verifier.c 154.1 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
A
Alexei Starovoitov 已提交
25

26 27
#include "disasm.h"

28 29 30 31 32 33 34 35 36
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
49
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
77
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
78
 * means the register has some value, but it's not a valid pointer.
79
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
80 81
 *
 * When verifier sees load or store instructions the type of base register
82
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

144
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
145
struct bpf_verifier_stack_elem {
146 147 148 149
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
150
	struct bpf_verifier_state st;
151 152
	int insn_idx;
	int prev_insn_idx;
153
	struct bpf_verifier_stack_elem *next;
154 155
};

156
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
157 158
#define BPF_COMPLEXITY_LIMIT_STACK	1024

159 160
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

161 162
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
163
	bool raw_mode;
164
	bool pkt_access;
165 166
	int regno;
	int access_size;
167 168
};

169 170 171 172 173 174
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
175 176
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
177
{
178
	struct bpf_verifer_log *log = &env->log;
179
	unsigned int n;
180 181
	va_list args;

182
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
183 184 185
		return;

	va_start(args, fmt);
186
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
187
	va_end(args);
188 189 190 191 192 193 194 195 196 197 198

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
199 200
}

201 202 203 204 205 206
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

207 208 209
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
210
	[SCALAR_VALUE]		= "inv",
211 212 213 214 215
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET]		= "pkt",
217
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
218
	[PTR_TO_PACKET_END]	= "pkt_end",
219 220
};

221 222 223 224 225 226 227 228 229 230 231
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

232 233 234 235 236 237 238 239
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

240
static void print_verifier_state(struct bpf_verifier_env *env,
241
				 const struct bpf_func_state *state)
242
{
243
	const struct bpf_reg_state *reg;
244 245 246
	enum bpf_reg_type t;
	int i;

247 248
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
249
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
250 251
		reg = &state->regs[i];
		t = reg->type;
252 253
		if (t == NOT_INIT)
			continue;
254 255 256
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
257 258 259
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
260
			verbose(env, "%lld", reg->var_off.value + reg->off);
261 262
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
263
		} else {
264
			verbose(env, "(id=%d", reg->id);
265
			if (t != SCALAR_VALUE)
266
				verbose(env, ",off=%d", reg->off);
267
			if (type_is_pkt_pointer(t))
268
				verbose(env, ",r=%d", reg->range);
269 270 271
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
272
				verbose(env, ",ks=%d,vs=%d",
273 274
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
275 276 277 278 279
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
280
				verbose(env, ",imm=%llx", reg->var_off.value);
281 282 283
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
284
					verbose(env, ",smin_value=%lld",
285 286 287
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
288
					verbose(env, ",smax_value=%lld",
289 290
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
291
					verbose(env, ",umin_value=%llu",
292 293
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
294
					verbose(env, ",umax_value=%llu",
295 296 297
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
298

299
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
300
					verbose(env, ",var_off=%s", tn_buf);
301
				}
302
			}
303
			verbose(env, ")");
304
		}
305
	}
306
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
307 308 309 310 311
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
312
				reg_type_str[state->stack[i].spilled_ptr.type]);
313
		}
314 315
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
316
	}
317
	verbose(env, "\n");
318 319
}

320 321
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
322
{
323 324 325 326 327 328 329 330 331 332 333 334 335 336
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
337
 * the program calls into realloc_func_state() to grow the stack size.
338 339 340 341
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
342 343
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

376 377 378 379 380 381
static void free_func_state(struct bpf_func_state *state)
{
	kfree(state->stack);
	kfree(state);
}

382 383
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
384
{
385 386 387 388 389 390
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
391 392
	if (free_self)
		kfree(state);
393 394 395 396 397
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
398 399
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
400 401 402
{
	int err;

403
	err = realloc_func_state(dst, src->allocated_stack, false);
404 405
	if (err)
		return err;
406
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
407 408 409
	return copy_stack_state(dst, src);
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

438 439 440 441 442 443
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
444 445

	if (env->head == NULL)
446
		return -ENOENT;
447

448 449 450 451 452 453 454
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
455
	if (prev_insn_idx)
456 457
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
458
	free_verifier_state(&head->st, false);
459
	kfree(head);
460 461
	env->head = elem;
	env->stack_size--;
462
	return 0;
463 464
}

465 466
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
467
{
468
	struct bpf_verifier_state *cur = env->cur_state;
469
	struct bpf_verifier_stack_elem *elem;
470
	int err;
471

472
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
473 474 475 476 477 478 479 480
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
481 482 483
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
484
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
485
		verbose(env, "BPF program is too complex\n");
486 487 488 489 490
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
491
	while (!pop_stack(env, NULL, NULL));
492 493 494 495 496 497 498
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};
499 500 501 502
#define CALLEE_SAVED_REGS 5
static const int callee_saved[CALLEE_SAVED_REGS] = {
	BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9
};
503

504 505
static void __mark_reg_not_init(struct bpf_reg_state *reg);

506 507 508 509 510 511 512 513 514 515 516 517 518
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

519 520 521 522
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
523
{
524
	__mark_reg_known(reg, 0);
525
}
526

527 528 529 530 531 532 533
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

534 535
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
536 537
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
538
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
539 540 541 542 543 544 545 546
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

638 639 640 641 642 643 644
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
645
	reg->frameno = 0;
646
	__mark_reg_unbounded(reg);
647 648
}

