verifier.c 165.5 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
A
Alexei Starovoitov 已提交
25

26 27
#include "disasm.h"

28 29 30 31 32 33 34 35 36
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
49
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
77
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
78
 * means the register has some value, but it's not a valid pointer.
79
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
80 81
 *
 * When verifier sees load or store instructions the type of base register
82
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

144
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
145
struct bpf_verifier_stack_elem {
146 147 148 149
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
150
	struct bpf_verifier_state st;
151 152
	int insn_idx;
	int prev_insn_idx;
153
	struct bpf_verifier_stack_elem *next;
154 155
};

156
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
157 158
#define BPF_COMPLEXITY_LIMIT_STACK	1024

159 160
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

161 162
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
163
	bool raw_mode;
164
	bool pkt_access;
165 166
	int regno;
	int access_size;
167 168
};

169 170 171
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
172 173
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
174
 */
175 176
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
177
{
178
	struct bpf_verifer_log *log = &env->log;
179
	unsigned int n;
180 181
	va_list args;

182
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
183 184 185
		return;

	va_start(args, fmt);
186
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
187
	va_end(args);
188 189 190 191 192 193 194 195 196 197 198

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
199
}
200 201 202 203 204 205 206 207
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
/* Historically bpf_verifier_log_write was called verbose, but the name was too
 * generic for symbol export. The function was renamed, but not the calls in
 * the verifier to avoid complicating backports. Hence the alias below.
 */
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
	__attribute__((alias("bpf_verifier_log_write")));
208

209 210 211 212 213 214
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

215 216 217
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
218
	[SCALAR_VALUE]		= "inv",
219 220 221 222 223
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
224
	[PTR_TO_PACKET]		= "pkt",
225
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
226
	[PTR_TO_PACKET_END]	= "pkt_end",
227 228
};

229 230 231 232 233 234 235 236 237 238 239
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

240 241 242 243 244 245 246 247
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

248
static void print_verifier_state(struct bpf_verifier_env *env,
249
				 const struct bpf_func_state *state)
250
{
251
	const struct bpf_reg_state *reg;
252 253 254
	enum bpf_reg_type t;
	int i;

255 256
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
257
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
258 259
		reg = &state->regs[i];
		t = reg->type;
260 261
		if (t == NOT_INIT)
			continue;
262 263 264
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
265 266 267
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
268
			verbose(env, "%lld", reg->var_off.value + reg->off);
269 270
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
271
		} else {
272
			verbose(env, "(id=%d", reg->id);
273
			if (t != SCALAR_VALUE)
274
				verbose(env, ",off=%d", reg->off);
275
			if (type_is_pkt_pointer(t))
276
				verbose(env, ",r=%d", reg->range);
277 278 279
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
280
				verbose(env, ",ks=%d,vs=%d",
281 282
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
283 284 285 286 287
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
288
				verbose(env, ",imm=%llx", reg->var_off.value);
289 290 291
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
292
					verbose(env, ",smin_value=%lld",
293 294 295
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
296
					verbose(env, ",smax_value=%lld",
297 298
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
299
					verbose(env, ",umin_value=%llu",
300 301
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
302
					verbose(env, ",umax_value=%llu",
303 304 305
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
306

307
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
308
					verbose(env, ",var_off=%s", tn_buf);
309
				}
310
			}
311
			verbose(env, ")");
312
		}
313
	}
314
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
315 316 317 318 319
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
320
				reg_type_str[state->stack[i].spilled_ptr.type]);
321
		}
322 323
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
324
	}
325
	verbose(env, "\n");
326 327
}

328 329
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
330
{
331 332 333 334 335 336 337 338 339 340 341 342 343 344
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
345
 * the program calls into realloc_func_state() to grow the stack size.
346 347 348 349
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
350 351
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

384 385
static void free_func_state(struct bpf_func_state *state)
{
386 387
	if (!state)
		return;
388 389 390 391
	kfree(state->stack);
	kfree(state);
}

392 393
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
394
{
395 396 397 398 399 400
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
401 402
	if (free_self)
		kfree(state);
403 404 405 406 407
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
408 409
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
410 411 412
{
	int err;

413
	err = realloc_func_state(dst, src->allocated_stack, false);
414 415
	if (err)
		return err;
416
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
417 418 419
	return copy_stack_state(dst, src);
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

448 449 450 451 452 453
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
454 455

	if (env->head == NULL)
456
		return -ENOENT;
457

458 459 460 461 462 463 464
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
465
	if (prev_insn_idx)
466 467
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
468
	free_verifier_state(&head->st, false);
469
	kfree(head);
470 471
	env->head = elem;
	env->stack_size--;
472
	return 0;
473 474
}

475 476
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
477
{
478
	struct bpf_verifier_state *cur = env->cur_state;
479
	struct bpf_verifier_stack_elem *elem;
480
	int err;
481

482
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
483 484 485 486 487 488 489 490
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
491 492 493
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
494
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
495
		verbose(env, "BPF program is too complex\n");
496 497 498 499
		goto err;
	}
	return &elem->st;
err:
500 501
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
502
	/* pop all elements and return */
503
	while (!pop_stack(env, NULL, NULL));
504 505 506 507 508 509 510
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};
511 512 513 514
#define CALLEE_SAVED_REGS 5
static const int callee_saved[CALLEE_SAVED_REGS] = {
	BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9
};
515

516 517
static void __mark_reg_not_init(struct bpf_reg_state *reg);

518 519 520 521 522 523 524 525 526 527 528 529 530
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

531 532 533 534
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
535
{
536
	__mark_reg_known(reg, 0);
537
}
538

539 540 541 542 543 544 545
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

546 547
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
548 549
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
550
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
551 552 553 554 555 556 557 558
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

650 651 652 653 654 655 656
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
657
	reg->frameno = 0;
658
	__mark_reg_unbounded(reg);
659 660
}

661 662
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
663 664
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
665
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
666 667
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
668 669 670 671 672 673 674 675 676 677 678 679
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

680 681
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
682 683
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
684
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
685 686
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
687 688 689 690
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
691 692
}

693
static void init_reg_state(struct bpf_verifier_env *env,
694
			   struct bpf_func_state *state)
695
{
696
	struct bpf_reg_state *regs = state->regs;
697 698
	int i;

699
	for (i = 0; i < MAX_BPF_REG; i++) {
700
		mark_reg_not_init(env, regs, i);
701 702
		regs[i].live = REG_LIVE_NONE;
	}
703 704

	/* frame pointer */
705
	regs[BPF_REG_FP].type = PTR_TO_STACK;
706
	mark_reg_known_zero(env, regs, BPF_REG_FP);
707
	regs[BPF_REG_FP].frameno = state->frameno;
708 709 710

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
711
	mark_reg_known_zero(env, regs, BPF_REG_1);
712 713
}

714 715 716 717 718 719 720 721 722 723 724
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

725 726 727 728 729 730
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static int cmp_subprogs(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
	u32 *p;

	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
		    sizeof(env->subprog_starts[0]), cmp_subprogs);
	if (!p)
		return -ENOENT;
	return p - env->subprog_starts;

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
	env->subprog_starts[env->subprog_cnt++] = off;
	sort(env->subprog_starts, env->subprog_cnt,
	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
787
			verbose(env, "function calls in offloaded programs are not supported yet\n");
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);

	/* now check that all jumps are within the same subprog */
	subprog_start = 0;
	if (env->subprog_cnt == cur_subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[cur_subprog++];
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
			if (env->subprog_cnt == cur_subprog)
				subprog_end = insn_cnt;
			else
				subprog_end = env->subprog_starts[cur_subprog++];
		}
	}
	return 0;
}

838
static
839 840 841 842
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
843
{
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
883
	return NULL;
884 885 886 887 888 889 890 891
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
892

A
Alexei Starovoitov 已提交
893 894
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
895
		return 0;
A
Alexei Starovoitov 已提交
896

897 898
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
899
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
900
			break;
901 902 903
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
904
		/* ... then we depend on parent's value */
905
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
906 907
		state = parent;
		parent = state->parent;
908
		writes = true;
909
	}
910
	return 0;
911 912 913
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
914 915
			 enum reg_arg_type t)
{
916 917 918
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
919

