verifier.c 129.5 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35

/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
36
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
64
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
65
 * means the register has some value, but it's not a valid pointer.
66
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
67 68
 *
 * When verifier sees load or store instructions the type of base register
69
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

131
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
132
struct bpf_verifier_stack_elem {
133 134 135 136
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
137
	struct bpf_verifier_state st;
138 139
	int insn_idx;
	int prev_insn_idx;
140
	struct bpf_verifier_stack_elem *next;
141 142
};

143
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
144 145
#define BPF_COMPLEXITY_LIMIT_STACK	1024

146 147
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

148 149
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
150
	bool raw_mode;
151
	bool pkt_access;
152 153
	int regno;
	int access_size;
154 155
};

156 157 158 159 160 161 162 163 164 165 166 167
/* verbose verifier prints what it's seeing
 * bpf_check() is called under lock, so no race to access these global vars
 */
static u32 log_level, log_size, log_len;
static char *log_buf;

static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
168
static __printf(1, 2) void verbose(const char *fmt, ...)
169 170 171 172 173 174 175 176 177 178 179
{
	va_list args;

	if (log_level == 0 || log_len >= log_size - 1)
		return;

	va_start(args, fmt);
	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
	va_end(args);
}

180 181 182
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
183
	[SCALAR_VALUE]		= "inv",
184 185 186 187 188
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
189 190
	[PTR_TO_PACKET]		= "pkt",
	[PTR_TO_PACKET_END]	= "pkt_end",
191 192
};

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
static const char * const func_id_str[] = {
	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
};
#undef __BPF_FUNC_STR_FN

static const char *func_id_name(int id)
{
	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);

	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
		return func_id_str[id];
	else
		return "unknown";
}

209
static void print_verifier_state(struct bpf_verifier_state *state)
210
{
211
	struct bpf_reg_state *reg;
212 213 214 215
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
216 217
		reg = &state->regs[i];
		t = reg->type;
218 219 220
		if (t == NOT_INIT)
			continue;
		verbose(" R%d=%s", i, reg_type_str[t]);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
			verbose("%lld", reg->var_off.value + reg->off);
		} else {
			verbose("(id=%d", reg->id);
			if (t != SCALAR_VALUE)
				verbose(",off=%d", reg->off);
			if (t == PTR_TO_PACKET)
				verbose(",r=%d", reg->range);
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
				verbose(",ks=%d,vs=%d",
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
				verbose(",imm=%llx", reg->var_off.value);
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
					verbose(",smin_value=%lld",
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
					verbose(",smax_value=%lld",
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
					verbose(",umin_value=%llu",
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
					verbose(",umax_value=%llu",
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
260

261 262 263
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
					verbose(",var_off=%s", tn_buf);
				}
264 265 266
			}
			verbose(")");
		}
267
	}
268
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
269
		if (state->stack_slot_type[i] == STACK_SPILL)
270
			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
271
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
272 273 274 275
	}
	verbose("\n");
}

276 277 278 279 280 281 282 283 284 285 286
static const char *const bpf_class_string[] = {
	[BPF_LD]    = "ld",
	[BPF_LDX]   = "ldx",
	[BPF_ST]    = "st",
	[BPF_STX]   = "stx",
	[BPF_ALU]   = "alu",
	[BPF_JMP]   = "jmp",
	[BPF_RET]   = "BUG",
	[BPF_ALU64] = "alu64",
};

287
static const char *const bpf_alu_string[16] = {
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	[BPF_ADD >> 4]  = "+=",
	[BPF_SUB >> 4]  = "-=",
	[BPF_MUL >> 4]  = "*=",
	[BPF_DIV >> 4]  = "/=",
	[BPF_OR  >> 4]  = "|=",
	[BPF_AND >> 4]  = "&=",
	[BPF_LSH >> 4]  = "<<=",
	[BPF_RSH >> 4]  = ">>=",
	[BPF_NEG >> 4]  = "neg",
	[BPF_MOD >> 4]  = "%=",
	[BPF_XOR >> 4]  = "^=",
	[BPF_MOV >> 4]  = "=",
	[BPF_ARSH >> 4] = "s>>=",
	[BPF_END >> 4]  = "endian",
};

static const char *const bpf_ldst_string[] = {
	[BPF_W >> 3]  = "u32",
	[BPF_H >> 3]  = "u16",
	[BPF_B >> 3]  = "u8",
	[BPF_DW >> 3] = "u64",
};

311
static const char *const bpf_jmp_string[16] = {
312 313 314
	[BPF_JA >> 4]   = "jmp",
	[BPF_JEQ >> 4]  = "==",
	[BPF_JGT >> 4]  = ">",
315
	[BPF_JLT >> 4]  = "<",
316
	[BPF_JGE >> 4]  = ">=",
317
	[BPF_JLE >> 4]  = "<=",
318 319 320
	[BPF_JSET >> 4] = "&",
	[BPF_JNE >> 4]  = "!=",
	[BPF_JSGT >> 4] = "s>",
321
	[BPF_JSLT >> 4] = "s<",
322
	[BPF_JSGE >> 4] = "s>=",
323
	[BPF_JSLE >> 4] = "s<=",
324 325 326 327
	[BPF_CALL >> 4] = "call",
	[BPF_EXIT >> 4] = "exit",
};

328 329
static void print_bpf_insn(const struct bpf_verifier_env *env,
			   const struct bpf_insn *insn)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
{
	u8 class = BPF_CLASS(insn->code);

	if (class == BPF_ALU || class == BPF_ALU64) {
		if (BPF_SRC(insn->code) == BPF_X)
			verbose("(%02x) %sr%d %s %sr%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->src_reg);
		else
			verbose("(%02x) %sr%d %s %s%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->imm);
	} else if (class == BPF_STX) {
		if (BPF_MODE(insn->code) == BPF_MEM)
			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg,
				insn->off, insn->src_reg);
		else if (BPF_MODE(insn->code) == BPF_XADD)
			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg, insn->off,
				insn->src_reg);
		else
			verbose("BUG_%02x\n", insn->code);
	} else if (class == BPF_ST) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_st_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
			insn->code,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->dst_reg,
			insn->off, insn->imm);
	} else if (class == BPF_LDX) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_ldx_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
			insn->code, insn->dst_reg,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->src_reg, insn->off);
	} else if (class == BPF_LD) {
		if (BPF_MODE(insn->code) == BPF_ABS) {
			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IND) {
			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->src_reg, insn->imm);
393 394 395 396 397 398 399 400 401 402 403 404 405
		} else if (BPF_MODE(insn->code) == BPF_IMM &&
			   BPF_SIZE(insn->code) == BPF_DW) {
			/* At this point, we already made sure that the second
			 * part of the ldimm64 insn is accessible.
			 */
			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;

			if (map_ptr && !env->allow_ptr_leaks)
				imm = 0;

			verbose("(%02x) r%d = 0x%llx\n", insn->code,
				insn->dst_reg, (unsigned long long)imm);
406 407 408 409 410 411 412 413
		} else {
			verbose("BUG_ld_%02x\n", insn->code);
			return;
		}
	} else if (class == BPF_JMP) {
		u8 opcode = BPF_OP(insn->code);

		if (opcode == BPF_CALL) {
414 415
			verbose("(%02x) call %s#%d\n", insn->code,
				func_id_name(insn->imm), insn->imm);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		} else if (insn->code == (BPF_JMP | BPF_JA)) {
			verbose("(%02x) goto pc%+d\n",
				insn->code, insn->off);
		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
			verbose("(%02x) exit\n", insn->code);
		} else if (BPF_SRC(insn->code) == BPF_X) {
			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->src_reg, insn->off);
		} else {
			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->imm, insn->off);
		}
	} else {
		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
	}
}