649 650
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
651 652
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
653
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
654 655
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
656 657 658 659 660 661 662 663 664 665 666 667
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

668 669
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
670 671
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
672
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
673 674
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
675 676 677 678
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
679 680
}

681
static void init_reg_state(struct bpf_verifier_env *env,
682
			   struct bpf_func_state *state)
683
{
684
	struct bpf_reg_state *regs = state->regs;
685 686
	int i;

687
	for (i = 0; i < MAX_BPF_REG; i++) {
688
		mark_reg_not_init(env, regs, i);
689 690
		regs[i].live = REG_LIVE_NONE;
	}
691 692

	/* frame pointer */
693
	regs[BPF_REG_FP].type = PTR_TO_STACK;
694
	mark_reg_known_zero(env, regs, BPF_REG_FP);
695
	regs[BPF_REG_FP].frameno = state->frameno;
696 697 698

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
699
	mark_reg_known_zero(env, regs, BPF_REG_1);
700 701
}

702 703 704 705 706 707 708 709 710 711 712
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

713 714 715 716 717 718
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static int cmp_subprogs(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
	u32 *p;

	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
		    sizeof(env->subprog_starts[0]), cmp_subprogs);
	if (!p)
		return -ENOENT;
	return p - env->subprog_starts;

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
	env->subprog_starts[env->subprog_cnt++] = off;
	sort(env->subprog_starts, env->subprog_cnt,
	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			verbose(env, "funcation calls in offloaded programs are not supported yet\n");
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);

	/* now check that all jumps are within the same subprog */
	subprog_start = 0;
	if (env->subprog_cnt == cur_subprog)
		subprog_end = insn_cnt;
	else
		subprog_end = env->subprog_starts[cur_subprog++];
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
			if (env->subprog_cnt == cur_subprog)
				subprog_end = insn_cnt;
			else
				subprog_end = env->subprog_starts[cur_subprog++];
		}
	}
	return 0;
}

826 827 828 829
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
830
{
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
	return 0;
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
879

A
Alexei Starovoitov 已提交
880 881
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
882
		return 0;
A
Alexei Starovoitov 已提交
883

884 885
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
886
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
887
			break;
888 889 890
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
891
		/* ... then we depend on parent's value */
892
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
893 894
		state = parent;
		parent = state->parent;
895
		writes = true;
896
	}
897
	return 0;
898 899 900
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
901 902
			 enum reg_arg_type t)
{
903 904 905
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
906

907
	if (regno >= MAX_BPF_REG) {
908
		verbose(env, "R%d is invalid\n", regno);
909 910 911 912 913 914
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
915
			verbose(env, "R%d !read_ok\n", regno);
916 917
			return -EACCES;
		}
918
		return mark_reg_read(env, vstate, vstate->parent, regno);
919 920 921
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
922
			verbose(env, "frame pointer is read only\n");
923 924
			return -EACCES;
		}
925
		regs[regno].live |= REG_LIVE_WRITTEN;
926
		if (t == DST_OP)
927
			mark_reg_unknown(env, regs, regno);
928 929 930 931
	}
	return 0;
}

932 933 934 935 936 937 938
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
939
	case PTR_TO_PACKET:
940
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
941
	case PTR_TO_PACKET_END:
942 943 944 945 946 947 948
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

949 950 951 952 953 954
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

955 956 957
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
958
static int check_stack_write(struct bpf_verifier_env *env,
959 960
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
961
{
962
	struct bpf_func_state *cur; /* state of the current function */
963
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
964
	enum bpf_reg_type type;
965

966 967
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
968 969
	if (err)
		return err;
970 971 972
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
973 974 975 976 977 978
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
979

980
	cur = env->cur_state->frame[env->cur_state->curframe];
981
	if (value_regno >= 0 &&
982
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
983 984

		/* register containing pointer is being spilled into stack */
985
		if (size != BPF_REG_SIZE) {
986
			verbose(env, "invalid size of register spill\n");
987 988 989
			return -EACCES;
		}

990 991 992 993 994
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

995
		/* save register state */
996
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
997
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
998

999
		for (i = 0; i < BPF_REG_SIZE; i++)
1000
			state->stack[spi].slot_type[i] = STACK_SPILL;
1001
	} else {
1002 1003
		u8 type = STACK_MISC;

1004
		/* regular write of data into stack */
1005
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1023
		for (i = 0; i < size; i++)
1024
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1025
				type;
1026 1027 1028 1029
	}
	return 0;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1062
{
1063
	bool writes = parent == state->parent; /* Observe write marks */
1064 1065

	while (parent) {
1066 1067 1068 1069 1070 1071 1072 1073
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1074
		/* if read wasn't screened by an earlier write ... */
1075
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1076 1077
			break;
		/* ... then we depend on parent's value */
1078
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1079 1080
		state = parent;
		parent = state->parent;
1081
		writes = true;
1082 1083 1084
	}
}

1085
static int check_stack_read(struct bpf_verifier_env *env,
1086 1087
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1088
{
1089 1090
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1091 1092
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1093

1094
	if (reg_state->allocated_stack <= slot) {
1095 1096 1097 1098
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1099
	stype = reg_state->stack[spi].slot_type;
1100