920
	if (regno >= MAX_BPF_REG) {
921
		verbose(env, "R%d is invalid\n", regno);
922 923 924 925 926 927
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
928
			verbose(env, "R%d !read_ok\n", regno);
929 930
			return -EACCES;
		}
931
		return mark_reg_read(env, vstate, vstate->parent, regno);
932 933 934
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
935
			verbose(env, "frame pointer is read only\n");
936 937
			return -EACCES;
		}
938
		regs[regno].live |= REG_LIVE_WRITTEN;
939
		if (t == DST_OP)
940
			mark_reg_unknown(env, regs, regno);
941 942 943 944
	}
	return 0;
}

945 946 947 948 949 950 951
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
952
	case PTR_TO_PACKET:
953
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
954
	case PTR_TO_PACKET_END:
955 956 957 958 959 960 961
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

962 963 964 965 966 967
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

968 969 970
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
971
static int check_stack_write(struct bpf_verifier_env *env,
972 973
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
974
{
975
	struct bpf_func_state *cur; /* state of the current function */
976
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
977
	enum bpf_reg_type type;
978

979 980
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
981 982
	if (err)
		return err;
983 984 985
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
986 987 988 989 990 991
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
992

993
	cur = env->cur_state->frame[env->cur_state->curframe];
994
	if (value_regno >= 0 &&
995
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
996 997

		/* register containing pointer is being spilled into stack */
998
		if (size != BPF_REG_SIZE) {
999
			verbose(env, "invalid size of register spill\n");
1000 1001 1002
			return -EACCES;
		}

1003 1004 1005 1006 1007
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1008
		/* save register state */
1009
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1010
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1011

1012
		for (i = 0; i < BPF_REG_SIZE; i++)
1013
			state->stack[spi].slot_type[i] = STACK_SPILL;
1014
	} else {
1015 1016
		u8 type = STACK_MISC;

1017
		/* regular write of data into stack */
1018
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1036
		for (i = 0; i < size; i++)
1037
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1038
				type;
1039 1040 1041 1042
	}
	return 0;
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1075
{
1076
	bool writes = parent == state->parent; /* Observe write marks */
1077 1078

	while (parent) {
1079 1080 1081 1082 1083 1084 1085 1086
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1087
		/* if read wasn't screened by an earlier write ... */
1088
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1089 1090
			break;
		/* ... then we depend on parent's value */
1091
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1092 1093
		state = parent;
		parent = state->parent;
1094
		writes = true;
1095 1096 1097
	}
}

1098
static int check_stack_read(struct bpf_verifier_env *env,
1099 1100
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1101
{
1102 1103
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1104 1105
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1106

1107
	if (reg_state->allocated_stack <= slot) {
1108 1109 1110 1111
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1112
	stype = reg_state->stack[spi].slot_type;
1113

1114
	if (stype[0] == STACK_SPILL) {
1115
		if (size != BPF_REG_SIZE) {
1116
			verbose(env, "invalid size of register spill\n");
1117 1118
			return -EACCES;
		}
1119
		for (i = 1; i < BPF_REG_SIZE; i++) {
1120
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1121
				verbose(env, "corrupted spill memory\n");
1122 1123 1124 1125
				return -EACCES;
			}
		}

1126
		if (value_regno >= 0) {
1127
			/* restore register state from stack */
1128
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1129 1130 1131 1132 1133
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1134
		}
1135 1136
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1137 1138
		return 0;
	} else {
1139 1140
		int zeros = 0;

1141
		for (i = 0; i < size; i++) {
1142 1143 1144 1145 1146
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1147
			}
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1165 1166 1167 1168 1169 1170
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1171
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1172
			      int size, bool zero_size_allowed)
1173
{
1174 1175
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1176

1177 1178
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1179
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1180 1181 1182 1183 1184 1185
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1186 1187
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1188
			    int off, int size, bool zero_size_allowed)
1189
{
1190 1191
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1192 1193 1194
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1195 1196 1197
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1198
	 */
1199 1200
	if (env->log.level)
		print_verifier_state(env, state);
1201 1202 1203 1204 1205 1206
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1207
	if (reg->smin_value < 0) {
1208
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1209 1210 1211
			regno);
		return -EACCES;
	}
1212 1213
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1214
	if (err) {
1215 1216
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1217 1218 1219
		return err;
	}

1220 1221 1222
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1223
	 */
1224
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1225
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1226 1227 1228
			regno);
		return -EACCES;
	}
1229 1230
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1231
	if (err)
1232 1233
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1234
	return err;
1235 1236
}

A
Alexei Starovoitov 已提交
1237 1238
#define MAX_PACKET_OFF 0xffff

1239
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1240 1241
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1242
{
1243
	switch (env->prog->type) {
1244 1245 1246 1247 1248
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1249
		/* fallthrough */
1250 1251
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1252
	case BPF_PROG_TYPE_XDP:
1253
	case BPF_PROG_TYPE_LWT_XMIT:
1254
	case BPF_PROG_TYPE_SK_SKB:
1255 1256 1257 1258
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1259 1260 1261 1262 1263 1264
		return true;
	default:
		return false;
	}
}

1265
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1266
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1267
{
1268
	struct bpf_reg_state *regs = cur_regs(env);
1269
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1270

1271 1272
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1273
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1274
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1275 1276 1277 1278 1279
		return -EACCES;
	}
	return 0;
}

1280
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1281
			       int size, bool zero_size_allowed)
1282
{
1283
	struct bpf_reg_state *regs = cur_regs(env);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1295
	if (reg->smin_value < 0) {
1296
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1297 1298 1299
			regno);
		return -EACCES;
	}
1300
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1301
	if (err) {
1302
		verbose(env, "R%d offset is outside of the packet\n", regno);
1303 1304 1305 1306 1307 1308
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1309
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1310
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1311
{
1312 1313 1314
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1315

1316 1317
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
1318 1319 1320 1321 1322 1323
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1324
		 */
1325
		*reg_type = info.reg_type;
1326

1327
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1328 1329 1330
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1331
		return 0;
1332
	}
1333

1334
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1335 1336 1337
	return -EACCES;
}

1338 1339
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1340
{
1341
	if (allow_ptr_leaks)
1342 1343
		return false;

1344
	return reg->type != SCALAR_VALUE;
1345 1346
}

1347 1348
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1349
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1350 1351
}

1352 1353 1354 1355 1356 1357 1358
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1359 1360
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1361
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1362
{
1363
	struct tnum reg_off;
1364
	int ip_align;
1365 1366 1367 1368 1369

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1370 1371 1372 1373 1374 1375 1376
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1377
	 */
1378
	ip_align = 2;
1379 1380 1381 1382 1383 1384

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1385 1386
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1387
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1388 1389
		return -EACCES;
	}
1390

A
Alexei Starovoitov 已提交
1391 1392 1393
	return 0;
}

1394 1395
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1396 1397
				       const char *pointer_desc,
				       int off, int size, bool strict)
1398
{
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1410
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1411
			pointer_desc, tn_buf, reg->off, off, size);
1412 1413 1414
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1415 1416 1417
	return 0;
}

1418 1419
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1420 1421
			       int off, int size)
{
1422
	bool strict = env->strict_alignment;
1423
	const char *pointer_desc = "";
1424

1425 1426
	switch (reg->type) {
	case PTR_TO_PACKET:
1427 1428 1429 1430
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1431
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1432 1433 1434 1435 1436 1437 1438 1439
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1440 1441 1442 1443 1444
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1445
		break;
1446
	default:
1447
		break;
1448
	}
1449 1450
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1451 1452
}

1453 1454 1455 1456
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1457
	u16 stack = env->subprog_stack_depth[func->subprogno];
1458 1459 1460 1461 1462 1463

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
	env->subprog_stack_depth[func->subprogno] = -off;
1464 1465
	return 0;
}
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
	int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1480

1481 1482 1483 1484 1485 1486
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
	depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	if (depth > MAX_BPF_STACK) {
1487
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1488
			frame + 1, depth);
1489 1490
		return -EACCES;
	}
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
continue_func:
	if (env->subprog_cnt == subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[subprog];
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
		ret_prog[frame] = subprog;

		/* find the callee */
		i = i + insn[i].imm + 1;
		subprog = find_subprog(env, i);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		subprog++;
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
	depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
	frame--;
	i = ret_insn[frame];
	subprog = ret_prog[frame];
	goto continue_func;
1531 1532
}

1533
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
	subprog++;
	return env->subprog_stack_depth[subprog];
}
1548
#endif
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1573 1574 1575 1576 1577 1578
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1579
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1580 1581 1582
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1583 1584
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1585
	struct bpf_func_state *state;
1586 1587 1588 1589 1590 1591
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1592
	/* alignment checks will add in reg->off themselves */
1593
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1594 1595
	if (err)
		return err;
1596