437
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
438
{
439
	struct bpf_verifier_stack_elem *elem;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

456 457
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
458
{
459
	struct bpf_verifier_stack_elem *elem;
460

461
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
462 463 464 465 466 467 468 469 470
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
471
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
		verbose("BPF program is too complex\n");
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

487 488
static void __mark_reg_not_init(struct bpf_reg_state *reg);

489 490 491 492 493 494 495 496 497 498 499 500 501
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

502 503 504 505
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
506
{
507
	__mark_reg_known(reg, 0);
508
}
509

510 511 512 513 514 515 516 517 518 519 520 521
static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_known_zero(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

588 589 590 591 592 593 594
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
595
	__mark_reg_unbounded(reg);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_unknown(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_not_init(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
626 627
}

628
static void init_reg_state(struct bpf_reg_state *regs)
629 630 631
{
	int i;

632
	for (i = 0; i < MAX_BPF_REG; i++) {
633
		mark_reg_not_init(regs, i);
634 635
		regs[i].live = REG_LIVE_NONE;
	}
636 637

	/* frame pointer */
638 639
	regs[BPF_REG_FP].type = PTR_TO_STACK;
	mark_reg_known_zero(regs, BPF_REG_FP);
640 641 642

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
643
	mark_reg_known_zero(regs, BPF_REG_1);
644 645
}

646 647 648 649 650 651
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

652 653 654 655
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
656 657 658 659
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

660 661 662 663 664 665 666 667 668 669 670 671
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
672 673
			 enum reg_arg_type t)
{
674 675
	struct bpf_reg_state *regs = env->cur_state.regs;

676 677 678 679 680 681 682 683 684 685 686
	if (regno >= MAX_BPF_REG) {
		verbose("R%d is invalid\n", regno);
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
			verbose("R%d !read_ok\n", regno);
			return -EACCES;
		}
687
		mark_reg_read(&env->cur_state, regno);
688 689 690 691 692 693
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
			verbose("frame pointer is read only\n");
			return -EACCES;
		}
694
		regs[regno].live |= REG_LIVE_WRITTEN;
695
		if (t == DST_OP)
696
			mark_reg_unknown(regs, regno);
697 698 699 700
	}
	return 0;
}

701 702 703 704 705 706 707
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
708 709
	case PTR_TO_PACKET:
	case PTR_TO_PACKET_END:
710 711 712 713 714 715 716
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

717 718 719
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
720 721
static int check_stack_write(struct bpf_verifier_state *state, int off,
			     int size, int value_regno)
722
{
723
	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
724 725 726
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
727 728

	if (value_regno >= 0 &&
729
	    is_spillable_regtype(state->regs[value_regno].type)) {
730 731

		/* register containing pointer is being spilled into stack */
732
		if (size != BPF_REG_SIZE) {
733 734 735 736 737
			verbose("invalid size of register spill\n");
			return -EACCES;
		}

		/* save register state */
738 739
		state->spilled_regs[spi] = state->regs[value_regno];
		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
740

741 742 743
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
744
		/* regular write of data into stack */
745
		state->spilled_regs[spi] = (struct bpf_reg_state) {};
746 747 748

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
749 750 751 752
	}
	return 0;
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->spilled_regs[slot].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

768
static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
769 770
			    int value_regno)
{
771
	u8 *slot_type;
772
	int i, spi;
773

774
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
775

776 777
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
778 779 780
			verbose("invalid size of register spill\n");
			return -EACCES;
		}
781 782
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
783 784 785 786 787
				verbose("corrupted spill memory\n");
				return -EACCES;
			}
		}

788 789 790
		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;

		if (value_regno >= 0) {
791
			/* restore register state from stack */
792 793 794
			state->regs[value_regno] = state->spilled_regs[spi];
			mark_stack_slot_read(state, spi);
		}
795 796 797
		return 0;
	} else {
		for (i = 0; i < size; i++) {
798
			if (slot_type[i] != STACK_MISC) {
799 800 801 802 803 804 805
				verbose("invalid read from stack off %d+%d size %d\n",
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
806
			mark_reg_unknown(state->regs, value_regno);
807 808 809 810 811
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
812
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
813 814 815 816
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

817
	if (off < 0 || size <= 0 || off + size > map->value_size) {
818 819 820 821 822 823 824
		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

825 826
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
827 828 829 830 831 832
				int off, int size)
{
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

833 834 835
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
836 837 838 839 840 841 842 843 844
	 */
	if (log_level)
		print_verifier_state(state);
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
845
	if (reg->smin_value < 0) {
846 847 848 849
		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
			regno);
		return -EACCES;
	}
850
	err = __check_map_access(env, regno, reg->smin_value + off, size);
851
	if (err) {
852
		verbose("R%d min value is outside of the array range\n", regno);
853 854 855
		return err;
	}

856 857 858
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
859
	 */
860
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
861 862 863 864
		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
			regno);
		return -EACCES;
	}
865
	err = __check_map_access(env, regno, reg->umax_value + off, size);
866 867 868
	if (err)
		verbose("R%d max value is outside of the array range\n", regno);
	return err;
869 870
}

A
Alexei Starovoitov 已提交
871 872
#define MAX_PACKET_OFF 0xffff

873
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
874 875
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
876
{
877
	switch (env->prog->type) {
878 879 880 881 882
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
883
		/* fallthrough */
884 885
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
886
	case BPF_PROG_TYPE_XDP:
887
	case BPF_PROG_TYPE_LWT_XMIT:
888
	case BPF_PROG_TYPE_SK_SKB:
889 890 891 892
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
893 894 895 896 897 898
		return true;
	default:
		return false;
	}
}

899 900
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
				 int off, int size)
A
Alexei Starovoitov 已提交
901
{
902 903
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
904

905
	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
906 907
		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
908 909 910 911 912
		return -EACCES;
	}
	return 0;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
			       int size)
{
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
928
	if (reg->smin_value < 0) {
929 930 931 932 933 934 935 936 937 938 939 940 941
		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
			regno);
		return -EACCES;
	}
	err = __check_packet_access(env, regno, off, size);
	if (err) {
		verbose("R%d offset is outside of the packet\n", regno);
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
942
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
943
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
944
{
945 946 947
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
948

949 950 951 952
	/* for analyzer ctx accesses are already validated and converted */
	if (env->analyzer_ops)
		return 0;

953
	if (env->prog->aux->ops->is_valid_access &&
954
	    env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
955 956 957 958 959 960
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
961
		 */
962
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
963
		*reg_type = info.reg_type;
964

965 966 967
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
968
		return 0;
969
	}
970 971 972 973 974

	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
	return -EACCES;
}

975 976
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
977
{
978
	if (allow_ptr_leaks)
979 980
		return false;

981
	return reg->type != SCALAR_VALUE;
982 983
}

984 985 986 987 988
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
}

989
static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
990
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
991
{
992
	struct tnum reg_off;
993
	int ip_align;
994 995 996 997 998