1101
	if (stype[0] == STACK_SPILL) {
1102
		if (size != BPF_REG_SIZE) {
1103
			verbose(env, "invalid size of register spill\n");
1104 1105
			return -EACCES;
		}
1106
		for (i = 1; i < BPF_REG_SIZE; i++) {
1107
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1108
				verbose(env, "corrupted spill memory\n");
1109 1110 1111 1112
				return -EACCES;
			}
		}

1113
		if (value_regno >= 0) {
1114
			/* restore register state from stack */
1115
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1116 1117 1118 1119 1120
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1121
		}
1122 1123
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1124 1125
		return 0;
	} else {
1126 1127
		int zeros = 0;

1128
		for (i = 0; i < size; i++) {
1129 1130 1131 1132 1133
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1134
			}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1152 1153 1154 1155 1156 1157
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1158
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1159
			      int size, bool zero_size_allowed)
1160
{
1161 1162
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1163

1164 1165
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1166
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1167 1168 1169 1170 1171 1172
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1173 1174
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1175
			    int off, int size, bool zero_size_allowed)
1176
{
1177 1178
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1179 1180 1181
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1182 1183 1184
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1185
	 */
1186 1187
	if (env->log.level)
		print_verifier_state(env, state);
1188 1189 1190 1191 1192 1193
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1194
	if (reg->smin_value < 0) {
1195
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1196 1197 1198
			regno);
		return -EACCES;
	}
1199 1200
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1201
	if (err) {
1202 1203
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1204 1205 1206
		return err;
	}

1207 1208 1209
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1210
	 */
1211
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1212
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1213 1214 1215
			regno);
		return -EACCES;
	}
1216 1217
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1218
	if (err)
1219 1220
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1221
	return err;
1222 1223
}

A
Alexei Starovoitov 已提交
1224 1225
#define MAX_PACKET_OFF 0xffff

1226
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1227 1228
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1229
{
1230
	switch (env->prog->type) {
1231 1232 1233 1234 1235
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1236
		/* fallthrough */
1237 1238
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1239
	case BPF_PROG_TYPE_XDP:
1240
	case BPF_PROG_TYPE_LWT_XMIT:
1241
	case BPF_PROG_TYPE_SK_SKB:
1242 1243 1244 1245
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1246 1247 1248 1249 1250 1251
		return true;
	default:
		return false;
	}
}

1252
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1253
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1254
{
1255
	struct bpf_reg_state *regs = cur_regs(env);
1256
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1257

1258 1259
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1260
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1261
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1262 1263 1264 1265 1266
		return -EACCES;
	}
	return 0;
}

1267
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1268
			       int size, bool zero_size_allowed)
1269
{
1270
	struct bpf_reg_state *regs = cur_regs(env);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1282
	if (reg->smin_value < 0) {
1283
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1284 1285 1286
			regno);
		return -EACCES;
	}
1287
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1288
	if (err) {
1289
		verbose(env, "R%d offset is outside of the packet\n", regno);
1290 1291 1292 1293 1294 1295
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1296
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1297
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1298
{
1299 1300 1301
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1302

1303 1304
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
1305 1306 1307 1308 1309 1310
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1311
		 */
1312
		*reg_type = info.reg_type;
1313

1314
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1315 1316 1317
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1318
		return 0;
1319
	}
1320

1321
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1322 1323 1324
	return -EACCES;
}

1325 1326
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1327
{
1328
	if (allow_ptr_leaks)
1329 1330
		return false;

1331
	return reg->type != SCALAR_VALUE;
1332 1333
}

1334 1335
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1336
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1337 1338
}

1339 1340
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1341
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1342
{
1343
	struct tnum reg_off;
1344
	int ip_align;
1345 1346 1347 1348 1349

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1350 1351 1352 1353 1354 1355 1356
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1357
	 */
1358
	ip_align = 2;
1359 1360 1361 1362 1363 1364

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1365 1366
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1367
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1368 1369
		return -EACCES;
	}
1370

A
Alexei Starovoitov 已提交
1371 1372 1373
	return 0;
}

1374 1375
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1376 1377
				       const char *pointer_desc,
				       int off, int size, bool strict)
1378
{
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1390
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1391
			pointer_desc, tn_buf, reg->off, off, size);
1392 1393 1394
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1395 1396 1397
	return 0;
}

1398 1399
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1400 1401
			       int off, int size)
{
1402
	bool strict = env->strict_alignment;
1403
	const char *pointer_desc = "";
1404

1405 1406
	switch (reg->type) {
	case PTR_TO_PACKET:
1407 1408 1409 1410
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1411
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1412 1413 1414 1415 1416 1417 1418 1419 1420
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1421
	default:
1422
		break;
1423
	}
1424 1425
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
	u16 stack = env->subprog_stack_depth[func->subprogno], total = 0;
	struct bpf_verifier_state *cur = env->cur_state;
	int i;

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
	env->subprog_stack_depth[func->subprogno] = -off;

	/* compute the total for current call chain */
	for (i = 0; i <= cur->curframe; i++) {
		u32 depth = env->subprog_stack_depth[cur->frame[i]->subprogno];

		/* round up to 32-bytes, since this is granularity
		 * of interpreter stack sizes
		 */
		depth = round_up(depth, 32);
		total += depth;
	}

	if (total > MAX_BPF_STACK) {
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
			cur->curframe, total);
		return -EACCES;
	}
	return 0;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
	subprog++;
	return env->subprog_stack_depth[subprog];
}