1597 1598 1599 1600
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1601 1602
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1603
			verbose(env, "R%d leaks addr into map\n", value_regno);
1604 1605
			return -EACCES;
		}
1606

1607
		err = check_map_access(env, regno, off, size, false);
1608
		if (!err && t == BPF_READ && value_regno >= 0)
1609
			mark_reg_unknown(env, regs, value_regno);
1610

A
Alexei Starovoitov 已提交
1611
	} else if (reg->type == PTR_TO_CTX) {
1612
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1613

1614 1615
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1616
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1617 1618
			return -EACCES;
		}
1619 1620 1621
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1622
		if (reg->off) {
1623 1624
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1625 1626 1627 1628
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1629 1630 1631
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1632 1633
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1634 1635 1636
				tn_buf, off, size);
			return -EACCES;
		}
1637
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1638
		if (!err && t == BPF_READ && value_regno >= 0) {
1639
			/* ctx access returns either a scalar, or a
1640 1641
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1642 1643
			 */
			if (reg_type == SCALAR_VALUE)
1644
				mark_reg_unknown(env, regs, value_regno);
1645
			else
1646
				mark_reg_known_zero(env, regs,
1647
						    value_regno);
1648 1649 1650 1651
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1652
		}
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1663
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1664 1665 1666 1667
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1668
		if (off >= 0 || off < -MAX_BPF_STACK) {
1669 1670
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1671 1672
			return -EACCES;
		}
1673

1674 1675 1676 1677
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1678

1679
		if (t == BPF_WRITE)
1680 1681
			err = check_stack_write(env, state, off, size,
						value_regno);
1682
		else
1683 1684
			err = check_stack_read(env, state, off, size,
					       value_regno);
1685
	} else if (reg_is_pkt_pointer(reg)) {
1686
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1687
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1688 1689
			return -EACCES;
		}
1690 1691
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1692 1693
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1694 1695
			return -EACCES;
		}
1696
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1697
		if (!err && t == BPF_READ && value_regno >= 0)
1698
			mark_reg_unknown(env, regs, value_regno);
1699
	} else {
1700 1701
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1702 1703
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1704

1705
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1706
	    regs[value_regno].type == SCALAR_VALUE) {
1707
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1708
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1709
	}
1710 1711 1712
	return err;
}

1713
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1714 1715 1716 1717 1718
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1719
		verbose(env, "BPF_XADD uses reserved fields\n");
1720 1721 1722 1723
		return -EINVAL;
	}

	/* check src1 operand */
1724
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1725 1726 1727 1728
	if (err)
		return err;

	/* check src2 operand */
1729
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1730 1731 1732
	if (err)
		return err;

1733
	if (is_pointer_value(env, insn->src_reg)) {
1734
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1735 1736 1737
		return -EACCES;
	}

1738 1739 1740 1741 1742 1743
	if (is_ctx_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d context is not allowed\n",
			insn->dst_reg);
		return -EACCES;
	}

1744
	/* check whether atomic_add can read the memory */
1745
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1746 1747 1748 1749 1750
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1751
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1752 1753 1754 1755 1756
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1757 1758 1759
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1760
 */
1761
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1762 1763
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1764
{
1765
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1766
	struct bpf_func_state *state = func(env, reg);
1767
	int off, i, slot, spi;
1768

1769
	if (reg->type != PTR_TO_STACK) {
1770
		/* Allow zero-byte read from NULL, regardless of pointer type */
1771
		if (zero_size_allowed && access_size == 0 &&
1772
		    register_is_null(reg))
1773 1774
			return 0;

1775
		verbose(env, "R%d type=%s expected=%s\n", regno,
1776
			reg_type_str[reg->type],
1777
			reg_type_str[PTR_TO_STACK]);
1778
		return -EACCES;
1779
	}
1780

1781
	/* Only allow fixed-offset stack reads */
1782
	if (!tnum_is_const(reg->var_off)) {
1783 1784
		char tn_buf[48];

1785
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1786
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1787
			regno, tn_buf);
1788
		return -EACCES;
1789
	}
1790
	off = reg->off + reg->var_off.value;
1791
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1792
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1793
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1794 1795 1796 1797
			regno, off, access_size);
		return -EACCES;
	}

1798 1799 1800 1801 1802 1803
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1804
	for (i = 0; i < access_size; i++) {
1805 1806
		u8 *stype;

1807 1808
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1809 1810 1811 1812 1813 1814 1815 1816 1817
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1818
		}
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1829
	}
1830
	return update_stack_depth(env, state, off);
1831 1832
}

1833 1834 1835 1836
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1837
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1838

1839
	switch (reg->type) {
1840
	case PTR_TO_PACKET:
1841
	case PTR_TO_PACKET_META:
1842 1843
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1844
	case PTR_TO_MAP_VALUE:
1845 1846
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1847
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1848 1849 1850 1851 1852
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1866
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1867 1868
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1869
{
1870
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1871
	enum bpf_reg_type expected_type, type = reg->type;
1872 1873
	int err = 0;

1874
	if (arg_type == ARG_DONTCARE)
1875 1876
		return 0;

1877 1878 1879
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1880

1881 1882
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1883 1884
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1885 1886
			return -EACCES;
		}
1887
		return 0;
1888
	}
1889

1890
	if (type_is_pkt_pointer(type) &&
1891
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1892
		verbose(env, "helper access to the packet is not allowed\n");
1893 1894 1895
		return -EACCES;
	}

1896
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1897 1898
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1899 1900
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1901
			goto err_type;
1902 1903
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1904 1905
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1906
			goto err_type;
1907 1908
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1909 1910
		if (type != expected_type)
			goto err_type;
1911 1912
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1913 1914
		if (type != expected_type)
			goto err_type;
1915
	} else if (arg_type_is_mem_ptr(arg_type)) {
1916 1917
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1918
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1919 1920
		 * happens during stack boundary checking.
		 */
1921
		if (register_is_null(reg) &&
1922
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1923
			/* final test in check_stack_boundary() */;
1924 1925
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1926
			 type != expected_type)
1927
			goto err_type;
1928
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1929
	} else {
1930
		verbose(env, "unsupported arg_type %d\n", arg_type);
1931 1932 1933 1934 1935
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1936
		meta->map_ptr = reg->map_ptr;
1937 1938 1939 1940 1941
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1942
		if (!meta->map_ptr) {
1943 1944 1945 1946 1947
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1948
			verbose(env, "invalid map_ptr to access map->key\n");
1949 1950
			return -EACCES;
		}
1951
		if (type_is_pkt_pointer(type))
1952
			err = check_packet_access(env, regno, reg->off,
1953 1954
						  meta->map_ptr->key_size,
						  false);
1955 1956 1957 1958
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1959 1960 1961 1962
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1963
		if (!meta->map_ptr) {
1964
			/* kernel subsystem misconfigured verifier */
1965
			verbose(env, "invalid map_ptr to access map->value\n");
1966 1967
			return -EACCES;
		}
1968
		if (type_is_pkt_pointer(type))
1969
			err = check_packet_access(env, regno, reg->off,
1970 1971
						  meta->map_ptr->value_size,
						  false);
1972 1973 1974 1975
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1976
	} else if (arg_type_is_mem_size(arg_type)) {
1977
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1978

1979 1980
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1981
		 */
1982
		if (!tnum_is_const(reg->var_off))
1983 1984 1985 1986 1987 1988 1989
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1990
		if (reg->smin_value < 0) {
1991
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1992 1993 1994
				regno);
			return -EACCES;
		}
1995

1996
		if (reg->umin_value == 0) {
1997 1998 1999
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2000 2001 2002
			if (err)
				return err;
		}
2003

2004
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2005
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2006 2007 2008 2009
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2010
					      reg->umax_value,
2011
					      zero_size_allowed, meta);
2012 2013 2014
	}

	return err;
2015
err_type:
2016
	verbose(env, "R%d type=%s expected=%s\n", regno,
2017 2018
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2019 2020
}

2021 2022
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2023 2024 2025 2026
{
	if (!map)
		return 0;