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

999 1000 1001 1002 1003 1004 1005
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1006
	 */
1007
	ip_align = 2;
1008 1009 1010 1011 1012 1013 1014 1015

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
		verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1016 1017
		return -EACCES;
	}
1018

A
Alexei Starovoitov 已提交
1019 1020 1021
	return 0;
}

1022 1023 1024
static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
				       const char *pointer_desc,
				       int off, int size, bool strict)
1025
{
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
		verbose("misaligned %saccess off %s+%d+%d size %d\n",
			pointer_desc, tn_buf, reg->off, off, size);
1039 1040 1041
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1042 1043 1044
	return 0;
}

1045 1046
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1047 1048
			       int off, int size)
{
1049
	bool strict = env->strict_alignment;
1050
	const char *pointer_desc = "";
1051

1052 1053
	switch (reg->type) {
	case PTR_TO_PACKET:
1054
		/* special case, because of NET_IP_ALIGN */
1055
		return check_pkt_ptr_alignment(reg, off, size, strict);
1056 1057 1058 1059 1060 1061 1062 1063 1064
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1065
	default:
1066
		break;
1067
	}
1068
	return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
1069 1070
}

1071 1072 1073 1074 1075 1076
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1077
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1078 1079 1080
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1081 1082
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
1083 1084 1085 1086 1087 1088
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1089
	/* alignment checks will add in reg->off themselves */
1090
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1091 1092
	if (err)
		return err;
1093

1094 1095 1096 1097
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1098 1099 1100 1101 1102
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into map\n", value_regno);
			return -EACCES;
		}
1103

1104
		err = check_map_access(env, regno, off, size);
1105
		if (!err && t == BPF_READ && value_regno >= 0)
1106
			mark_reg_unknown(state->regs, value_regno);
1107

A
Alexei Starovoitov 已提交
1108
	} else if (reg->type == PTR_TO_CTX) {
1109
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1110

1111 1112 1113 1114 1115
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into ctx\n", value_regno);
			return -EACCES;
		}
1116 1117 1118
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1119 1120 1121 1122 1123 1124
		if (reg->off) {
			verbose("dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1125 1126 1127 1128 1129 1130 1131
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
			verbose("variable ctx access var_off=%s off=%d size=%d",
				tn_buf, off, size);
			return -EACCES;
		}
1132
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1133
		if (!err && t == BPF_READ && value_regno >= 0) {
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
			/* ctx access returns either a scalar, or a
			 * PTR_TO_PACKET[_END].  In the latter case, we know
			 * the offset is zero.
			 */
			if (reg_type == SCALAR_VALUE)
				mark_reg_unknown(state->regs, value_regno);
			else
				mark_reg_known_zero(state->regs, value_regno);
			state->regs[value_regno].id = 0;
			state->regs[value_regno].off = 0;
			state->regs[value_regno].range = 0;
1145
			state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1146
		}
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
			verbose("variable stack access var_off=%s off=%d size=%d",
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1162 1163 1164 1165
		if (off >= 0 || off < -MAX_BPF_STACK) {
			verbose("invalid stack off=%d size=%d\n", off, size);
			return -EACCES;
		}
1166 1167 1168 1169

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1170 1171 1172 1173 1174 1175 1176
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
				verbose("attempt to corrupt spilled pointer on stack\n");
				return -EACCES;
			}
1177
			err = check_stack_write(state, off, size, value_regno);
1178
		} else {
1179
			err = check_stack_read(state, off, size, value_regno);
1180
		}
1181
	} else if (reg->type == PTR_TO_PACKET) {
1182
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
A
Alexei Starovoitov 已提交
1183 1184 1185
			verbose("cannot write into packet\n");
			return -EACCES;
		}
1186 1187 1188 1189 1190
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into packet\n", value_regno);
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
1191 1192
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
1193
			mark_reg_unknown(state->regs, value_regno);
1194 1195
	} else {
		verbose("R%d invalid mem access '%s'\n",
A
Alexei Starovoitov 已提交
1196
			regno, reg_type_str[reg->type]);
1197 1198
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1199

1200 1201 1202 1203 1204
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
	    state->regs[value_regno].type == SCALAR_VALUE) {
		/* b/h/w load zero-extends, mark upper bits as known 0 */
		state->regs[value_regno].var_off = tnum_cast(
					state->regs[value_regno].var_off, size);
1205
		__update_reg_bounds(&state->regs[value_regno]);
A
Alexei Starovoitov 已提交
1206
	}
1207 1208 1209
	return err;
}

1210
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
		verbose("BPF_XADD uses reserved fields\n");
		return -EINVAL;
	}

	/* check src1 operand */
1221
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1222 1223 1224 1225
	if (err)
		return err;

	/* check src2 operand */
1226
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1227 1228 1229
	if (err)
		return err;

1230 1231 1232 1233 1234
	if (is_pointer_value(env, insn->src_reg)) {
		verbose("R%d leaks addr into mem\n", insn->src_reg);
		return -EACCES;
	}

1235
	/* check whether atomic_add can read the memory */
1236
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1237 1238 1239 1240 1241
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1242
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1243 1244 1245
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1246 1247 1248 1249 1250 1251
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1252 1253
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1254 1255 1256
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1257
 */
1258
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1259 1260
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1261
{
1262 1263
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
1264 1265
	int off, i;

1266
	if (regs[regno].type != PTR_TO_STACK) {
1267
		/* Allow zero-byte read from NULL, regardless of pointer type */
1268
		if (zero_size_allowed && access_size == 0 &&
1269
		    register_is_null(regs[regno]))
1270 1271 1272 1273 1274
			return 0;

		verbose("R%d type=%s expected=%s\n", regno,
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1275
		return -EACCES;
1276
	}
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
		verbose("invalid variable stack read R%d var_off=%s\n",
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1287 1288 1289 1290 1291 1292 1293
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
		verbose("invalid stack type R%d off=%d access_size=%d\n",
			regno, off, access_size);
		return -EACCES;
	}

1294 1295 1296
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1297 1298 1299 1300 1301 1302
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1303
	for (i = 0; i < access_size; i++) {
1304
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1305 1306 1307 1308 1309 1310 1311 1312
			verbose("invalid indirect read from stack off %d+%d size %d\n",
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1313 1314 1315 1316
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1317
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1318

1319
	switch (reg->type) {
1320
	case PTR_TO_PACKET:
1321
		return check_packet_access(env, regno, reg->off, access_size);
1322
	case PTR_TO_MAP_VALUE:
1323 1324
		return check_map_access(env, regno, reg->off, access_size);
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1325 1326 1327 1328 1329
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1330
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1331 1332
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1333
{
1334
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1335
	enum bpf_reg_type expected_type, type = reg->type;
1336 1337
	int err = 0;

1338
	if (arg_type == ARG_DONTCARE)
1339 1340
		return 0;

1341 1342 1343
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1344

1345 1346 1347 1348 1349
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
			verbose("R%d leaks addr into helper function\n", regno);
			return -EACCES;
		}
1350
		return 0;
1351
	}
1352

1353 1354
	if (type == PTR_TO_PACKET &&
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1355
		verbose("helper access to the packet is not allowed\n");
1356 1357 1358
		return -EACCES;
	}