1476 1477 1478 1479 1480 1481
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1482
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1483 1484 1485
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1486 1487
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1488
	struct bpf_func_state *state;
1489 1490 1491 1492 1493 1494
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1495
	/* alignment checks will add in reg->off themselves */
1496
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1497 1498
	if (err)
		return err;
1499

1500 1501 1502 1503
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1504 1505
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1506
			verbose(env, "R%d leaks addr into map\n", value_regno);
1507 1508
			return -EACCES;
		}
1509

1510
		err = check_map_access(env, regno, off, size, false);
1511
		if (!err && t == BPF_READ && value_regno >= 0)
1512
			mark_reg_unknown(env, regs, value_regno);
1513

A
Alexei Starovoitov 已提交
1514
	} else if (reg->type == PTR_TO_CTX) {
1515
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1516

1517 1518
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1519
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1520 1521
			return -EACCES;
		}
1522 1523 1524
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1525
		if (reg->off) {
1526 1527
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1528 1529 1530 1531
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1532 1533 1534
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1535 1536
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1537 1538 1539
				tn_buf, off, size);
			return -EACCES;
		}
1540
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1541
		if (!err && t == BPF_READ && value_regno >= 0) {
1542
			/* ctx access returns either a scalar, or a
1543 1544
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1545 1546
			 */
			if (reg_type == SCALAR_VALUE)
1547
				mark_reg_unknown(env, regs, value_regno);
1548
			else
1549
				mark_reg_known_zero(env, regs,
1550
						    value_regno);
1551 1552 1553 1554
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1555
		}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1566
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1567 1568 1569 1570
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1571
		if (off >= 0 || off < -MAX_BPF_STACK) {
1572 1573
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1574 1575
			return -EACCES;
		}
1576

1577 1578 1579 1580
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1581

1582
		if (t == BPF_WRITE)
1583 1584
			err = check_stack_write(env, state, off, size,
						value_regno);
1585
		else
1586 1587
			err = check_stack_read(env, state, off, size,
					       value_regno);
1588
	} else if (reg_is_pkt_pointer(reg)) {
1589
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1590
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1591 1592
			return -EACCES;
		}
1593 1594
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1595 1596
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1597 1598
			return -EACCES;
		}
1599
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1600
		if (!err && t == BPF_READ && value_regno >= 0)
1601
			mark_reg_unknown(env, regs, value_regno);
1602
	} else {
1603 1604
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1605 1606
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1607

1608
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1609
	    regs[value_regno].type == SCALAR_VALUE) {
1610
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1611 1612 1613
		regs[value_regno].var_off =
			tnum_cast(regs[value_regno].var_off, size);
		__update_reg_bounds(&regs[value_regno]);
A
Alexei Starovoitov 已提交
1614
	}
1615 1616 1617
	return err;
}

1618
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1619 1620 1621 1622 1623
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1624
		verbose(env, "BPF_XADD uses reserved fields\n");
1625 1626 1627 1628
		return -EINVAL;
	}

	/* check src1 operand */
1629
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1630 1631 1632 1633
	if (err)
		return err;

	/* check src2 operand */
1634
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1635 1636 1637
	if (err)
		return err;

1638
	if (is_pointer_value(env, insn->src_reg)) {
1639
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1640 1641 1642
		return -EACCES;
	}

1643
	/* check whether atomic_add can read the memory */
1644
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1645 1646 1647 1648 1649
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1650
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1651 1652 1653 1654 1655
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1656 1657 1658
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1659
 */
1660
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1661 1662
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1663
{
1664
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1665
	struct bpf_func_state *state = func(env, reg);
1666
	int off, i, slot, spi;
1667

1668
	if (reg->type != PTR_TO_STACK) {
1669
		/* Allow zero-byte read from NULL, regardless of pointer type */
1670
		if (zero_size_allowed && access_size == 0 &&
1671
		    register_is_null(reg))
1672 1673
			return 0;

1674
		verbose(env, "R%d type=%s expected=%s\n", regno,
1675
			reg_type_str[reg->type],
1676
			reg_type_str[PTR_TO_STACK]);
1677
		return -EACCES;
1678
	}
1679

1680
	/* Only allow fixed-offset stack reads */
1681
	if (!tnum_is_const(reg->var_off)) {
1682 1683
		char tn_buf[48];

1684
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1685
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1686 1687
			regno, tn_buf);
	}
1688
	off = reg->off + reg->var_off.value;
1689
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1690
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1691
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1692 1693 1694 1695
			regno, off, access_size);
		return -EACCES;
	}

1696 1697 1698 1699 1700 1701
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1702
	for (i = 0; i < access_size; i++) {
1703 1704
		u8 *stype;

1705 1706
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1707 1708 1709 1710 1711 1712 1713 1714 1715
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1716
		}
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1727
	}
1728
	return update_stack_depth(env, state, off);
1729 1730
}

1731 1732 1733 1734
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1735
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1736

1737
	switch (reg->type) {
1738
	case PTR_TO_PACKET:
1739
	case PTR_TO_PACKET_META:
1740 1741
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1742
	case PTR_TO_MAP_VALUE:
1743 1744
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1745
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1746 1747 1748 1749 1750
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1751
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1752 1753
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1754
{
1755
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1756
	enum bpf_reg_type expected_type, type = reg->type;
1757 1758
	int err = 0;

1759
	if (arg_type == ARG_DONTCARE)
1760 1761
		return 0;