2027 2028 2029 2030 2031 2032 2033 2034
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2035 2036
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2037 2038 2039 2040 2041 2042
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2043
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2044
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2045
		    func_id != BPF_FUNC_current_task_under_cgroup)
2046 2047
			goto error;
		break;
2048 2049 2050 2051 2052
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2053
		if (func_id != BPF_FUNC_redirect_map)
2054 2055
			goto error;
		break;
2056 2057 2058 2059 2060
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2061
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2062
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2063 2064
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2065
		break;
2066 2067 2068 2069 2070 2071
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
2072 2073 2074 2075 2076 2077 2078 2079 2080
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
2081 2082 2083 2084
		if (env->subprog_cnt) {
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2085 2086 2087
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2088
	case BPF_FUNC_perf_event_read_value:
2089 2090 2091 2092 2093 2094 2095
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2096
	case BPF_FUNC_current_task_under_cgroup:
2097
	case BPF_FUNC_skb_under_cgroup:
2098 2099 2100
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2101
	case BPF_FUNC_redirect_map:
2102 2103
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
2104 2105
			goto error;
		break;
2106 2107 2108 2109 2110 2111 2112 2113
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2114 2115
	default:
		break;
2116 2117 2118
	}

	return 0;
2119
error:
2120
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2121
		map->map_type, func_id_name(func_id), func_id);
2122
	return -EINVAL;
2123 2124
}

2125
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2126 2127 2128
{
	int count = 0;

2129
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2130
		count++;
2131
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2132
		count++;
2133
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2134
		count++;
2135
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2136
		count++;
2137
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2138 2139
		count++;

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2178 2179
}

2180 2181
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2182
 */
2183 2184
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2185
{
2186
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2187 2188 2189
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2190
		if (reg_is_pkt_pointer_any(&regs[i]))
2191
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2192

2193 2194
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2195
			continue;
2196
		reg = &state->stack[i].spilled_ptr;
2197 2198
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2199 2200 2201
	}
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2218
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2219
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2220
			state->curframe + 2);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
			subprog + 1 /* subprog number within this prog */);

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2317 2318
{
	const struct bpf_func_proto *fn = NULL;
2319
	struct bpf_reg_state *regs;
2320
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2321
	bool changes_data;
2322 2323 2324 2325
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2326 2327
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2328 2329 2330
		return -EINVAL;
	}

2331 2332
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
2333
	if (!fn) {
2334 2335
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2336 2337 2338 2339
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2340
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2341
		verbose(env, "cannot call GPL only function from proprietary program\n");
2342 2343 2344
		return -EINVAL;
	}

2345
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2346
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2347 2348 2349 2350 2351
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2352

2353
	memset(&meta, 0, sizeof(meta));
2354
	meta.pkt_access = fn->pkt_access;
2355

2356
	err = check_func_proto(fn);
2357
	if (err) {
2358
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2359
			func_id_name(func_id), func_id);
2360 2361 2362
		return err;
	}

2363
	/* check args */
2364
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2365 2366
	if (err)
		return err;
2367
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2368 2369
	if (err)
		return err;
2370 2371 2372 2373 2374 2375 2376
	if (func_id == BPF_FUNC_tail_call) {
		if (meta.map_ptr == NULL) {
			verbose(env, "verifier bug\n");
			return -EINVAL;
		}
		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
	}
2377
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2378 2379
	if (err)
		return err;
2380
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2381 2382
	if (err)
		return err;
2383
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2384 2385 2386
	if (err)
		return err;

2387 2388 2389 2390
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2391
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
2392 2393 2394 2395
		if (err)
			return err;
	}

2396
	regs = cur_regs(env);
2397
	/* reset caller saved regs */
2398
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2399
		mark_reg_not_init(env, regs, caller_saved[i]);
2400 2401
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2402

2403
	/* update return register (already marked as written above) */
2404
	if (fn->ret_type == RET_INTEGER) {
2405
		/* sets type to SCALAR_VALUE */
2406
		mark_reg_unknown(env, regs, BPF_REG_0);
2407 2408 2409
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2410 2411
		struct bpf_insn_aux_data *insn_aux;

2412
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2413
		/* There is no offset yet applied, variable or fixed */
2414
		mark_reg_known_zero(env, regs, BPF_REG_0);
2415
		regs[BPF_REG_0].off = 0;
2416 2417 2418 2419
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2420
		if (meta.map_ptr == NULL) {
2421 2422
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2423 2424
			return -EINVAL;
		}
2425
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2426
		regs[BPF_REG_0].id = ++env->id_gen;
2427 2428 2429 2430 2431
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2432
	} else {
2433
		verbose(env, "unknown return type %d of func %s#%d\n",
2434
			fn->ret_type, func_id_name(func_id), func_id);
2435 2436
		return -EINVAL;
	}
2437

2438
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2439 2440
	if (err)
		return err;
2441

A
Alexei Starovoitov 已提交
2442 2443 2444 2445 2446
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2465 2466
}

A
Alexei Starovoitov 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2502 2503 2504 2505 2506 2507 2508 2509 2510
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2511
{
2512 2513 2514
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2515
	bool known = tnum_is_const(off_reg->var_off);
2516 2517 2518 2519
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2520
	u8 opcode = BPF_OP(insn->code);
2521
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2522

2523
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2524

2525 2526 2527 2528 2529 2530 2531
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2532 2533 2534 2535
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2536 2537 2538
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2539
		return -EACCES;
A
Alexei Starovoitov 已提交
2540 2541
	}

2542
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2543 2544
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2545 2546 2547
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2548 2549
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2550 2551 2552
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2553 2554
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2555 2556 2557 2558 2559
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2560
	 */
2561 2562
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2563

A
Alexei Starovoitov 已提交
2564 2565 2566 2567
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2568 2569 2570 2571
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2572
		 */
2573 2574
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2575
			/* pointer += K.  Accumulate it into fixed offset */
2576 2577 2578 2579
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2580
			dst_reg->var_off = ptr_reg->var_off;
2581
			dst_reg->off = ptr_reg->off + smin_val;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2593
		 */
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2610 2611
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2612
		if (reg_is_pkt_pointer(ptr_reg)) {
2613 2614 2615 2616 2617 2618 2619 2620
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2621 2622
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2623 2624 2625 2626 2627
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2628
		 */
2629
		if (ptr_reg->type == PTR_TO_STACK) {
2630 2631
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2632 2633
			return -EACCES;
		}
2634 2635
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2636
			/* pointer -= K.  Subtract it from fixed offset */
2637 2638 2639 2640
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2641 2642
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2643
			dst_reg->off = ptr_reg->off - smin_val;
2644 2645 2646 2647 2648
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2649
		 */
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2668 2669
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2670
		if (reg_is_pkt_pointer(ptr_reg)) {
2671 2672
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2673
			if (smin_val < 0)
2674
				dst_reg->range = 0;
2675
		}
2676 2677 2678 2679
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2680 2681 2682
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2683 2684 2685
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2686 2687
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2688
		return -EACCES;
2689 2690
	}

A
Alexei Starovoitov 已提交
2691 2692 2693
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2694 2695 2696
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2697 2698 2699
	return 0;
}

J
Jann Horn 已提交
2700 2701 2702 2703
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2704 2705 2706 2707
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2708
{
2709
	struct bpf_reg_state *regs = cur_regs(env);
2710
	u8 opcode = BPF_OP(insn->code);
2711
	bool src_known, dst_known;
2712 2713
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2714
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2715

2716 2717 2718 2719
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2720 2721
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2732 2733 2734 2735 2736 2737
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2738 2739
	switch (opcode) {
	case BPF_ADD:
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2756
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2757 2758
		break;
	case BPF_SUB:
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2777
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2778 2779
		break;
	case BPF_MUL:
2780 2781
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2782
			/* Ain't nobody got time to multiply that sign */
2783 2784
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2785 2786
			break;
		}
2787 2788
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2789
		 */
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2807 2808
		break;
	case BPF_AND:
2809
		if (src_known && dst_known) {
2810 2811
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2812 2813
			break;
		}
2814 2815
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2816
		 */
2817
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2835 2836 2837
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2838 2839
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2840 2841
			break;
		}
2842 2843
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2844 2845
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2846 2847 2848 2849 2850 2851 2852 2853 2854
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2855
		} else {
2856 2857 2858 2859 2860
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2861
		}
2862 2863
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2864 2865
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2866 2867 2868
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2869
			 */
2870
			mark_reg_unknown(env, regs, insn->dst_reg);
2871 2872
			break;
		}
2873 2874
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2875
		 */
2876 2877 2878 2879 2880 2881
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2882
		} else {
2883 2884
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2885
		}
2886 2887 2888 2889 2890 2891
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2892 2893
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2894 2895 2896
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2897
			 */
2898
			mark_reg_unknown(env, regs, insn->dst_reg);
2899 2900
			break;
		}
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2917
		if (src_known)
2918 2919
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2920
		else
2921 2922 2923 2924 2925
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2926 2927
		break;
	default:
2928
		mark_reg_unknown(env, regs, insn->dst_reg);
2929 2930 2931
		break;
	}