1359
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1360 1361
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1362 1363
		if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
1364 1365
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1366 1367
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1368
			goto err_type;
1369 1370
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1371 1372
		if (type != expected_type)
			goto err_type;
1373 1374
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1375 1376
		if (type != expected_type)
			goto err_type;
1377 1378
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1379 1380
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1381
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1382 1383
		 * happens during stack boundary checking.
		 */
1384
		if (register_is_null(*reg))
1385
			/* final test in check_stack_boundary() */;
1386
		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1387
			 type != expected_type)
1388
			goto err_type;
1389
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1390 1391 1392 1393 1394 1395 1396
	} else {
		verbose("unsupported arg_type %d\n", arg_type);
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1397
		meta->map_ptr = reg->map_ptr;
1398 1399 1400 1401 1402
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1403
		if (!meta->map_ptr) {
1404 1405 1406 1407 1408 1409 1410 1411
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
			verbose("invalid map_ptr to access map->key\n");
			return -EACCES;
		}
1412
		if (type == PTR_TO_PACKET)
1413
			err = check_packet_access(env, regno, reg->off,
1414 1415 1416 1417 1418
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1419 1420 1421 1422
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1423
		if (!meta->map_ptr) {
1424 1425 1426 1427
			/* kernel subsystem misconfigured verifier */
			verbose("invalid map_ptr to access map->value\n");
			return -EACCES;
		}
1428
		if (type == PTR_TO_PACKET)
1429
			err = check_packet_access(env, regno, reg->off,
1430 1431 1432 1433 1434
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1435 1436 1437
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1438 1439 1440 1441 1442 1443 1444

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1445
			verbose("ARG_CONST_SIZE cannot be first argument\n");
1446 1447
			return -EACCES;
		}
1448

1449 1450
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1451
		 */
1452 1453

		if (!tnum_is_const(reg->var_off))
1454 1455 1456 1457 1458 1459 1460
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1461
		if (reg->smin_value < 0) {
1462 1463 1464 1465
			verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
				regno);
			return -EACCES;
		}
1466

1467
		if (reg->umin_value == 0) {
1468 1469 1470
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1471 1472 1473
			if (err)
				return err;
		}
1474

1475
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1476 1477 1478 1479 1480
			verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1481
					      reg->umax_value,
1482
					      zero_size_allowed, meta);
1483 1484 1485
	}

	return err;
1486 1487 1488 1489
err_type:
	verbose("R%d type=%s expected=%s\n", regno,
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1490 1491
}

1492 1493 1494 1495 1496
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
	if (!map)
		return 0;

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
		    func_id != BPF_FUNC_perf_event_output)
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1512
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1513
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1514
		    func_id != BPF_FUNC_current_task_under_cgroup)
1515 1516
			goto error;
		break;
1517 1518 1519 1520 1521
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1522
		if (func_id != BPF_FUNC_redirect_map)
1523 1524
			goto error;
		break;
1525
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1526
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1527 1528
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1529
		break;
1530 1531 1532 1533 1534 1535
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1555
	case BPF_FUNC_current_task_under_cgroup:
1556
	case BPF_FUNC_skb_under_cgroup:
1557 1558 1559
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1560 1561 1562 1563
	case BPF_FUNC_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_DEVMAP)
			goto error;
		break;
1564 1565 1566 1567 1568 1569 1570 1571
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1572 1573
	default:
		break;
1574 1575 1576
	}

	return 0;
1577
error:
1578 1579
	verbose("cannot pass map_type %d into func %s#%d\n",
		map->map_type, func_id_name(func_id), func_id);
1580
	return -EINVAL;
1581 1582
}

1583 1584 1585 1586
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1587
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1588
		count++;
1589
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1590
		count++;
1591
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1592
		count++;
1593
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1594
		count++;
1595
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1596 1597 1598 1599 1600
		count++;

	return count > 1 ? -EINVAL : 0;
}

1601 1602 1603
/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
 * so turn them into unknown SCALAR_VALUE.
 */
1604
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1605
{
1606 1607
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1608 1609 1610 1611 1612
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET ||
		    regs[i].type == PTR_TO_PACKET_END)
1613
			mark_reg_unknown(regs, i);
A
Alexei Starovoitov 已提交
1614 1615 1616 1617 1618 1619 1620 1621

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type != PTR_TO_PACKET &&
		    reg->type != PTR_TO_PACKET_END)
			continue;
1622
		__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1623 1624 1625
	}
}

1626
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1627
{
1628
	struct bpf_verifier_state *state = &env->cur_state;
1629
	const struct bpf_func_proto *fn = NULL;
1630
	struct bpf_reg_state *regs = state->regs;
1631
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1632
	bool changes_data;
1633 1634 1635 1636
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1637
		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1638 1639 1640 1641 1642 1643 1644
		return -EINVAL;
	}

	if (env->prog->aux->ops->get_func_proto)
		fn = env->prog->aux->ops->get_func_proto(func_id);

	if (!fn) {
1645
		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1646 1647 1648 1649
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1650
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1651 1652 1653 1654
		verbose("cannot call GPL only function from proprietary program\n");
		return -EINVAL;
	}

1655
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1656

1657
	memset(&meta, 0, sizeof(meta));
1658
	meta.pkt_access = fn->pkt_access;
1659

1660 1661 1662 1663 1664
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1665 1666
		verbose("kernel subsystem misconfigured func %s#%d\n",
			func_id_name(func_id), func_id);
1667 1668 1669
		return err;
	}

1670
	/* check args */
1671
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1672 1673
	if (err)
		return err;
1674
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1675 1676
	if (err)
		return err;
1677
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1678 1679
	if (err)
		return err;
1680
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1681 1682
	if (err)
		return err;
1683
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1684 1685 1686
	if (err)
		return err;

1687 1688 1689 1690
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1691
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1692 1693 1694 1695
		if (err)
			return err;
	}

1696
	/* reset caller saved regs */
1697
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1698
		mark_reg_not_init(regs, caller_saved[i]);
1699 1700
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1701

1702
	/* update return register (already marked as written above) */
1703
	if (fn->ret_type == RET_INTEGER) {
1704 1705
		/* sets type to SCALAR_VALUE */
		mark_reg_unknown(regs, BPF_REG_0);
1706 1707 1708
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1709 1710
		struct bpf_insn_aux_data *insn_aux;

1711
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1712 1713 1714
		/* There is no offset yet applied, variable or fixed */
		mark_reg_known_zero(regs, BPF_REG_0);
		regs[BPF_REG_0].off = 0;
1715 1716 1717 1718
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1719
		if (meta.map_ptr == NULL) {
1720 1721 1722
			verbose("kernel subsystem misconfigured verifier\n");
			return -EINVAL;
		}
1723
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1724
		regs[BPF_REG_0].id = ++env->id_gen;
1725 1726 1727 1728 1729
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1730
	} else {
1731 1732
		verbose("unknown return type %d of func %s#%d\n",
			fn->ret_type, func_id_name(func_id), func_id);
1733 1734
		return -EINVAL;
	}
1735

1736
	err = check_map_func_compatibility(meta.map_ptr, func_id);
1737 1738
	if (err)
		return err;
1739

A
Alexei Starovoitov 已提交
1740 1741 1742 1743 1744
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1745 1746 1747 1748
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1782
{
1783 1784
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
	bool known = tnum_is_const(off_reg->var_off);
1785 1786 1787 1788
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1789
	u8 opcode = BPF_OP(insn->code);
1790
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1791

