     struct bpf_insn *insn, int *insn_idx)
{
3422 3423 3424 3425
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3426 3427 3428
	u8 opcode = BPF_OP(insn->code);
	int err;

3429
	if (opcode > BPF_JSLE) {
3430
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3431 3432 3433 3434 3435
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3436
			verbose(env, "BPF_JMP uses reserved fields\n");
3437 3438 3439 3440
			return -EINVAL;
		}

		/* check src1 operand */
3441
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3442 3443
		if (err)
			return err;
3444 3445

		if (is_pointer_value(env, insn->src_reg)) {
3446
			verbose(env, "R%d pointer comparison prohibited\n",
3447 3448 3449
				insn->src_reg);
			return -EACCES;
		}
3450 3451
	} else {
		if (insn->src_reg != BPF_REG_0) {
3452
			verbose(env, "BPF_JMP uses reserved fields\n");
3453 3454 3455 3456 3457
			return -EINVAL;
		}
	}

	/* check src2 operand */
3458
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3459 3460 3461
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3462 3463
	dst_reg = &regs[insn->dst_reg];

3464 3465 3466
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3467
	    dst_reg->type == SCALAR_VALUE &&
3468 3469 3470
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3488
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3489

3490 3491
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3492 3493 3494 3495
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3496 3497
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3498 3499 3500
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3501
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3502 3503 3504
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3505
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3506 3507 3508 3509
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3510 3511
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3512 3513 3514 3515
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3516
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3517 3518 3519
					dst_reg, insn->imm, opcode);
	}

3520
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3521
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3522 3523
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3524 3525 3526
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3527 3528
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3529 3530 3531
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3532 3533
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3534
		return -EACCES;
3535
	}
3536
	if (env->log.level)
3537
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3538 3539 3540
	return 0;
}

3541 3542 3543 3544 3545 3546 3547 3548
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3549
/* verify BPF_LD_IMM64 instruction */
3550
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3551
{
3552
	struct bpf_reg_state *regs = cur_regs(env);
3553 3554 3555
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3556
		verbose(env, "invalid BPF_LD_IMM insn\n");
3557 3558 3559
		return -EINVAL;
	}
	if (insn->off != 0) {
3560
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3561 3562 3563
		return -EINVAL;
	}

3564
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3565 3566 3567
	if (err)
		return err;

3568 3569 3570
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3571
		regs[insn->dst_reg].type = SCALAR_VALUE;
3572
		__mark_reg_known(&regs[insn->dst_reg], imm);
3573
		return 0;
3574
	}
3575 3576 3577 3578 3579 3580 3581 3582 3583

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3584 3585 3586 3587 3588
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3589
	case BPF_PROG_TYPE_SCHED_ACT:
3590 3591 3592 3593 3594 3595
		return true;
	default:
		return false;
	}
}

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3611
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3612
{
3613
	struct bpf_reg_state *regs = cur_regs(env);
3614 3615 3616
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3617
	if (!may_access_skb(env->prog->type)) {
3618
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3619 3620 3621
		return -EINVAL;
	}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	if (env->subprog_cnt) {
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3634
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3635
	    BPF_SIZE(insn->code) == BPF_DW ||
3636
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3637
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3638 3639 3640 3641
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3642
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3643 3644 3645 3646
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3647 3648
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3649 3650 3651 3652 3653
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3654
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3655 3656 3657 3658 3659
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3660
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3661
		mark_reg_not_init(env, regs, caller_saved[i]);
3662 3663
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3664 3665

	/* mark destination R0 register as readable, since it contains
3666 3667
	 * the value fetched from the packet.
	 * Already marked as written above.
3668
	 */
3669
	mark_reg_unknown(env, regs, BPF_REG_0);
3670 3671 3672
	return 0;
}

3673 3674 3675 3676 3677 3678 3679 3680 3681
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
3682
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3683 3684 3685 3686 3687
		break;
	default:
		return 0;
	}

3688
	reg = cur_regs(env) + BPF_REG_0;
3689
	if (reg->type != SCALAR_VALUE) {
3690
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3691 3692 3693 3694 3695
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3696
		verbose(env, "At program exit the register R0 ");
3697 3698 3699 3700
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3701
			verbose(env, "has value %s", tn_buf);
3702
		} else {
3703
			verbose(env, "has unknown scalar value");
3704
		}
3705
		verbose(env, " should have been 0 or 1\n");
3706 3707 3708 3709 3710
		return -EINVAL;
	}
	return 0;
}

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3751
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3762
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3763 3764 3765 3766 3767 3768 3769 3770
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3771
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3772 3773 3774
		return -EINVAL;
	}