J
Jann Horn 已提交
2932 2933 2934 2935 2936 2937
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

2938 2939
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2940 2941 2942 2943 2944 2945 2946 2947 2948
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2949 2950 2951
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
2964 2965
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
2966
				 */
2967 2968 2969
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
2970
				}
2971 2972 2973 2974
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
2975 2976 2977 2978 2979
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
2980 2981
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
2982 2983 2984
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
2985 2986
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
2987 2988 2989 2990 2991 2992
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2993
		__mark_reg_known(&off_reg, insn->imm);
2994
		src_reg = &off_reg;
2995 2996 2997
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
2998 2999 3000 3001
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3002
		print_verifier_state(env, state);
3003
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3004 3005 3006
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3007
		print_verifier_state(env, state);
3008
		verbose(env, "verifier internal error: no src_reg\n");
3009 3010 3011
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3012 3013
}

3014
/* check validity of 32-bit and 64-bit arithmetic operations */
3015
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3016
{
3017
	struct bpf_reg_state *regs = cur_regs(env);
3018 3019 3020 3021 3022 3023 3024 3025
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3026
				verbose(env, "BPF_NEG uses reserved fields\n");
3027 3028 3029 3030
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3031 3032
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3033
				verbose(env, "BPF_END uses reserved fields\n");
3034 3035 3036 3037 3038
				return -EINVAL;
			}
		}

		/* check src operand */
3039
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3040 3041 3042
		if (err)
			return err;

3043
		if (is_pointer_value(env, insn->dst_reg)) {
3044
			verbose(env, "R%d pointer arithmetic prohibited\n",
3045 3046 3047 3048
				insn->dst_reg);
			return -EACCES;
		}

3049
		/* check dest operand */
3050
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3051 3052 3053 3054 3055 3056 3057
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3058
				verbose(env, "BPF_MOV uses reserved fields\n");
3059 3060 3061 3062
				return -EINVAL;
			}

			/* check src operand */
3063
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3064 3065 3066 3067
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3068
				verbose(env, "BPF_MOV uses reserved fields\n");
3069 3070 3071 3072 3073
				return -EINVAL;
			}
		}

		/* check dest operand */
3074
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3075 3076 3077 3078 3079 3080 3081 3082 3083
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3084
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3085
			} else {
3086
				/* R1 = (u32) R2 */
3087
				if (is_pointer_value(env, insn->src_reg)) {
3088 3089
					verbose(env,
						"R%d partial copy of pointer\n",
3090 3091 3092
						insn->src_reg);
					return -EACCES;
				}
3093
				mark_reg_unknown(env, regs, insn->dst_reg);
3094
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3095 3096 3097 3098 3099
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3100
			regs[insn->dst_reg].type = SCALAR_VALUE;
3101 3102 3103 3104 3105 3106 3107
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3108 3109 3110
		}

	} else if (opcode > BPF_END) {
3111
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3112 3113 3114 3115 3116 3117
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3118
				verbose(env, "BPF_ALU uses reserved fields\n");
3119 3120 3121
				return -EINVAL;
			}
			/* check src1 operand */
3122
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3123 3124 3125 3126
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3127
				verbose(env, "BPF_ALU uses reserved fields\n");
3128 3129 3130 3131 3132
				return -EINVAL;
			}
		}

		/* check src2 operand */
3133
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3134 3135 3136 3137 3138
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3139
			verbose(env, "div by zero\n");
3140 3141 3142
			return -EINVAL;
		}

3143 3144 3145 3146 3147
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3148 3149 3150 3151 3152
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3153
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3154 3155 3156 3157
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3158
		/* check dest operand */
3159
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3160 3161 3162
		if (err)
			return err;

3163
		return adjust_reg_min_max_vals(env, insn);
3164 3165 3166 3167 3168
	}

	return 0;
}

3169
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3170
				   struct bpf_reg_state *dst_reg,
3171
				   enum bpf_reg_type type,
3172
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3173
{
3174
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3175
	struct bpf_reg_state *regs = state->regs, *reg;
3176
	u16 new_range;
3177
	int i, j;
3178

3179 3180
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3181 3182 3183
		/* This doesn't give us any range */
		return;

3184 3185
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3186 3187 3188 3189 3190
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3191 3192 3193 3194 3195
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3196
	 *
3197
	 * pkt_data in dst register:
3198 3199 3200 3201 3202 3203
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3204 3205 3206 3207 3208
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3209 3210 3211 3212 3213
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3214
	 * pkt_data in src register:
3215 3216 3217 3218 3219 3220
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3221 3222 3223 3224 3225
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3226 3227 3228 3229 3230 3231
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3232 3233 3234
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3235
	 */
3236

3237 3238 3239 3240 3241
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3242
	for (i = 0; i < MAX_BPF_REG; i++)
3243
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3244
			/* keep the maximum range already checked */
3245
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3256 3257 3258
	}
}

3259 3260 3261
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3262
 * In JEQ/JNE cases we also adjust the var_off values.
3263 3264 3265 3266 3267
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3268 3269 3270 3271 3272 3273 3274 3275
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3276

3277 3278 3279 3280 3281
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3282
		__mark_reg_known(true_reg, val);
3283 3284 3285 3286 3287
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3288
		__mark_reg_known(false_reg, val);
3289 3290
		break;
	case BPF_JGT:
3291 3292 3293
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3294
	case BPF_JSGT:
3295 3296
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3297
		break;
3298 3299 3300 3301 3302 3303 3304 3305
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3306
	case BPF_JGE:
3307 3308 3309
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3310
	case BPF_JSGE:
3311 3312
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3313
		break;
3314 3315 3316 3317 3318 3319 3320 3321
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3322 3323 3324 3325
	default:
		break;
	}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3337 3338
}

3339 3340
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3341 3342 3343 3344 3345
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3346 3347
	if (__is_pointer_value(false, false_reg))
		return;
3348

3349 3350 3351 3352 3353
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3354
		__mark_reg_known(true_reg, val);
3355 3356 3357 3358 3359
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3360
		__mark_reg_known(false_reg, val);
3361 3362
		break;
	case BPF_JGT:
3363 3364 3365
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3366
	case BPF_JSGT:
3367 3368
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3369
		break;
3370 3371 3372 3373 3374 3375 3376 3377
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3378
	case BPF_JGE:
3379 3380 3381
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3382
	case BPF_JSGE:
3383 3384
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3385
		break;
3386 3387 3388 3389 3390 3391 3392 3393
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3394 3395 3396 3397
	default:
		break;
	}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3409 3410 3411 3412 3413 3414
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3415 3416 3417 3418 3419 3420 3421 3422
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3423 3424
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3454
		break;
3455
	}
3456 3457
}

3458
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3459
			 bool is_null)
3460 3461 3462 3463
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3464 3465 3466 3467
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3468 3469
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3470
				 reg->off)) {
3471 3472
			__mark_reg_known_zero(reg);
			reg->off = 0;
3473 3474 3475
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3476 3477 3478 3479
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3480
			reg->type = PTR_TO_MAP_VALUE;
3481
		}
3482 3483 3484 3485 3486
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3487 3488 3489 3490 3491 3492
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3493
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3494
			  bool is_null)
3495
{
3496
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3497
	struct bpf_reg_state *regs = state->regs;
3498
	u32 id = regs[regno].id;
3499
	int i, j;
3500 3501

	for (i = 0; i < MAX_BPF_REG; i++)
3502
		mark_map_reg(regs, i, id, is_null);
3503

3504 3505 3506 3507 3508 3509 3510
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3511 3512 3513
	}
}

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3607
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3608 3609
			     struct bpf_insn *insn, int *insn_idx)
{
3610 3611 3612 3613
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3614 3615 3616
	u8 opcode = BPF_OP(insn->code);
	int err;

3617
	if (opcode > BPF_JSLE) {
3618
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3619 3620 3621 3622 3623
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3624
			verbose(env, "BPF_JMP uses reserved fields\n");
3625 3626 3627 3628
			return -EINVAL;
		}