1792
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1793

1794
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1795
		print_verifier_state(&env->cur_state);
1796 1797 1798 1799 1800 1801
		verbose("verifier internal error: known but bad sbounds\n");
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: known but bad ubounds\n");
1802 1803 1804 1805 1806 1807 1808 1809 1810
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
			verbose("R%d 32-bit pointer arithmetic prohibited\n",
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1811 1812
	}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1834
	 */
1835 1836
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1837

1838 1839 1840 1841
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1842
		 */
1843 1844
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1845
			/* pointer += K.  Accumulate it into fixed offset */
1846 1847 1848 1849
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1850
			dst_reg->var_off = ptr_reg->var_off;
1851
			dst_reg->off = ptr_reg->off + smin_val;
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1863
		 */
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
		if (ptr_reg->type == PTR_TO_PACKET) {
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
				verbose("R%d tried to subtract pointer from scalar\n",
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1899
		 */
1900 1901 1902 1903 1904 1905
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
				verbose("R%d subtraction from stack pointer prohibited\n",
					dst);
			return -EACCES;
		}
1906 1907
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1908
			/* pointer -= K.  Subtract it from fixed offset */
1909 1910 1911 1912
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1913 1914
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1915
			dst_reg->off = ptr_reg->off - smin_val;
1916 1917 1918 1919 1920
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1921
		 */
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1940 1941 1942 1943 1944
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
		if (ptr_reg->type == PTR_TO_PACKET) {
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1945
			if (smin_val < 0)
1946
				dst_reg->range = 0;
1947
		}
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
			verbose("R%d bitwise operator %s on pointer prohibited\n",
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic with %s operator prohibited\n",
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1966 1967
	}

1968 1969 1970
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
1971 1972 1973
	return 0;
}

1974 1975 1976 1977
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
1978
{
1979
	struct bpf_reg_state *regs = env->cur_state.regs;
1980
	u8 opcode = BPF_OP(insn->code);
1981
	bool src_known, dst_known;
1982 1983
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
1984

1985 1986 1987 1988
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
1989
	}
1990 1991 1992 1993
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
1994 1995
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
1996

1997 1998
	switch (opcode) {
	case BPF_ADD:
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2015
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2016 2017
		break;
	case BPF_SUB:
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2036
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2037 2038
		break;
	case BPF_MUL:
2039 2040
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2041
			/* Ain't nobody got time to multiply that sign */
2042 2043
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2044 2045
			break;
		}
2046 2047
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2048
		 */
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2066 2067
		break;
	case BPF_AND:
2068
		if (src_known && dst_known) {
2069 2070
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2071 2072
			break;
		}
2073 2074
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2075
		 */
2076
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2094 2095 2096
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2097 2098
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2099 2100
			break;
		}
2101 2102
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2103 2104
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2105 2106 2107 2108 2109 2110 2111 2112 2113
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2114
		} else {
2115 2116 2117 2118 2119
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2120
		}
2121 2122
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2123 2124
		break;
	case BPF_LSH:
2125 2126 2127 2128
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2129 2130 2131
			mark_reg_unknown(regs, insn->dst_reg);
			break;
		}
2132 2133
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2134
		 */
2135 2136 2137 2138 2139 2140
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2141
		} else {
2142 2143
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2144
		}
2145 2146 2147 2148 2149 2150
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2151 2152
		break;
	case BPF_RSH:
2153 2154 2155 2156
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2157 2158 2159 2160
			mark_reg_unknown(regs, insn->dst_reg);
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2161 2162
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2163
				/* Sign bit will be cleared */
2164 2165 2166 2167 2168 2169
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2170
		} else {
2171 2172
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2173
		}
2174
		if (src_known)
2175 2176
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2177
		else
2178 2179 2180 2181 2182
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2183 2184
		break;
	default:
2185
		mark_reg_unknown(regs, insn->dst_reg);
2186 2187 2188
		break;
	}

2189 2190
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
					verbose("R%d pointer %s pointer prohibited\n",
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
				mark_reg_unknown(regs, insn->dst_reg);
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2257
		__mark_reg_known(&off_reg, insn->imm);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: unexpected ptr_reg\n");
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: no src_reg\n");
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2284 2285
}

2286
/* check validity of 32-bit and 64-bit arithmetic operations */
2287
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2288
{
2289
	struct bpf_reg_state *regs = env->cur_state.regs;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
				verbose("BPF_NEG uses reserved fields\n");
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2303 2304
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2305 2306 2307 2308 2309 2310
				verbose("BPF_END uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src operand */
2311
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2312 2313 2314
		if (err)
			return err;

2315 2316 2317 2318 2319 2320
		if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		}

2321
		/* check dest operand */
2322
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}

			/* check src operand */
2335
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check dest operand */
2346
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2347 2348 2349 2350 2351 2352 2353 2354 2355
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2356
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2357
			} else {
2358
				/* R1 = (u32) R2 */
2359 2360 2361 2362 2363
				if (is_pointer_value(env, insn->src_reg)) {
					verbose("R%d partial copy of pointer\n",
						insn->src_reg);
					return -EACCES;
				}
2364
				mark_reg_unknown(regs, insn->dst_reg);
2365
				/* high 32 bits are known zero. */
2366 2367
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2368
				__update_reg_bounds(&regs[insn->dst_reg]);
2369 2370 2371 2372 2373
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2374
			regs[insn->dst_reg].type = SCALAR_VALUE;
2375
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
		}

	} else if (opcode > BPF_END) {
		verbose("invalid BPF_ALU opcode %x\n", opcode);
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
			/* check src1 operand */
2390
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src2 operand */
2401
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2402 2403 2404 2405 2406 2407 2408 2409 2410
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
			verbose("div by zero\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
				verbose("invalid shift %d\n", insn->imm);
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2421
		/* check dest operand */
2422
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2423 2424 2425
		if (err)
			return err;

2426
		return adjust_reg_min_max_vals(env, insn);
2427 2428 2429 2430 2431
	}

	return 0;
}

2432 2433
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
				   struct bpf_reg_state *dst_reg)
A
Alexei Starovoitov 已提交
2434
{
2435
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2436
	int i;
2437

2438 2439 2440 2441
	if (dst_reg->off < 0)
		/* This doesn't give us any range */
		return;

2442 2443
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2444 2445 2446 2447 2448
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2449
	/* LLVM can generate four kind of checks:
2450
	 *
2451
	 * Type 1/2:
2452 2453 2454 2455 2456 2457
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2458 2459 2460 2461 2462
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2463 2464 2465 2466 2467
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2468
	 * Type 3/4:
2469 2470 2471 2472 2473 2474
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2475 2476 2477 2478 2479
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2480 2481 2482 2483 2484 2485 2486
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
2487
	 */
2488

2489 2490 2491 2492 2493
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2494 2495
	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2496
			/* keep the maximum range already checked */
2497
			regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
A
Alexei Starovoitov 已提交
2498 2499 2500 2501 2502 2503

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2504
			reg->range = max_t(u16, reg->range, dst_reg->off);
A
Alexei Starovoitov 已提交
2505 2506 2507
	}
}

2508 2509 2510
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2511
 * In JEQ/JNE cases we also adjust the var_off values.
2512 2513 2514 2515 2516
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2517 2518 2519 2520 2521 2522 2523 2524
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2525