1762 1763 1764
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1765

1766 1767
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1768 1769
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1770 1771
			return -EACCES;
		}
1772
		return 0;
1773
	}
1774

1775
	if (type_is_pkt_pointer(type) &&
1776
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1777
		verbose(env, "helper access to the packet is not allowed\n");
1778 1779 1780
		return -EACCES;
	}

1781
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1782 1783
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1784 1785
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1786
			goto err_type;
1787 1788
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1789 1790
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1791
			goto err_type;
1792 1793
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1794 1795
		if (type != expected_type)
			goto err_type;
1796 1797
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1798 1799
		if (type != expected_type)
			goto err_type;
1800
	} else if (arg_type == ARG_PTR_TO_MEM ||
1801
		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1802
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1803 1804
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1805
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1806 1807
		 * happens during stack boundary checking.
		 */
1808
		if (register_is_null(reg) &&
1809
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1810
			/* final test in check_stack_boundary() */;
1811 1812
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1813
			 type != expected_type)
1814
			goto err_type;
1815
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1816
	} else {
1817
		verbose(env, "unsupported arg_type %d\n", arg_type);
1818 1819 1820 1821 1822
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1823
		meta->map_ptr = reg->map_ptr;
1824 1825 1826 1827 1828
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1829
		if (!meta->map_ptr) {
1830 1831 1832 1833 1834
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1835
			verbose(env, "invalid map_ptr to access map->key\n");
1836 1837
			return -EACCES;
		}
1838
		if (type_is_pkt_pointer(type))
1839
			err = check_packet_access(env, regno, reg->off,
1840 1841
						  meta->map_ptr->key_size,
						  false);
1842 1843 1844 1845
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1846 1847 1848 1849
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1850
		if (!meta->map_ptr) {
1851
			/* kernel subsystem misconfigured verifier */
1852
			verbose(env, "invalid map_ptr to access map->value\n");
1853 1854
			return -EACCES;
		}
1855
		if (type_is_pkt_pointer(type))
1856
			err = check_packet_access(env, regno, reg->off,
1857 1858
						  meta->map_ptr->value_size,
						  false);
1859 1860 1861 1862
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1863 1864 1865
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1866 1867 1868 1869 1870 1871 1872

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1873 1874
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1875 1876
			return -EACCES;
		}
1877

1878 1879
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1880
		 */
1881 1882

		if (!tnum_is_const(reg->var_off))
1883 1884 1885 1886 1887 1888 1889
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1890
		if (reg->smin_value < 0) {
1891
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1892 1893 1894
				regno);
			return -EACCES;
		}
1895

1896
		if (reg->umin_value == 0) {
1897 1898 1899
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1900 1901 1902
			if (err)
				return err;
		}
1903

1904
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1905
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1906 1907 1908 1909
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1910
					      reg->umax_value,
1911
					      zero_size_allowed, meta);
1912 1913 1914
	}

	return err;
1915
err_type:
1916
	verbose(env, "R%d type=%s expected=%s\n", regno,
1917 1918
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1919 1920
}

1921 1922
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1923 1924 1925 1926
{
	if (!map)
		return 0;

1927 1928 1929 1930 1931 1932 1933 1934
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1935 1936
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1937 1938 1939 1940 1941 1942
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1943
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1944
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1945
		    func_id != BPF_FUNC_current_task_under_cgroup)
1946 1947
			goto error;
		break;
1948 1949 1950 1951 1952
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1953
		if (func_id != BPF_FUNC_redirect_map)
1954 1955
			goto error;
		break;
1956 1957 1958 1959 1960
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1961
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1962
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1963 1964
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1965
		break;
1966 1967 1968 1969 1970 1971
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1972 1973 1974 1975 1976 1977 1978 1979 1980
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
1981 1982 1983 1984
		if (env->subprog_cnt) {
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
1985 1986 1987
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1988
	case BPF_FUNC_perf_event_read_value:
1989 1990 1991 1992 1993 1994 1995
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1996
	case BPF_FUNC_current_task_under_cgroup:
1997
	case BPF_FUNC_skb_under_cgroup:
1998 1999 2000
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2001
	case BPF_FUNC_redirect_map:
2002 2003
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
2004 2005
			goto error;
		break;
2006 2007 2008 2009 2010 2011 2012 2013
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2014 2015
	default:
		break;
2016 2017 2018
	}

	return 0;
2019
error:
2020
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2021
		map->map_type, func_id_name(func_id), func_id);
2022
	return -EINVAL;
2023 2024
}

2025 2026 2027 2028
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

2029
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2030
		count++;
2031
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2032
		count++;
2033
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2034
		count++;
2035
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2036
		count++;
2037
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2038 2039 2040 2041 2042
		count++;

	return count > 1 ? -EINVAL : 0;
}

2043 2044
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2045
 */
2046 2047
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2048
{
2049
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2050 2051 2052
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2053
		if (reg_is_pkt_pointer_any(&regs[i]))
2054
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2055

2056 2057
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2058
			continue;
2059
		reg = &state->stack[i].spilled_ptr;
2060 2061
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2062 2063 2064
	}
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

	if (state->curframe >= MAX_CALL_FRAMES) {
		verbose(env, "the call stack of %d frames is too deep\n",
			state->curframe);
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
			subprog + 1 /* subprog number within this prog */);