		/* check src1 operand */
3629
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3630 3631
		if (err)
			return err;
3632 3633

		if (is_pointer_value(env, insn->src_reg)) {
3634
			verbose(env, "R%d pointer comparison prohibited\n",
3635 3636 3637
				insn->src_reg);
			return -EACCES;
		}
3638 3639
	} else {
		if (insn->src_reg != BPF_REG_0) {
3640
			verbose(env, "BPF_JMP uses reserved fields\n");
3641 3642 3643 3644 3645
			return -EINVAL;
		}
	}

	/* check src2 operand */
3646
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3647 3648 3649
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3650 3651
	dst_reg = &regs[insn->dst_reg];

3652 3653 3654
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3655
	    dst_reg->type == SCALAR_VALUE &&
3656 3657 3658
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3676
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3677

3678 3679
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3680 3681 3682 3683
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3684 3685
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3686 3687 3688
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3689
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3690 3691 3692
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3693
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3694 3695 3696 3697
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3698 3699
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3700 3701 3702 3703
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3704
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3705 3706 3707
					dst_reg, insn->imm, opcode);
	}

3708
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3709
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3710 3711
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3712 3713 3714
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3715 3716
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3717 3718 3719
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3720 3721
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3722
		return -EACCES;
3723
	}
3724
	if (env->log.level)
3725
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3726 3727 3728
	return 0;
}

3729 3730 3731 3732 3733 3734 3735 3736
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3737
/* verify BPF_LD_IMM64 instruction */
3738
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3739
{
3740
	struct bpf_reg_state *regs = cur_regs(env);
3741 3742 3743
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3744
		verbose(env, "invalid BPF_LD_IMM insn\n");
3745 3746 3747
		return -EINVAL;
	}
	if (insn->off != 0) {
3748
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3749 3750 3751
		return -EINVAL;
	}

3752
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3753 3754 3755
	if (err)
		return err;

3756 3757 3758
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3759
		regs[insn->dst_reg].type = SCALAR_VALUE;
3760
		__mark_reg_known(&regs[insn->dst_reg], imm);
3761
		return 0;
3762
	}
3763 3764 3765 3766 3767 3768 3769 3770 3771

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3772 3773 3774 3775 3776
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3777
	case BPF_PROG_TYPE_SCHED_ACT:
3778 3779 3780 3781 3782 3783
		return true;
	default:
		return false;
	}
}

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3799
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3800
{
3801
	struct bpf_reg_state *regs = cur_regs(env);
3802 3803 3804
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3805
	if (!may_access_skb(env->prog->type)) {
3806
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3807 3808 3809
		return -EINVAL;
	}

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	if (env->subprog_cnt) {
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3822
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3823
	    BPF_SIZE(insn->code) == BPF_DW ||
3824
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3825
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3826 3827 3828 3829
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3830
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3831 3832 3833 3834
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3835 3836
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3837 3838 3839 3840 3841
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3842
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3843 3844 3845 3846 3847
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3848
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3849
		mark_reg_not_init(env, regs, caller_saved[i]);
3850 3851
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3852 3853

	/* mark destination R0 register as readable, since it contains
3854 3855
	 * the value fetched from the packet.
	 * Already marked as written above.
3856
	 */
3857
	mark_reg_unknown(env, regs, BPF_REG_0);
3858 3859 3860
	return 0;
}

3861 3862 3863 3864 3865 3866 3867 3868 3869
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
3870
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3871 3872 3873 3874 3875
		break;
	default:
		return 0;
	}

3876
	reg = cur_regs(env) + BPF_REG_0;
3877
	if (reg->type != SCALAR_VALUE) {
3878
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3879 3880 3881 3882 3883
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3884
		verbose(env, "At program exit the register R0 ");
3885 3886 3887 3888
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3889
			verbose(env, "has value %s", tn_buf);
3890
		} else {
3891
			verbose(env, "has unknown scalar value");
3892
		}
3893
		verbose(env, " should have been 0 or 1\n");
3894 3895 3896 3897 3898
		return -EINVAL;
	}
	return 0;
}

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3939
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3940

3941 3942 3943 3944 3945 3946 3947 3948 3949
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3950
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3951 3952 3953 3954 3955 3956 3957 3958
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3959
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3960 3961 3962
		return -EINVAL;
	}

3963 3964 3965 3966
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3967 3968 3969 3970 3971 3972 3973 3974 3975
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3976
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3977 3978 3979 3980 3981
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3982
		verbose(env, "insn state internal bug\n");
3983 3984 3985 3986 3987 3988 3989 3990
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3991
static int check_cfg(struct bpf_verifier_env *env)
3992 3993 3994 3995 3996 3997
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

3998 3999 4000 4001
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4032 4033
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4034 4035 4036 4037 4038 4039 4040 4041
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4054 4055 4056
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4057 4058
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4059 4060
		} else {
			/* conditional jump with two edges */
4061
			env->explored_states[t] = STATE_LIST_MARK;
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4088
		verbose(env, "pop stack internal bug\n");
4089 4090 4091 4092 4093 4094 4095 4096
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4097
			verbose(env, "unreachable insn %d\n", i);
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4110 4111 4112 4113
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4114 4115 4116 4117
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4136
 */
4137
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4138
{
4139
	unsigned int i;
A
Alexei Starovoitov 已提交
4140

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4157 4158
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4159
{
4160 4161
	bool equal;

4162 4163 4164 4165
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4166 4167 4168 4169 4170 4171 4172 4173 4174
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4175 4176
		return true;

4177 4178
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4179
		return true;
4180 4181 4182 4183 4184 4185 4186 4187 4188
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4189 4190 4191 4192 4193 4194
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4195
			 */
4196
			return false;
4197 4198
		}
	case PTR_TO_MAP_VALUE:
4199 4200 4201 4202 4203 4204 4205 4206
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4221
	case PTR_TO_PACKET_META:
4222
	case PTR_TO_PACKET:
4223
		if (rcur->type != rold->type)
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4254

4255 4256
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4257 4258 4259
	return false;
}

4260 4261
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4279 4280
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4281
			continue;
4282

4283 4284
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4285 4286 4287 4288 4289 4290 4291
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4348 4349
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4350
{
4351 4352
	struct idpair *idmap;
	bool ret = false;
4353 4354
	int i;

4355 4356 4357
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4358
		return false;
4359 4360

	for (i = 0; i < MAX_BPF_REG; i++) {
4361
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4362
			goto out_free;
4363 4364
	}

4365 4366
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4367 4368 4369 4370
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4371 4372
}

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4394
/* A write screens off any subsequent reads; but write marks come from the
4395 4396 4397 4398 4399
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4400
 */
4401 4402 4403
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4404
{
4405 4406
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4407

4408 4409 4410 4411 4412
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4413 4414 4415 4416
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4417
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4418
			continue;
4419 4420 4421 4422
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4423 4424
		}
	}
4425

4426
	/* ... and stack slots */
4427 4428 4429 4430 4431 4432 4433 4434 4435
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4436 4437
		}
	}
4438
	return err;
4439 4440
}

4441
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4442
{
4443 4444
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4445
	struct bpf_verifier_state *cur = env->cur_state;
4446
	int i, j, err;
4447 4448 4449 4450 4451 4452 4453 4454 4455

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4456
		if (states_equal(env, &sl->state, cur)) {
4457
			/* reached equivalent register/stack state,
4458 4459
			 * prune the search.
			 * Registers read by the continuation are read by us.
4460 4461 4462 4463 4464 4465
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4466
			 */
4467 4468 4469
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4470
			return 1;
4471
		}
4472 4473 4474 4475 4476
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4477 4478 4479 4480
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4481
	 */
4482
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4483 4484 4485 4486
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4487 4488 4489 4490 4491 4492
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4493 4494
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4495
	/* connect new state to parentage chain */
4496
	cur->parent = &new_sl->state;
4497 4498 4499 4500 4501 4502
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4503
	for (i = 0; i < BPF_REG_FP; i++)
4504 4505 4506 4507 4508 4509 4510
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4511
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4512
	}
4513 4514 4515
	return 0;
}

4516
static int do_check(struct bpf_verifier_env *env)
4517
{
4518
	struct bpf_verifier_state *state;
4519
	struct bpf_insn *insns = env->prog->insnsi;
4520
	struct bpf_reg_state *regs;
4521
	int insn_cnt = env->prog->len, i;
4522 4523 4524 4525
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4526 4527 4528
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4529
	state->curframe = 0;
4530
	state->parent = NULL;
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4541 4542 4543 4544 4545 4546 4547
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4548
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4549 4550 4551 4552 4553 4554 4555
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4556
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4557 4558
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4559 4560 4561 4562
				insn_processed);
			return -E2BIG;
		}