2526 2527 2528 2529 2530
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2531
		__mark_reg_known(true_reg, val);
2532 2533 2534 2535 2536
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2537
		__mark_reg_known(false_reg, val);
2538 2539
		break;
	case BPF_JGT:
2540 2541 2542
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2543
	case BPF_JSGT:
2544 2545
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2546
		break;
2547 2548 2549 2550 2551 2552 2553 2554
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2555
	case BPF_JGE:
2556 2557 2558
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2559
	case BPF_JSGE:
2560 2561
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2562
		break;
2563 2564 2565 2566 2567 2568 2569 2570
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2571 2572 2573 2574
	default:
		break;
	}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2586 2587
}

2588 2589
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2590 2591 2592 2593 2594
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2595 2596
	if (__is_pointer_value(false, false_reg))
		return;
2597

2598 2599 2600 2601 2602
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2603
		__mark_reg_known(true_reg, val);
2604 2605 2606 2607 2608
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2609
		__mark_reg_known(false_reg, val);
2610 2611
		break;
	case BPF_JGT:
2612 2613 2614
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2615
	case BPF_JSGT:
2616 2617
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2618
		break;
2619 2620 2621 2622 2623 2624 2625 2626
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2627
	case BPF_JGE:
2628 2629 2630
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2631
	case BPF_JSGE:
2632 2633
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2634
		break;
2635 2636 2637 2638 2639 2640 2641 2642
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2643 2644 2645 2646
	default:
		break;
	}

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2658 2659 2660 2661 2662 2663
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2664 2665 2666 2667 2668 2669 2670 2671
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2672 2673
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2703
		break;
2704
	}
2705 2706
}

2707
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2708
			 bool is_null)
2709 2710 2711 2712
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2713 2714 2715 2716
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2717 2718
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2719
				 reg->off)) {
2720 2721
			__mark_reg_known_zero(reg);
			reg->off = 0;
2722 2723 2724
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2725 2726 2727 2728
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2729
			reg->type = PTR_TO_MAP_VALUE;
2730
		}
2731 2732 2733 2734 2735
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2736 2737 2738 2739 2740 2741 2742
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2743
			  bool is_null)
2744 2745
{
	struct bpf_reg_state *regs = state->regs;
2746
	u32 id = regs[regno].id;
2747 2748 2749
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2750
		mark_map_reg(regs, i, id, is_null);
2751 2752 2753 2754

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
2755
		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2756 2757 2758
	}
}

2759
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2760 2761
			     struct bpf_insn *insn, int *insn_idx)
{
2762 2763
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2764 2765 2766
	u8 opcode = BPF_OP(insn->code);
	int err;

2767
	if (opcode > BPF_JSLE) {
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		verbose("invalid BPF_JMP opcode %x\n", opcode);
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}

		/* check src1 operand */
2779
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2780 2781
		if (err)
			return err;
2782 2783 2784 2785 2786 2787

		if (is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer comparison prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
2788 2789 2790 2791 2792 2793 2794 2795
	} else {
		if (insn->src_reg != BPF_REG_0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}
	}

	/* check src2 operand */
2796
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2797 2798 2799
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2800 2801
	dst_reg = &regs[insn->dst_reg];

2802 2803 2804
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2805 2806
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2826 2827
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2828 2829 2830 2831
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2832 2833
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2852 2853 2854 2855
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2856
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2857
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2858 2859
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2860 2861 2862
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
2863 2864
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
A
Alexei Starovoitov 已提交
2865 2866 2867
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2868
		find_good_pkt_pointers(this_branch, dst_reg);
2869 2870 2871 2872
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
		find_good_pkt_pointers(other_branch, dst_reg);
2873 2874 2875 2876
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2877 2878 2879 2880
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
2881 2882 2883
	} else if (is_pointer_value(env, insn->dst_reg)) {
		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
		return -EACCES;
2884 2885
	}
	if (log_level)
2886
		print_verifier_state(this_branch);
2887 2888 2889
	return 0;
}

2890 2891 2892 2893 2894 2895 2896 2897
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2898
/* verify BPF_LD_IMM64 instruction */
2899
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2900
{
2901
	struct bpf_reg_state *regs = env->cur_state.regs;
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
		verbose("invalid BPF_LD_IMM insn\n");
		return -EINVAL;
	}
	if (insn->off != 0) {
		verbose("BPF_LD_IMM64 uses reserved fields\n");
		return -EINVAL;
	}

2913
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2914 2915 2916
	if (err)
		return err;

2917 2918 2919
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

2920
		regs[insn->dst_reg].type = SCALAR_VALUE;
2921
		__mark_reg_known(&regs[insn->dst_reg], imm);
2922
		return 0;
2923
	}
2924 2925 2926 2927 2928 2929 2930 2931 2932

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2933 2934 2935 2936 2937
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2938
	case BPF_PROG_TYPE_SCHED_ACT:
2939 2940 2941 2942 2943 2944
		return true;
	default:
		return false;
	}
}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2960
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2961
{
2962
	struct bpf_reg_state *regs = env->cur_state.regs;
2963 2964 2965
	u8 mode = BPF_MODE(insn->code);
	int i, err;

2966
	if (!may_access_skb(env->prog->type)) {
A
Alexei Starovoitov 已提交
2967
		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2968 2969 2970 2971
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2972
	    BPF_SIZE(insn->code) == BPF_DW ||
2973
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
A
Alexei Starovoitov 已提交
2974
		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2975 2976 2977 2978
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
2979
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
2990
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2991 2992 2993 2994 2995
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
2996
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2997
		mark_reg_not_init(regs, caller_saved[i]);
2998 2999
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3000 3001

	/* mark destination R0 register as readable, since it contains
3002 3003
	 * the value fetched from the packet.
	 * Already marked as written above.
3004
	 */
3005
	mark_reg_unknown(regs, BPF_REG_0);
3006 3007 3008
	return 0;
}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3049
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3060
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
		verbose("jump out of range from insn %d to %d\n", t, w);
		return -EINVAL;
	}

3073 3074 3075 3076
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
		verbose("back-edge from insn %d to %d\n", t, w);
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
		verbose("insn state internal bug\n");
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3101
static int check_cfg(struct bpf_verifier_env *env)
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3138 3139
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3152 3153 3154
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3155 3156
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3157 3158
		} else {
			/* conditional jump with two edges */
3159
			env->explored_states[t] = STATE_LIST_MARK;
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
		verbose("pop stack internal bug\n");
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
			verbose("unreachable insn %d\n", i);
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3208 3209 3210 3211
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3212 3213 3214 3215
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3234
 */
3235
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3236
{
3237
	unsigned int i;
A
Alexei Starovoitov 已提交
3238

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3255 3256
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3257
{
3258 3259 3260 3261 3262
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3263 3264
		return true;

3265 3266
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3267
		return true;
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3281 3282 3283 3284
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3285 3286 3287
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3288 3289 3290 3291 3292 3293 3294 3295
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
	case PTR_TO_PACKET:
		if (rcur->type != PTR_TO_PACKET)
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3343

3344 3345
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3346 3347 3348
	return false;
}

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3375 3376
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3377
			 struct bpf_verifier_state *cur)
3378
{
3379 3380
	struct idpair *idmap;
	bool ret = false;
3381 3382
	int i;