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2180 2181
{
	const struct bpf_func_proto *fn = NULL;
2182
	struct bpf_reg_state *regs;
2183
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2184
	bool changes_data;
2185 2186 2187 2188
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2189 2190
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2191 2192 2193
		return -EINVAL;
	}

2194 2195
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
2196 2197

	if (!fn) {
2198 2199
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2200 2201 2202 2203
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2204
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2205
		verbose(env, "cannot call GPL only function from proprietary program\n");
2206 2207 2208
		return -EINVAL;
	}

2209
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
2210

2211
	memset(&meta, 0, sizeof(meta));
2212
	meta.pkt_access = fn->pkt_access;
2213

2214 2215 2216 2217 2218
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
2219
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2220
			func_id_name(func_id), func_id);
2221 2222 2223
		return err;
	}

2224
	/* check args */
2225
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2226 2227
	if (err)
		return err;
2228
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2229 2230
	if (err)
		return err;
2231
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2232 2233
	if (err)
		return err;
2234
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2235 2236
	if (err)
		return err;
2237
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2238 2239 2240
	if (err)
		return err;

2241 2242 2243 2244
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2245
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
2246 2247 2248 2249
		if (err)
			return err;
	}

2250
	regs = cur_regs(env);
2251
	/* reset caller saved regs */
2252
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2253
		mark_reg_not_init(env, regs, caller_saved[i]);
2254 2255
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2256

2257
	/* update return register (already marked as written above) */
2258
	if (fn->ret_type == RET_INTEGER) {
2259
		/* sets type to SCALAR_VALUE */
2260
		mark_reg_unknown(env, regs, BPF_REG_0);
2261 2262 2263
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2264 2265
		struct bpf_insn_aux_data *insn_aux;

2266
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2267
		/* There is no offset yet applied, variable or fixed */
2268
		mark_reg_known_zero(env, regs, BPF_REG_0);
2269
		regs[BPF_REG_0].off = 0;
2270 2271 2272 2273
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2274
		if (meta.map_ptr == NULL) {
2275 2276
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2277 2278
			return -EINVAL;
		}
2279
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2280
		regs[BPF_REG_0].id = ++env->id_gen;
2281 2282 2283 2284 2285
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2286
	} else {
2287
		verbose(env, "unknown return type %d of func %s#%d\n",
2288
			fn->ret_type, func_id_name(func_id), func_id);
2289 2290
		return -EINVAL;
	}
2291

2292
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2293 2294
	if (err)
		return err;
2295

A
Alexei Starovoitov 已提交
2296 2297 2298 2299 2300
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2301 2302 2303 2304
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2327 2328
}

2329 2330 2331 2332 2333 2334 2335 2336 2337
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2338
{
2339 2340 2341
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2342
	bool known = tnum_is_const(off_reg->var_off);
2343 2344 2345 2346
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2347
	u8 opcode = BPF_OP(insn->code);
2348
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2349

2350
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2351

2352
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
2353
		print_verifier_state(env, state);
2354 2355
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
2356 2357 2358
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
2359
		print_verifier_state(env, state);
2360 2361
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
2362 2363 2364 2365 2366 2367
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
2368 2369
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
2370 2371
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
2372 2373
	}

2374 2375
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
2376
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2377 2378 2379 2380 2381
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
2382
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2383 2384 2385 2386 2387
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
2388
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2389 2390 2391 2392 2393 2394
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2395
	 */
2396 2397
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2398

2399 2400 2401 2402
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2403
		 */
2404 2405
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2406
			/* pointer += K.  Accumulate it into fixed offset */
2407 2408 2409 2410
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2411
			dst_reg->var_off = ptr_reg->var_off;
2412
			dst_reg->off = ptr_reg->off + smin_val;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2424
		 */
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2441 2442
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2443
		if (reg_is_pkt_pointer(ptr_reg)) {
2444 2445 2446 2447 2448 2449 2450 2451 2452
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
2453
				verbose(env, "R%d tried to subtract pointer from scalar\n",
2454 2455 2456 2457 2458 2459
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2460
		 */
2461 2462
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
2463
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
2464 2465 2466
					dst);
			return -EACCES;
		}
2467 2468
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2469
			/* pointer -= K.  Subtract it from fixed offset */
2470 2471 2472 2473
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2474 2475
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2476
			dst_reg->off = ptr_reg->off - smin_val;
2477 2478 2479 2480 2481
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2482
		 */
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2501 2502
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2503
		if (reg_is_pkt_pointer(ptr_reg)) {
2504 2505
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2506
			if (smin_val < 0)
2507
				dst_reg->range = 0;
2508
		}
2509 2510 2511 2512 2513 2514 2515 2516 2517
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
2518
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2519 2520 2521 2522 2523
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
2524
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2525 2526
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
2527 2528
	}

2529 2530 2531
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2532 2533 2534
	return 0;
}

2535 2536 2537 2538
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2539
{
2540
	struct bpf_reg_state *regs = cur_regs(env);
2541
	u8 opcode = BPF_OP(insn->code);
2542
	bool src_known, dst_known;
2543 2544
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
2545

2546 2547 2548 2549
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
2550
	}
2551 2552 2553 2554
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2555 2556
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2557