4563 4564 4565 4566 4567
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4568
			if (env->log.level) {
4569
				if (do_print_state)
4570
					verbose(env, "\nfrom %d to %d: safe\n",
4571 4572
						prev_insn_idx, insn_idx);
				else
4573
					verbose(env, "%d: safe\n", insn_idx);
4574 4575 4576 4577
			}
			goto process_bpf_exit;
		}

4578 4579 4580
		if (need_resched())
			cond_resched();

4581 4582 4583
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4584
			else
4585
				verbose(env, "\nfrom %d to %d:",
4586
					prev_insn_idx, insn_idx);
4587
			print_verifier_state(env, state->frame[state->curframe]);
4588 4589 4590
			do_print_state = false;
		}

4591
		if (env->log.level) {
4592 4593 4594 4595
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
			};

4596
			verbose(env, "%d: ", insn_idx);
4597
			print_bpf_insn(&cbs, env, insn, env->allow_ptr_leaks);
4598 4599
		}

4600 4601 4602 4603 4604 4605
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4606

4607
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4608
		env->insn_aux_data[insn_idx].seen = true;
4609
		if (class == BPF_ALU || class == BPF_ALU64) {
4610
			err = check_alu_op(env, insn);
4611 4612 4613 4614
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4615
			enum bpf_reg_type *prev_src_type, src_reg_type;
4616 4617 4618

			/* check for reserved fields is already done */

4619
			/* check src operand */
4620
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4621 4622 4623
			if (err)
				return err;

4624
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4625 4626 4627
			if (err)
				return err;

4628 4629
			src_reg_type = regs[insn->src_reg].type;

4630 4631 4632
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4633
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4634 4635 4636 4637 4638
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

4639 4640 4641
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4642 4643
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4644
				 * save type to validate intersecting paths
4645
				 */
4646
				*prev_src_type = src_reg_type;
4647

4648
			} else if (src_reg_type != *prev_src_type &&
4649
				   (src_reg_type == PTR_TO_CTX ||
4650
				    *prev_src_type == PTR_TO_CTX)) {
4651 4652 4653 4654 4655 4656 4657
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4658
				verbose(env, "same insn cannot be used with different pointers\n");
4659 4660 4661
				return -EINVAL;
			}

4662
		} else if (class == BPF_STX) {
4663
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4664

4665
			if (BPF_MODE(insn->code) == BPF_XADD) {
4666
				err = check_xadd(env, insn_idx, insn);
4667 4668 4669 4670 4671 4672 4673
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4674
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4675 4676 4677
			if (err)
				return err;
			/* check src2 operand */
4678
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4679 4680 4681
			if (err)
				return err;

4682 4683
			dst_reg_type = regs[insn->dst_reg].type;

4684
			/* check that memory (dst_reg + off) is writeable */
4685
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4686 4687 4688 4689 4690
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

4691 4692 4693 4694 4695
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4696
				   (dst_reg_type == PTR_TO_CTX ||
4697
				    *prev_dst_type == PTR_TO_CTX)) {
4698
				verbose(env, "same insn cannot be used with different pointers\n");
4699 4700 4701
				return -EINVAL;
			}

4702 4703 4704
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4705
				verbose(env, "BPF_ST uses reserved fields\n");
4706 4707 4708
				return -EINVAL;
			}
			/* check src operand */
4709
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4710 4711 4712
			if (err)
				return err;

4713 4714 4715 4716 4717 4718
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4719
			/* check that memory (dst_reg + off) is writeable */
4720
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4732 4733
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4734
				    insn->dst_reg != BPF_REG_0) {
4735
					verbose(env, "BPF_CALL uses reserved fields\n");
4736 4737 4738
					return -EINVAL;
				}

4739 4740 4741 4742
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4743 4744 4745 4746 4747 4748 4749 4750
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4751
					verbose(env, "BPF_JA uses reserved fields\n");
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4763
					verbose(env, "BPF_EXIT uses reserved fields\n");
4764 4765 4766
					return -EINVAL;
				}

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4777 4778 4779 4780 4781 4782
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4783
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4784 4785 4786
				if (err)
					return err;

4787
				if (is_pointer_value(env, BPF_REG_0)) {
4788
					verbose(env, "R0 leaks addr as return value\n");
4789 4790 4791
					return -EACCES;
				}

4792 4793 4794
				err = check_return_code(env);
				if (err)
					return err;
4795
process_bpf_exit:
4796 4797 4798 4799
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4814 4815 4816 4817
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4818 4819 4820 4821 4822 4823
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4824
				env->insn_aux_data[insn_idx].seen = true;
4825
			} else {
4826
				verbose(env, "invalid BPF_LD mode\n");
4827 4828 4829
				return -EINVAL;
			}
		} else {
4830
			verbose(env, "unknown insn class %d\n", class);
4831 4832 4833 4834 4835 4836
			return -EINVAL;
		}

		insn_idx++;
	}

4837 4838
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4839 4840 4841 4842 4843 4844 4845 4846 4847
	for (i = 0; i < env->subprog_cnt + 1; i++) {
		u32 depth = env->subprog_stack_depth[i];

		verbose(env, "%d", depth);
		if (i + 1 < env->subprog_cnt + 1)
			verbose(env, "+");
	}
	verbose(env, "\n");
	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4848 4849 4850
	return 0;
}

4851 4852 4853
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4854 4855
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4856 4857 4858
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4859 4860
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4861 4862 4863
					struct bpf_prog *prog)

{
4864 4865 4866 4867 4868 4869 4870
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4871
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4872 4873 4874 4875
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4876
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4877 4878
			return -EINVAL;
		}
4879
	}
4880 4881 4882 4883 4884 4885 4886

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

4887 4888 4889
	return 0;
}

4890 4891 4892
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4893
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4894 4895 4896
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4897
	int i, j, err;
4898

4899
	err = bpf_prog_calc_tag(env->prog);
4900 4901 4902
	if (err)
		return err;

4903
	for (i = 0; i < insn_cnt; i++, insn++) {
4904
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4905
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4906
			verbose(env, "BPF_LDX uses reserved fields\n");
4907 4908 4909
			return -EINVAL;
		}

4910 4911 4912
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4913
			verbose(env, "BPF_STX uses reserved fields\n");
4914 4915 4916
			return -EINVAL;
		}

4917 4918 4919 4920 4921 4922 4923
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4924
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4925 4926 4927 4928 4929 4930 4931 4932
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4933 4934
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4935 4936 4937 4938
				return -EINVAL;
			}

			f = fdget(insn->imm);
4939
			map = __bpf_map_get(f);
4940
			if (IS_ERR(map)) {
4941
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4942 4943 4944 4945
					insn->imm);
				return PTR_ERR(map);
			}

4946
			err = check_map_prog_compatibility(env, map, env->prog);
4947 4948 4949 4950 4951
			if (err) {
				fdput(f);
				return err;
			}

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4973 4974 4975 4976 4977 4978 4979
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4995
static void release_maps(struct bpf_verifier_env *env)
4996 4997 4998 4999 5000 5001 5002 5003
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5004
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5015 5016 5017 5018 5019 5020 5021 5022
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5023
	int i;
5024 5025 5026 5027 5028 5029 5030 5031 5032

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5033 5034
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5035 5036 5037 5038 5039
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
	for (i = 0; i < env->subprog_cnt; i++) {
		if (env->subprog_starts[i] < off)
			continue;
		env->subprog_starts[i] += len - 1;
	}
}

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5063
	adjust_subprog_starts(env, off, len);
5064 5065 5066
	return new_prog;
}

A
Alexei Starovoitov 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
/* The verifier does more data flow analysis than llvm and will not explore
 * branches that are dead at run time. Malicious programs can have dead code
 * too. Therefore replace all dead at-run-time code with nops.
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
		memcpy(insn + i, &nop, sizeof(nop));
	}
}

5086 5087 5088
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5089
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5090
{
5091
	const struct bpf_verifier_ops *ops = env->ops;
5092
	int i, cnt, size, ctx_field_size, delta = 0;
5093
	const int insn_cnt = env->prog->len;
5094
	struct bpf_insn insn_buf[16], *insn;
5095
	struct bpf_prog *new_prog;
5096
	enum bpf_access_type type;
5097 5098
	bool is_narrower_load;
	u32 target_size;
5099