3775 3776 3777 3778
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3779 3780 3781 3782 3783 3784 3785 3786 3787
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3788
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3789 3790 3791 3792 3793
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3794
		verbose(env, "insn state internal bug\n");
3795 3796 3797 3798 3799 3800 3801 3802
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3803
static int check_cfg(struct bpf_verifier_env *env)
3804 3805 3806 3807 3808 3809
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

3810 3811 3812 3813
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3844 3845
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3846 3847 3848 3849 3850 3851 3852 3853
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3866 3867 3868
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3869 3870
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3871 3872
		} else {
			/* conditional jump with two edges */
3873
			env->explored_states[t] = STATE_LIST_MARK;
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3900
		verbose(env, "pop stack internal bug\n");
3901 3902 3903 3904 3905 3906 3907 3908
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3909
			verbose(env, "unreachable insn %d\n", i);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3922 3923 3924 3925
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3926 3927 3928 3929
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3948
 */
3949
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3950
{
3951
	unsigned int i;
A
Alexei Starovoitov 已提交
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3969 3970
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3971
{
3972 3973
	bool equal;

3974 3975 3976 3977
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

3978 3979 3980 3981 3982 3983 3984 3985 3986
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
3987 3988
		return true;

3989 3990
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3991
		return true;
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
4005 4006 4007 4008
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
4009 4010 4011
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
4012 4013 4014 4015 4016 4017 4018 4019
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4034
	case PTR_TO_PACKET_META:
4035
	case PTR_TO_PACKET:
4036
		if (rcur->type != rold->type)
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4067

4068 4069
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4070 4071 4072
	return false;
}

4073 4074
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4092 4093 4094 4095
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
			return true;

4096 4097
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4098 4099 4100 4101 4102 4103 4104
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4161 4162
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4163
{
4164 4165
	struct idpair *idmap;
	bool ret = false;
4166 4167
	int i;

4168 4169 4170
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4171
		return false;
4172 4173

	for (i = 0; i < MAX_BPF_REG; i++) {
4174
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4175
			goto out_free;
4176 4177
	}

4178 4179
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4180 4181 4182 4183
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4184 4185
}

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4207
/* A write screens off any subsequent reads; but write marks come from the
4208 4209 4210 4211 4212
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4213
 */
4214 4215 4216
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4217
{
4218 4219
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4220

4221 4222 4223 4224 4225
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4226 4227 4228 4229
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4230
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4231
			continue;
4232 4233 4234 4235
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4236 4237
		}
	}
4238

4239
	/* ... and stack slots */
4240 4241 4242 4243 4244 4245 4246 4247 4248
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4249 4250
		}
	}
4251
	return err;
4252 4253
}

4254
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4255
{
4256 4257
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4258
	struct bpf_verifier_state *cur = env->cur_state;
4259
	int i, j, err;
4260 4261 4262 4263 4264 4265 4266 4267 4268

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4269
		if (states_equal(env, &sl->state, cur)) {
4270
			/* reached equivalent register/stack state,
4271 4272
			 * prune the search.
			 * Registers read by the continuation are read by us.
4273 4274 4275 4276 4277 4278
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4279
			 */
4280 4281 4282
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4283
			return 1;
4284
		}
4285 4286 4287 4288 4289
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4290 4291 4292 4293
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4294
	 */
4295
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4296 4297 4298 4299
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4300 4301 4302 4303 4304 4305
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4306 4307
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4308
	/* connect new state to parentage chain */
4309
	cur->parent = &new_sl->state;
4310 4311 4312 4313 4314 4315
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4316
	for (i = 0; i < BPF_REG_FP; i++)
4317 4318 4319 4320 4321 4322 4323
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4324
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4325
	}
4326 4327 4328
	return 0;
}

4329 4330 4331
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
4332 4333
	if (env->dev_ops && env->dev_ops->insn_hook)
		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
4334

4335
	return 0;
4336 4337
}

4338
static int do_check(struct bpf_verifier_env *env)
4339
{
4340
	struct bpf_verifier_state *state;
4341
	struct bpf_insn *insns = env->prog->insnsi;
4342
	struct bpf_reg_state *regs;
4343
	int insn_cnt = env->prog->len, i;
4344 4345 4346 4347
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4348 4349 4350
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4351
	state->curframe = 0;
4352
	state->parent = NULL;
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4363 4364 4365 4366 4367 4368 4369
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4370
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4371 4372 4373 4374 4375 4376 4377
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4378
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4379 4380
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4381 4382 4383 4384
				insn_processed);
			return -E2BIG;
		}