2558 2559
	switch (opcode) {
	case BPF_ADD:
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2576
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2577 2578
		break;
	case BPF_SUB:
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2597
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2598 2599
		break;
	case BPF_MUL:
2600 2601
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2602
			/* Ain't nobody got time to multiply that sign */
2603 2604
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2605 2606
			break;
		}
2607 2608
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2609
		 */
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2627 2628
		break;
	case BPF_AND:
2629
		if (src_known && dst_known) {
2630 2631
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2632 2633
			break;
		}
2634 2635
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2636
		 */
2637
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2655 2656 2657
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2658 2659
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2660 2661
			break;
		}
2662 2663
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2664 2665
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2666 2667 2668 2669 2670 2671 2672 2673 2674
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2675
		} else {
2676 2677 2678 2679 2680
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2681
		}
2682 2683
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2684 2685
		break;
	case BPF_LSH:
2686 2687 2688 2689
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2690
			mark_reg_unknown(env, regs, insn->dst_reg);
2691 2692
			break;
		}
2693 2694
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2695
		 */
2696 2697 2698 2699 2700 2701
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2702
		} else {
2703 2704
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2705
		}
2706 2707 2708 2709 2710 2711
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2712 2713
		break;
	case BPF_RSH:
2714 2715 2716 2717
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2718
			mark_reg_unknown(env, regs, insn->dst_reg);
2719 2720 2721
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2722 2723
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2724
				/* Sign bit will be cleared */
2725 2726 2727 2728 2729 2730
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2731
		} else {
2732 2733
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2734
		}
2735
		if (src_known)
2736 2737
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2738
		else
2739 2740 2741 2742 2743
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2744 2745
		break;
	default:
2746
		mark_reg_unknown(env, regs, insn->dst_reg);
2747 2748 2749
		break;
	}

2750 2751
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2752 2753 2754 2755 2756 2757 2758 2759 2760
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2761 2762 2763
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2780
					verbose(env, "R%d pointer %s pointer prohibited\n",
2781 2782 2783 2784
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2785
				mark_reg_unknown(env, regs, insn->dst_reg);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2820
		__mark_reg_known(&off_reg, insn->imm);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2837
		print_verifier_state(env, state);
2838
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2839 2840 2841
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2842
		print_verifier_state(env, state);
2843
		verbose(env, "verifier internal error: no src_reg\n");
2844 2845 2846
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2847 2848
}

2849
/* check validity of 32-bit and 64-bit arithmetic operations */
2850
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2851
{
2852
	struct bpf_reg_state *regs = cur_regs(env);
2853 2854 2855 2856 2857 2858 2859 2860
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2861
				verbose(env, "BPF_NEG uses reserved fields\n");
2862 2863 2864 2865
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2866 2867
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2868
				verbose(env, "BPF_END uses reserved fields\n");
2869 2870 2871 2872 2873
				return -EINVAL;
			}
		}

		/* check src operand */
2874
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2875 2876 2877
		if (err)
			return err;

2878
		if (is_pointer_value(env, insn->dst_reg)) {
2879
			verbose(env, "R%d pointer arithmetic prohibited\n",
2880 2881 2882 2883
				insn->dst_reg);
			return -EACCES;
		}

2884
		/* check dest operand */
2885
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2886 2887 2888 2889 2890 2891 2892
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2893
				verbose(env, "BPF_MOV uses reserved fields\n");
2894 2895 2896 2897
				return -EINVAL;
			}

			/* check src operand */
2898
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2899 2900 2901 2902
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2903
				verbose(env, "BPF_MOV uses reserved fields\n");
2904 2905 2906 2907 2908
				return -EINVAL;
			}
		}

		/* check dest operand */
2909
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2910 2911 2912 2913 2914 2915 2916 2917 2918
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2919
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2920
			} else {
2921
				/* R1 = (u32) R2 */
2922
				if (is_pointer_value(env, insn->src_reg)) {
2923 2924
					verbose(env,
						"R%d partial copy of pointer\n",
2925 2926 2927
						insn->src_reg);
					return -EACCES;
				}
2928
				mark_reg_unknown(env, regs, insn->dst_reg);
2929
				/* high 32 bits are known zero. */
2930 2931
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2932
				__update_reg_bounds(&regs[insn->dst_reg]);
2933 2934 2935 2936 2937
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2938
			regs[insn->dst_reg].type = SCALAR_VALUE;
2939
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2940 2941 2942
		}

	} else if (opcode > BPF_END) {
2943
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2944 2945 2946 2947 2948 2949
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2950
				verbose(env, "BPF_ALU uses reserved fields\n");
2951 2952 2953
				return -EINVAL;
			}
			/* check src1 operand */
2954
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2955 2956 2957 2958
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2959
				verbose(env, "BPF_ALU uses reserved fields\n");
2960 2961 2962 2963 2964
				return -EINVAL;
			}
		}

		/* check src2 operand */
2965
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2966 2967 2968 2969 2970
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2971
			verbose(env, "div by zero\n");
2972 2973 2974
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2975 2976 2977 2978 2979
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2980
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2981 2982 2983 2984
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2985
		/* check dest operand */
2986
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2987 2988 2989
		if (err)
			return err;

2990
		return adjust_reg_min_max_vals(env, insn);
2991 2992 2993 2994 2995
	}

	return 0;
}

2996
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
2997
				   struct bpf_reg_state *dst_reg,
2998
				   enum bpf_reg_type type,
2999
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3000
{
3001
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3002
	struct bpf_reg_state *regs = state->regs, *reg;
3003
	u16 new_range;
3004
	int i, j;
3005