3383 3384 3385
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3386
		return false;
3387 3388

	for (i = 0; i < MAX_BPF_REG; i++) {
3389
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3390
			goto out_free;
3391 3392 3393
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
3394 3395 3396 3397 3398 3399 3400 3401
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
3402
			goto out_free;
3403 3404
		if (i % BPF_REG_SIZE)
			continue;
3405 3406
		if (old->stack_slot_type[i] != STACK_SPILL)
			continue;
3407 3408
		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
			     &cur->spilled_regs[i / BPF_REG_SIZE],
3409
			     idmap))
3410 3411
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
3412 3413
			 * are the same as well.
			 * Ex: explored safe path could have stored
3414
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3415
			 * but current path has stored:
3416
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3417 3418 3419
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
3420
			goto out_free;
3421 3422
		else
			continue;
3423
	}
3424 3425 3426 3427
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3428 3429
}

3430 3431 3432 3433 3434 3435
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3436 3437 3438
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3439
	bool writes = parent == state->parent; /* Observe write marks */
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3451 3452 3453
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (parent->spilled_regs[i].live & REG_LIVE_READ)
			continue;
3466 3467 3468
		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3469
			parent->spilled_regs[i].live |= REG_LIVE_READ;
3470 3471 3472 3473 3474 3475
			touched = true;
		}
	}
	return touched;
}

3476 3477 3478 3479 3480 3481 3482 3483 3484
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3495
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3496
{
3497 3498
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3499
	int i;
3500 3501 3502 3503 3504 3505 3506 3507 3508

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3509
		if (states_equal(env, &sl->state, &env->cur_state)) {
3510
			/* reached equivalent register/stack state,
3511 3512
			 * prune the search.
			 * Registers read by the continuation are read by us.
3513 3514 3515 3516 3517 3518
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3519
			 */
3520
			propagate_liveness(&sl->state, &env->cur_state);
3521
			return 1;
3522
		}
3523 3524 3525 3526 3527 3528 3529 3530 3531
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3532
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3533 3534 3535 3536 3537 3538 3539
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3540 3541
	/* connect new state to parentage chain */
	env->cur_state.parent = &new_sl->state;
3542 3543 3544 3545 3546 3547
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3548 3549 3550 3551 3552
	for (i = 0; i < BPF_REG_FP; i++)
		env->cur_state.regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3553 3554 3555
	return 0;
}

3556 3557 3558 3559 3560 3561 3562 3563 3564
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

3565
static int do_check(struct bpf_verifier_env *env)
3566
{
3567
	struct bpf_verifier_state *state = &env->cur_state;
3568
	struct bpf_insn *insns = env->prog->insnsi;
3569
	struct bpf_reg_state *regs = state->regs;
3570 3571 3572 3573 3574 3575
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

	init_reg_state(regs);
3576
	state->parent = NULL;
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
			verbose("invalid insn idx %d insn_cnt %d\n",
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3592
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3593
			verbose("BPF program is too large. Processed %d insn\n",
3594 3595 3596 3597
				insn_processed);
			return -E2BIG;
		}

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
			if (log_level) {
				if (do_print_state)
					verbose("\nfrom %d to %d: safe\n",
						prev_insn_idx, insn_idx);
				else
					verbose("%d: safe\n", insn_idx);
			}
			goto process_bpf_exit;
		}

3613 3614 3615
		if (need_resched())
			cond_resched();

3616 3617 3618 3619 3620 3621
		if (log_level > 1 || (log_level && do_print_state)) {
			if (log_level > 1)
				verbose("%d:", insn_idx);
			else
				verbose("\nfrom %d to %d:",
					prev_insn_idx, insn_idx);
A
Alexei Starovoitov 已提交
3622
			print_verifier_state(&env->cur_state);
3623 3624 3625 3626 3627
			do_print_state = false;
		}

		if (log_level) {
			verbose("%d: ", insn_idx);
3628
			print_bpf_insn(env, insn);
3629 3630
		}

3631 3632 3633 3634
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3635
		if (class == BPF_ALU || class == BPF_ALU64) {
3636
			err = check_alu_op(env, insn);
3637 3638 3639 3640
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3641
			enum bpf_reg_type *prev_src_type, src_reg_type;
3642 3643 3644

			/* check for reserved fields is already done */

3645
			/* check src operand */
3646
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3647 3648 3649
			if (err)
				return err;

3650
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3651 3652 3653
			if (err)
				return err;

3654 3655
			src_reg_type = regs[insn->src_reg].type;

3656 3657 3658
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3659
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3660 3661 3662 3663 3664
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3665 3666 3667
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3668 3669
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3670
				 * save type to validate intersecting paths
3671
				 */
3672
				*prev_src_type = src_reg_type;
3673

3674
			} else if (src_reg_type != *prev_src_type &&
3675
				   (src_reg_type == PTR_TO_CTX ||
3676
				    *prev_src_type == PTR_TO_CTX)) {
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3688
		} else if (class == BPF_STX) {
3689
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3690

3691
			if (BPF_MODE(insn->code) == BPF_XADD) {
3692
				err = check_xadd(env, insn_idx, insn);
3693 3694 3695 3696 3697 3698 3699
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3700
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3701 3702 3703
			if (err)
				return err;
			/* check src2 operand */
3704
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3705 3706 3707
			if (err)
				return err;

3708 3709
			dst_reg_type = regs[insn->dst_reg].type;

3710
			/* check that memory (dst_reg + off) is writeable */
3711
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3712 3713 3714 3715 3716
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3717 3718 3719 3720 3721
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3722
				   (dst_reg_type == PTR_TO_CTX ||
3723
				    *prev_dst_type == PTR_TO_CTX)) {
3724 3725 3726 3727
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3728 3729 3730 3731 3732 3733 3734
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
				verbose("BPF_ST uses reserved fields\n");
				return -EINVAL;
			}
			/* check src operand */
3735
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3736 3737 3738 3739
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3740
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_CALL uses reserved fields\n");
					return -EINVAL;
				}

3758
				err = check_call(env, insn->imm, insn_idx);
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_JA uses reserved fields\n");
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_EXIT uses reserved fields\n");
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3789
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3790 3791 3792
				if (err)
					return err;

3793 3794 3795 3796 3797
				if (is_pointer_value(env, BPF_REG_0)) {
					verbose("R0 leaks addr as return value\n");
					return -EACCES;
				}

3798
process_bpf_exit:
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3815 3816 3817 3818
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
				verbose("invalid BPF_LD mode\n");
				return -EINVAL;
			}
		} else {
			verbose("unknown insn class %d\n", class);
			return -EINVAL;
		}

		insn_idx++;
	}

3837 3838
	verbose("processed %d insns, stack depth %d\n",
		insn_processed, env->prog->aux->stack_depth);
3839 3840 3841
	return 0;
}

3842 3843 3844
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
3845 3846
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3847 3848 3849
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

3850 3851 3852 3853
static int check_map_prog_compatibility(struct bpf_map *map,
					struct bpf_prog *prog)

{
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
			verbose("perf_event programs can only use preallocated hash map\n");
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
			verbose("perf_event programs can only use preallocated inner hash map\n");
			return -EINVAL;
		}
3869 3870 3871 3872
	}
	return 0;
}

3873 3874 3875
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
3876
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3877 3878 3879
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
3880
	int i, j, err;
3881

3882
	err = bpf_prog_calc_tag(env->prog);
3883 3884 3885
	if (err)
		return err;