4385 4386 4387 4388 4389
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4390
			if (env->log.level) {
4391
				if (do_print_state)
4392
					verbose(env, "\nfrom %d to %d: safe\n",
4393 4394
						prev_insn_idx, insn_idx);
				else
4395
					verbose(env, "%d: safe\n", insn_idx);
4396 4397 4398 4399
			}
			goto process_bpf_exit;
		}

4400 4401 4402
		if (need_resched())
			cond_resched();

4403 4404 4405
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4406
			else
4407
				verbose(env, "\nfrom %d to %d:",
4408
					prev_insn_idx, insn_idx);
4409
			print_verifier_state(env, state->frame[state->curframe]);
4410 4411 4412
			do_print_state = false;
		}

4413 4414
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
4415 4416
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
4417 4418
		}

4419 4420 4421 4422
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

4423
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4424
		env->insn_aux_data[insn_idx].seen = true;
4425
		if (class == BPF_ALU || class == BPF_ALU64) {
4426
			err = check_alu_op(env, insn);
4427 4428 4429 4430
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4431
			enum bpf_reg_type *prev_src_type, src_reg_type;
4432 4433 4434

			/* check for reserved fields is already done */

4435
			/* check src operand */
4436
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4437 4438 4439
			if (err)
				return err;

4440
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4441 4442 4443
			if (err)
				return err;

4444 4445
			src_reg_type = regs[insn->src_reg].type;

4446 4447 4448
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4449
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4450 4451 4452 4453 4454
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

4455 4456 4457
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4458 4459
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4460
				 * save type to validate intersecting paths
4461
				 */
4462
				*prev_src_type = src_reg_type;
4463

4464
			} else if (src_reg_type != *prev_src_type &&
4465
				   (src_reg_type == PTR_TO_CTX ||
4466
				    *prev_src_type == PTR_TO_CTX)) {
4467 4468 4469 4470 4471 4472 4473
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4474
				verbose(env, "same insn cannot be used with different pointers\n");
4475 4476 4477
				return -EINVAL;
			}

4478
		} else if (class == BPF_STX) {
4479
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4480

4481
			if (BPF_MODE(insn->code) == BPF_XADD) {
4482
				err = check_xadd(env, insn_idx, insn);
4483 4484 4485 4486 4487 4488 4489
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4490
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4491 4492 4493
			if (err)
				return err;
			/* check src2 operand */
4494
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4495 4496 4497
			if (err)
				return err;

4498 4499
			dst_reg_type = regs[insn->dst_reg].type;

4500
			/* check that memory (dst_reg + off) is writeable */
4501
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4502 4503 4504 4505 4506
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

4507 4508 4509 4510 4511
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4512
				   (dst_reg_type == PTR_TO_CTX ||
4513
				    *prev_dst_type == PTR_TO_CTX)) {
4514
				verbose(env, "same insn cannot be used with different pointers\n");
4515 4516 4517
				return -EINVAL;
			}

4518 4519 4520
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4521
				verbose(env, "BPF_ST uses reserved fields\n");
4522 4523 4524
				return -EINVAL;
			}
			/* check src operand */
4525
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4526 4527 4528 4529
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
4530
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4542 4543
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4544
				    insn->dst_reg != BPF_REG_0) {
4545
					verbose(env, "BPF_CALL uses reserved fields\n");
4546 4547 4548
					return -EINVAL;
				}

4549 4550 4551 4552
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4553 4554 4555 4556 4557 4558 4559 4560
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4561
					verbose(env, "BPF_JA uses reserved fields\n");
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4573
					verbose(env, "BPF_EXIT uses reserved fields\n");
4574 4575 4576
					return -EINVAL;
				}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4587 4588 4589 4590 4591 4592
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4593
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4594 4595 4596
				if (err)
					return err;

4597
				if (is_pointer_value(env, BPF_REG_0)) {
4598
					verbose(env, "R0 leaks addr as return value\n");
4599 4600 4601
					return -EACCES;
				}

4602 4603 4604
				err = check_return_code(env);
				if (err)
					return err;
4605
process_bpf_exit:
4606 4607 4608 4609
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4624 4625 4626 4627
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4628 4629 4630 4631 4632 4633
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4634
				env->insn_aux_data[insn_idx].seen = true;
4635
			} else {
4636
				verbose(env, "invalid BPF_LD mode\n");
4637 4638 4639
				return -EINVAL;
			}
		} else {
4640
			verbose(env, "unknown insn class %d\n", class);
4641 4642 4643 4644 4645 4646
			return -EINVAL;
		}

		insn_idx++;
	}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	verbose(env, "processed %d insns, stack depth ", insn_processed);
	for (i = 0; i < env->subprog_cnt + 1; i++) {
		u32 depth = env->subprog_stack_depth[i];

		verbose(env, "%d", depth);
		if (i + 1 < env->subprog_cnt + 1)
			verbose(env, "+");
	}
	verbose(env, "\n");
	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4657 4658 4659
	return 0;
}