5100 5101 5102 5103
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5104
			verbose(env, "bpf verifier is misconfigured\n");
5105 5106
			return -EINVAL;
		} else if (cnt) {
5107
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5108 5109
			if (!new_prog)
				return -ENOMEM;
5110

5111
			env->prog = new_prog;
5112
			delta += cnt - 1;
5113 5114 5115 5116
		}
	}

	if (!ops->convert_ctx_access)
5117 5118
		return 0;

5119
	insn = env->prog->insnsi + delta;
5120

5121
	for (i = 0; i < insn_cnt; i++, insn++) {
5122 5123 5124
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5125
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5126
			type = BPF_READ;
5127 5128 5129
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5130
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5131 5132
			type = BPF_WRITE;
		else
5133 5134
			continue;

5135
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5136 5137
			continue;

5138
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5139
		size = BPF_LDST_BYTES(insn);
5140 5141 5142 5143 5144 5145

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5146
		is_narrower_load = size < ctx_field_size;
5147
		if (is_narrower_load) {
5148 5149 5150 5151
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5152
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5153 5154
				return -EINVAL;
			}
5155

5156
			size_code = BPF_H;
5157 5158 5159 5160
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5161

5162 5163 5164
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5165 5166 5167 5168 5169 5170

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5171
			verbose(env, "bpf verifier is misconfigured\n");
5172 5173
			return -EINVAL;
		}
5174 5175

		if (is_narrower_load && size < target_size) {
5176 5177
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5178
								(1 << size * 8) - 1);
5179 5180
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5181
								(1 << size * 8) - 1);
5182
		}
5183

5184
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5185 5186 5187
		if (!new_prog)
			return -ENOMEM;

5188
		delta += cnt - 1;
5189 5190 5191

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5192
		insn      = new_prog->insnsi + i + delta;
5193 5194 5195 5196 5197
	}

	return 0;
}

5198 5199 5200 5201
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5202
	struct bpf_insn *insn;
5203 5204 5205 5206 5207 5208
	void *old_bpf_func;
	int err = -ENOMEM;

	if (env->subprog_cnt == 0)
		return 0;

5209
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
		insn->off = subprog + 1;
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

	func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
	if (!func)
		return -ENOMEM;

	for (i = 0; i <= env->subprog_cnt; i++) {
		subprog_start = subprog_end;
		if (env->subprog_cnt == i)
			subprog_end = prog->len;
		else
			subprog_end = env->subprog_starts[i];

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5248
		func[i]->type = prog->type;
5249
		func[i]->len = len;
5250 5251
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
		func[i]->aux->stack_depth = env->subprog_stack_depth[i];
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->off = 0;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
	}
	for (i = 0; i <= env->subprog_cnt; i++) {
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
	for (i = 0; i <= env->subprog_cnt; i++) {
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		unsigned long addr;

		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
		addr  = (unsigned long)func[subprog + 1]->bpf_func;
		addr &= PAGE_MASK;
		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
			    addr - __bpf_call_base;
	}

5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
	prog->aux->func_cnt = env->subprog_cnt + 1;
	return 0;
out_free:
	for (i = 0; i <= env->subprog_cnt; i++)
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5342 5343
static int fixup_call_args(struct bpf_verifier_env *env)
{
5344
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5345 5346 5347
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5348 5349
#endif
	int err;
5350

5351 5352 5353 5354
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5355
			return 0;
5356 5357
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5358 5359 5360 5361 5362 5363 5364 5365 5366
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5367 5368 5369
	err = 0;
#endif
	return err;
5370 5371
}

5372
/* fixup insn->imm field of bpf_call instructions
5373
 * and inline eligible helpers as explicit sequence of BPF instructions
5374 5375 5376
 *
 * this function is called after eBPF program passed verification
 */
5377
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5378
{
5379 5380
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5381
	const struct bpf_func_proto *fn;
5382
	const int insn_cnt = prog->len;
5383 5384 5385 5386
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5387

5388
	for (i = 0; i < insn_cnt; i++, insn++) {
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
		if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
			/* due to JIT bugs clear upper 32-bits of src register
			 * before div/mod operation
			 */
			insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
			insn_buf[1] = *insn;
			cnt = 2;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5407 5408
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5409 5410
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5411

5412 5413 5414 5415
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5416 5417
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5418
		if (insn->imm == BPF_FUNC_tail_call) {
5419 5420 5421 5422 5423 5424
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5425
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5426

5427 5428 5429 5430
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5431
			 */
5432
			insn->imm = 0;
5433
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5434 5435 5436 5437 5438 5439 5440 5441 5442

			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
			if (map_ptr == BPF_MAP_PTR_POISON) {
5443
				verbose(env, "tail_call abusing map_ptr\n");
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
				return -EINVAL;
			}
			if (!map_ptr->unpriv_array)
				continue;
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5463 5464
			continue;
		}
5465

5466 5467 5468
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
5469
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5470
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5471
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5472 5473
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5474 5475 5476 5477
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5478
				verbose(env, "bpf verifier is misconfigured\n");
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5495
		if (insn->imm == BPF_FUNC_redirect_map) {
5496 5497 5498 5499 5500 5501
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5516
patch_call_imm:
5517
		fn = env->ops->get_func_proto(insn->imm);
5518 5519 5520 5521
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5522 5523
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5524 5525
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5526
		}
5527
		insn->imm = fn->func - __bpf_call_base;
5528 5529
	}

5530 5531
	return 0;
}
5532

5533
static void free_states(struct bpf_verifier_env *env)
5534
{
5535
	struct bpf_verifier_state_list *sl, *sln;
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5547
				free_verifier_state(&sl->state, false);
5548 5549 5550 5551 5552 5553 5554 5555
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5556
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5557
{
5558
	struct bpf_verifier_env *env;
5559
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
5560 5561
	int ret = -EINVAL;

5562 5563 5564 5565
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5566
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5567 5568
	 * allocate/free it every time bpf_check() is called
	 */
5569
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5570 5571
	if (!env)
		return -ENOMEM;
5572
	log = &env->log;
5573

5574 5575 5576 5577 5578
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5579
	env->prog = *prog;
5580
	env->ops = bpf_verifier_ops[env->prog->type];
5581

5582 5583 5584 5585 5586 5587 5588
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5589 5590 5591
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5592 5593

		ret = -EINVAL;
5594 5595 5596
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5597
			goto err_unlock;
5598
	}
5599 5600 5601

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5602
		env->strict_alignment = true;
5603

5604
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5605 5606 5607 5608 5609
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5610 5611 5612 5613
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5614
	env->explored_states = kcalloc(env->prog->len,
5615
				       sizeof(struct bpf_verifier_state_list *),
5616 5617 5618 5619 5620
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5621 5622
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5623 5624 5625 5626
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5627
	ret = do_check(env);
5628 5629 5630 5631
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5632

5633
skip_full_check:
5634
	while (!pop_stack(env, NULL, NULL));
5635
	free_states(env);
5636

A
Alexei Starovoitov 已提交
5637 5638 5639
	if (ret == 0)
		sanitize_dead_code(env);

5640 5641 5642
	if (ret == 0)
		ret = check_max_stack_depth(env);

5643 5644 5645 5646
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5647
	if (ret == 0)
5648
		ret = fixup_bpf_calls(env);
5649

5650 5651 5652
	if (ret == 0)
		ret = fixup_call_args(env);

5653
	if (log->level && bpf_verifier_log_full(log))
5654
		ret = -ENOSPC;
5655
	if (log->level && !log->ubuf) {
5656
		ret = -EFAULT;
5657
		goto err_release_maps;
5658 5659
	}

5660 5661
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5662 5663 5664
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5665

5666
		if (!env->prog->aux->used_maps) {
5667
			ret = -ENOMEM;
5668
			goto err_release_maps;
5669 5670
		}

5671
		memcpy(env->prog->aux->used_maps, env->used_maps,
5672
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5673
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5674 5675 5676 5677 5678 5679

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5680

5681
err_release_maps:
5682
	if (!env->prog->aux->used_maps)
5683 5684 5685 5686
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5687
	*prog = env->prog;
5688
err_unlock:
5689
	mutex_unlock(&bpf_verifier_lock);
5690 5691 5692
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5693 5694
	return ret;
}