3886
	for (i = 0; i < insn_cnt; i++, insn++) {
3887
		if (BPF_CLASS(insn->code) == BPF_LDX &&
3888
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3889 3890 3891 3892
			verbose("BPF_LDX uses reserved fields\n");
			return -EINVAL;
		}

3893 3894 3895 3896 3897 3898 3899
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
			verbose("BPF_STX uses reserved fields\n");
			return -EINVAL;
		}

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
				verbose("invalid bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
				verbose("unrecognized bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			f = fdget(insn->imm);
3921
			map = __bpf_map_get(f);
3922 3923 3924 3925 3926 3927
			if (IS_ERR(map)) {
				verbose("fd %d is not pointing to valid bpf_map\n",
					insn->imm);
				return PTR_ERR(map);
			}

3928 3929 3930 3931 3932 3933
			err = check_map_prog_compatibility(map, env->prog);
			if (err) {
				fdput(f);
				return err;
			}

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
3955 3956 3957 3958 3959 3960 3961
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
3977
static void release_maps(struct bpf_verifier_env *env)
3978 3979 3980 3981 3982 3983 3984 3985
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3986
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

4032 4033 4034
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4035
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4036
{
4037
	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4038
	int i, cnt, size, ctx_field_size, delta = 0;
4039
	const int insn_cnt = env->prog->len;
4040
	struct bpf_insn insn_buf[16], *insn;
4041
	struct bpf_prog *new_prog;
4042
	enum bpf_access_type type;
4043 4044
	bool is_narrower_load;
	u32 target_size;
4045

4046 4047 4048 4049 4050 4051 4052
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		} else if (cnt) {
4053
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4054 4055
			if (!new_prog)
				return -ENOMEM;
4056

4057
			env->prog = new_prog;
4058
			delta += cnt - 1;
4059 4060 4061 4062
		}
	}

	if (!ops->convert_ctx_access)
4063 4064
		return 0;

4065
	insn = env->prog->insnsi + delta;
4066

4067
	for (i = 0; i < insn_cnt; i++, insn++) {
4068 4069 4070
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4071
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4072
			type = BPF_READ;
4073 4074 4075
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4076
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4077 4078
			type = BPF_WRITE;
		else
4079 4080
			continue;

4081
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4082 4083
			continue;

4084
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4085
		size = BPF_LDST_BYTES(insn);
4086 4087 4088 4089 4090 4091

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4092
		is_narrower_load = size < ctx_field_size;
4093
		if (is_narrower_load) {
4094 4095 4096 4097 4098 4099 4100
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
				verbose("bpf verifier narrow ctx access misconfigured\n");
				return -EINVAL;
			}
4101

4102
			size_code = BPF_H;
4103 4104 4105 4106
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4107

4108 4109 4110
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4111 4112 4113 4114 4115 4116

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4117 4118 4119
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		}
4120 4121

		if (is_narrower_load && size < target_size) {
4122 4123
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4124
								(1 << size * 8) - 1);
4125 4126
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4127
								(1 << size * 8) - 1);
4128
		}
4129

4130
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4131 4132 4133
		if (!new_prog)
			return -ENOMEM;

4134
		delta += cnt - 1;
4135 4136 4137

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4138
		insn      = new_prog->insnsi + i + delta;
4139 4140 4141 4142 4143
	}

	return 0;
}

4144
/* fixup insn->imm field of bpf_call instructions
4145
 * and inline eligible helpers as explicit sequence of BPF instructions
4146 4147 4148
 *
 * this function is called after eBPF program passed verification
 */
4149
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4150
{
4151 4152
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4153
	const struct bpf_func_proto *fn;
4154
	const int insn_cnt = prog->len;
4155 4156 4157 4158
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4159

4160 4161 4162
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4163

4164 4165 4166 4167 4168
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4169 4170 4171 4172 4173 4174
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4175
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4176

4177 4178 4179 4180
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4181
			 */
4182
			insn->imm = 0;
4183
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4184 4185
			continue;
		}
4186

4187 4188 4189 4190 4191
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4192
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4193 4194
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose("bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4216
		if (insn->imm == BPF_FUNC_redirect_map) {
4217 4218 4219 4220 4221 4222
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4237
patch_call_imm:
4238 4239 4240 4241 4242 4243 4244 4245
		fn = prog->aux->ops->get_func_proto(insn->imm);
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
			verbose("kernel subsystem misconfigured func %s#%d\n",
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4246
		}
4247
		insn->imm = fn->func - __bpf_call_base;
4248 4249
	}

4250 4251
	return 0;
}
4252

4253
static void free_states(struct bpf_verifier_env *env)
4254
{
4255
	struct bpf_verifier_state_list *sl, *sln;
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4275
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4276
{
4277
	char __user *log_ubuf = NULL;
4278
	struct bpf_verifier_env *env;
A
Alexei Starovoitov 已提交
4279 4280
	int ret = -EINVAL;

4281
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4282 4283
	 * allocate/free it every time bpf_check() is called
	 */
4284
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4285 4286 4287
	if (!env)
		return -ENOMEM;

4288 4289 4290 4291 4292
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4293
	env->prog = *prog;
4294

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
		log_level = attr->log_level;
		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
		log_size = attr->log_size;
		log_len = 0;

		ret = -EINVAL;
		/* log_* values have to be sane */
		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
		    log_level == 0 || log_ubuf == NULL)
4311
			goto err_unlock;
4312 4313 4314 4315

		ret = -ENOMEM;
		log_buf = vmalloc(log_size);
		if (!log_buf)
4316
			goto err_unlock;
4317 4318 4319
	} else {
		log_level = 0;
	}
4320 4321 4322

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4323
		env->strict_alignment = true;
4324

4325 4326 4327 4328
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4329
	env->explored_states = kcalloc(env->prog->len,
4330
				       sizeof(struct bpf_verifier_state_list *),
4331 4332 4333 4334 4335
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4336 4337 4338 4339
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4340 4341
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4342
	ret = do_check(env);
4343

4344
skip_full_check:
4345
	while (pop_stack(env, NULL) >= 0);
4346
	free_states(env);
4347

4348 4349 4350 4351
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4352
	if (ret == 0)
4353
		ret = fixup_bpf_calls(env);
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
	if (log_level && log_len >= log_size - 1) {
		BUG_ON(log_len >= log_size);
		/* verifier log exceeded user supplied buffer */
		ret = -ENOSPC;
		/* fall through to return what was recorded */
	}

	/* copy verifier log back to user space including trailing zero */
	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
		ret = -EFAULT;
		goto free_log_buf;
	}

4368 4369
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4370 4371 4372
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4373

4374
		if (!env->prog->aux->used_maps) {
4375 4376 4377 4378
			ret = -ENOMEM;
			goto free_log_buf;
		}

4379
		memcpy(env->prog->aux->used_maps, env->used_maps,
4380
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4381
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4382 4383 4384 4385 4386 4387

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4388 4389 4390 4391

free_log_buf:
	if (log_level)
		vfree(log_buf);
4392
	if (!env->prog->aux->used_maps)
4393 4394 4395 4396
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4397
	*prog = env->prog;
4398
err_unlock:
4399
	mutex_unlock(&bpf_verifier_lock);
4400 4401 4402
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4403 4404
	return ret;
}
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428

int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	log_level = 0;
4429

4430
	env->strict_alignment = false;
4431 4432
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);