4660 4661 4662
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4663 4664
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4665 4666 4667
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4668 4669
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4670 4671 4672
					struct bpf_prog *prog)

{
4673 4674 4675 4676 4677 4678 4679
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4680
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4681 4682 4683 4684
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4685
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4686 4687
			return -EINVAL;
		}
4688 4689 4690 4691
	}
	return 0;
}

4692 4693 4694
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4695
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4696 4697 4698
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4699
	int i, j, err;
4700

4701
	err = bpf_prog_calc_tag(env->prog);
4702 4703 4704
	if (err)
		return err;

4705
	for (i = 0; i < insn_cnt; i++, insn++) {
4706
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4707
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4708
			verbose(env, "BPF_LDX uses reserved fields\n");
4709 4710 4711
			return -EINVAL;
		}

4712 4713 4714
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4715
			verbose(env, "BPF_STX uses reserved fields\n");
4716 4717 4718
			return -EINVAL;
		}

4719 4720 4721 4722 4723 4724 4725
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4726
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4727 4728 4729 4730 4731 4732 4733 4734
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4735 4736
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4737 4738 4739 4740
				return -EINVAL;
			}

			f = fdget(insn->imm);
4741
			map = __bpf_map_get(f);
4742
			if (IS_ERR(map)) {
4743
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4744 4745 4746 4747
					insn->imm);
				return PTR_ERR(map);
			}

4748
			err = check_map_prog_compatibility(env, map, env->prog);
4749 4750 4751 4752 4753
			if (err) {
				fdput(f);
				return err;
			}

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4775 4776 4777 4778 4779 4780 4781
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4797
static void release_maps(struct bpf_verifier_env *env)
4798 4799 4800 4801 4802 4803 4804 4805
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4806
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4817 4818 4819 4820 4821 4822 4823 4824
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
4825
	int i;
4826 4827 4828 4829 4830 4831 4832 4833 4834

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
4835 4836
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
4837 4838 4839 4840 4841
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
	for (i = 0; i < env->subprog_cnt; i++) {
		if (env->subprog_starts[i] < off)
			continue;
		env->subprog_starts[i] += len - 1;
	}
}

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
4865
	adjust_subprog_starts(env, off, len);
4866 4867 4868
	return new_prog;
}

A
Alexei Starovoitov 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
/* The verifier does more data flow analysis than llvm and will not explore
 * branches that are dead at run time. Malicious programs can have dead code
 * too. Therefore replace all dead at-run-time code with nops.
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
		memcpy(insn + i, &nop, sizeof(nop));
	}
}

4888 4889 4890
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4891
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4892
{
4893
	const struct bpf_verifier_ops *ops = env->ops;
4894
	int i, cnt, size, ctx_field_size, delta = 0;
4895
	const int insn_cnt = env->prog->len;
4896
	struct bpf_insn insn_buf[16], *insn;
4897
	struct bpf_prog *new_prog;
4898
	enum bpf_access_type type;
4899 4900
	bool is_narrower_load;
	u32 target_size;
4901

4902 4903 4904 4905
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4906
			verbose(env, "bpf verifier is misconfigured\n");
4907 4908
			return -EINVAL;
		} else if (cnt) {
4909
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4910 4911
			if (!new_prog)
				return -ENOMEM;
4912

4913
			env->prog = new_prog;
4914
			delta += cnt - 1;
4915 4916 4917 4918
		}
	}

	if (!ops->convert_ctx_access)
4919 4920
		return 0;

4921
	insn = env->prog->insnsi + delta;
4922

4923
	for (i = 0; i < insn_cnt; i++, insn++) {
4924 4925 4926
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4927
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4928
			type = BPF_READ;
4929 4930 4931
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4932
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4933 4934
			type = BPF_WRITE;
		else
4935 4936
			continue;

4937
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4938 4939
			continue;

4940
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4941
		size = BPF_LDST_BYTES(insn);
4942 4943 4944 4945 4946 4947

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4948
		is_narrower_load = size < ctx_field_size;
4949
		if (is_narrower_load) {
4950 4951 4952 4953
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4954
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4955 4956
				return -EINVAL;
			}
4957

4958
			size_code = BPF_H;
4959 4960 4961 4962
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4963

4964 4965 4966
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4967 4968 4969 4970 4971 4972

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4973
			verbose(env, "bpf verifier is misconfigured\n");
4974 4975
			return -EINVAL;
		}
4976 4977

		if (is_narrower_load && size < target_size) {
4978 4979
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4980
								(1 << size * 8) - 1);
4981 4982
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4983
								(1 << size * 8) - 1);
4984
		}
4985

4986
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4987 4988 4989
		if (!new_prog)
			return -ENOMEM;

4990
		delta += cnt - 1;
4991 4992 4993

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4994
		insn      = new_prog->insnsi + i + delta;
4995 4996 4997 4998 4999
	}

	return 0;
}

5000
/* fixup insn->imm field of bpf_call instructions
5001
 * and inline eligible helpers as explicit sequence of BPF instructions
5002 5003 5004
 *
 * this function is called after eBPF program passed verification
 */
5005
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5006
{
5007 5008
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5009
	const struct bpf_func_proto *fn;
5010
	const int insn_cnt = prog->len;
5011 5012 5013 5014
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5015

5016 5017 5018
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5019 5020
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5021

5022 5023 5024 5025
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5026 5027
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5028
		if (insn->imm == BPF_FUNC_tail_call) {
5029 5030 5031 5032 5033 5034
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5035
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5036

5037 5038 5039 5040
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5041
			 */
5042
			insn->imm = 0;
5043
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5044 5045
			continue;
		}
5046

5047 5048 5049 5050 5051
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5052
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5053 5054
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5055 5056 5057 5058
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5059
				verbose(env, "bpf verifier is misconfigured\n");
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5076
		if (insn->imm == BPF_FUNC_redirect_map) {
5077 5078 5079 5080 5081 5082
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5097
patch_call_imm:
5098
		fn = env->ops->get_func_proto(insn->imm);
5099 5100 5101 5102
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5103 5104
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5105 5106
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5107
		}
5108
		insn->imm = fn->func - __bpf_call_base;
5109 5110
	}

5111 5112
	return 0;
}
5113

5114
static void free_states(struct bpf_verifier_env *env)
5115
{
5116
	struct bpf_verifier_state_list *sl, *sln;
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5128
				free_verifier_state(&sl->state, false);
5129 5130 5131 5132 5133 5134 5135 5136
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5137
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5138
{
5139
	struct bpf_verifier_env *env;
5140
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
5141 5142
	int ret = -EINVAL;

5143 5144 5145 5146
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5147
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5148 5149
	 * allocate/free it every time bpf_check() is called
	 */
5150
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5151 5152
	if (!env)
		return -ENOMEM;
5153
	log = &env->log;
5154

5155 5156 5157 5158 5159
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5160
	env->prog = *prog;
5161
	env->ops = bpf_verifier_ops[env->prog->type];
5162

5163 5164 5165 5166 5167 5168 5169
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5170 5171 5172
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5173 5174

		ret = -EINVAL;
5175 5176 5177
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5178
			goto err_unlock;
5179
	}
5180 5181 5182

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5183
		env->strict_alignment = true;
5184

5185 5186 5187 5188 5189 5190
	if (env->prog->aux->offload) {
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5191 5192 5193 5194
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5195
	env->explored_states = kcalloc(env->prog->len,
5196
				       sizeof(struct bpf_verifier_state_list *),
5197 5198 5199 5200 5201
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5202 5203
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5204 5205 5206 5207
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5208
	ret = do_check(env);
5209 5210 5211 5212
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5213

5214
skip_full_check:
5215
	while (!pop_stack(env, NULL, NULL));
5216
	free_states(env);
5217

A
Alexei Starovoitov 已提交
5218 5219 5220
	if (ret == 0)
		sanitize_dead_code(env);

5221 5222 5223 5224
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5225
	if (ret == 0)
5226
		ret = fixup_bpf_calls(env);
5227

5228
	if (log->level && bpf_verifier_log_full(log))
5229
		ret = -ENOSPC;
5230
	if (log->level && !log->ubuf) {
5231
		ret = -EFAULT;
5232
		goto err_release_maps;
5233 5234
	}

5235 5236
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5237 5238 5239
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5240

5241
		if (!env->prog->aux->used_maps) {
5242
			ret = -ENOMEM;
5243
			goto err_release_maps;
5244 5245
		}

5246
		memcpy(env->prog->aux->used_maps, env->used_maps,
5247
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5248
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5249 5250 5251 5252 5253 5254

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5255

5256
err_release_maps:
5257
	if (!env->prog->aux->used_maps)
5258 5259 5260 5261
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5262
	*prog = env->prog;
5263
err_unlock:
5264
	mutex_unlock(&bpf_verifier_lock);
5265 5266 5267
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5268 5269
	return ret;
}