3006 3007
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3008 3009 3010
		/* This doesn't give us any range */
		return;

3011 3012
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3013 3014 3015 3016 3017
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3018 3019 3020 3021 3022
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3023
	 *
3024
	 * pkt_data in dst register:
3025 3026 3027 3028 3029 3030
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3031 3032 3033 3034 3035
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3036 3037 3038 3039 3040
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3041
	 * pkt_data in src register:
3042 3043 3044 3045 3046 3047
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3048 3049 3050 3051 3052
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3053 3054 3055 3056 3057 3058
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3059 3060 3061
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3062
	 */
3063

3064 3065 3066 3067 3068
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3069
	for (i = 0; i < MAX_BPF_REG; i++)
3070
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3071
			/* keep the maximum range already checked */
3072
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3083 3084 3085
	}
}

3086 3087 3088
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3089
 * In JEQ/JNE cases we also adjust the var_off values.
3090 3091 3092 3093 3094
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3095 3096 3097 3098 3099 3100 3101 3102
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3103

3104 3105 3106 3107 3108
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3109
		__mark_reg_known(true_reg, val);
3110 3111 3112 3113 3114
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3115
		__mark_reg_known(false_reg, val);
3116 3117
		break;
	case BPF_JGT:
3118 3119 3120
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3121
	case BPF_JSGT:
3122 3123
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3124
		break;
3125 3126 3127 3128 3129 3130 3131 3132
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3133
	case BPF_JGE:
3134 3135 3136
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3137
	case BPF_JSGE:
3138 3139
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3140
		break;
3141 3142 3143 3144 3145 3146 3147 3148
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3149 3150 3151 3152
	default:
		break;
	}

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3164 3165
}

3166 3167
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3168 3169 3170 3171 3172
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3173 3174
	if (__is_pointer_value(false, false_reg))
		return;
3175

3176 3177 3178 3179 3180
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3181
		__mark_reg_known(true_reg, val);
3182 3183 3184 3185 3186
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3187
		__mark_reg_known(false_reg, val);
3188 3189
		break;
	case BPF_JGT:
3190 3191 3192
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3193
	case BPF_JSGT:
3194 3195
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3196
		break;
3197 3198 3199 3200 3201 3202 3203 3204
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3205
	case BPF_JGE:
3206 3207 3208
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3209
	case BPF_JSGE:
3210 3211
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3212
		break;
3213 3214 3215 3216 3217 3218 3219 3220
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3221 3222 3223 3224
	default:
		break;
	}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3236 3237 3238 3239 3240 3241
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3242 3243 3244 3245 3246 3247 3248 3249
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3250 3251
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3281
		break;
3282
	}
3283 3284
}

3285
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3286
			 bool is_null)
3287 3288 3289 3290
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3291 3292 3293 3294
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3295 3296
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3297
				 reg->off)) {
3298 3299
			__mark_reg_known_zero(reg);
			reg->off = 0;
3300 3301 3302
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3303 3304 3305 3306
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3307
			reg->type = PTR_TO_MAP_VALUE;
3308
		}
3309 3310 3311 3312 3313
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3314 3315 3316 3317 3318 3319
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3320
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3321
			  bool is_null)
3322
{
3323
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3324
	struct bpf_reg_state *regs = state->regs;
3325
	u32 id = regs[regno].id;
3326
	int i, j;
3327 3328

	for (i = 0; i < MAX_BPF_REG; i++)
3329
		mark_map_reg(regs, i, id, is_null);
3330

3331 3332 3333 3334 3335 3336 3337
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3338 3339 3340
	}
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3434
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3435 3436
			     struct bpf_insn *insn, int *insn_idx)
{
3437 3438 3439 3440
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3441 3442 3443
	u8 opcode = BPF_OP(insn->code);
	int err;

3444
	if (opcode > BPF_JSLE) {
3445
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3446 3447 3448 3449 3450
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3451
			verbose(env, "BPF_JMP uses reserved fields\n");
3452 3453 3454 3455
			return -EINVAL;
		}

		/* check src1 operand */
3456
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3457 3458
		if (err)
			return err;
3459 3460

		if (is_pointer_value(env, insn->src_reg)) {
3461
			verbose(env, "R%d pointer comparison prohibited\n",
3462 3463 3464
				insn->src_reg);
			return -EACCES;
		}
3465 3466
	} else {
		if (insn->src_reg != BPF_REG_0) {
3467
			verbose(env, "BPF_JMP uses reserved fields\n");
3468 3469 3470 3471 3472
			return -EINVAL;
		}
	}

	/* check src2 operand */
3473
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3474 3475 3476
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3477 3478
	dst_reg = &regs[insn->dst_reg];

3479 3480 3481
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3482
	    dst_reg->type == SCALAR_VALUE &&
3483 3484 3485
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3503
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3504

3505 3506
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3507 3508 3509 3510
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3511 3512
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3513 3514 3515
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3516
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3517 3518 3519
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3520
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3521 3522 3523 3524
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3525 3526
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3527 3528 3529 3530
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3531
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3532 3533 3534
					dst_reg, insn->imm, opcode);
	}

3535
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3536
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3537 3538
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3539 3540 3541
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3542 3543
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3544 3545 3546
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3547 3548
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3549
		return -EACCES;
3550
	}
3551
	if (env->log.level)
3552
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3553 3554 3555
	return 0;
}

3556 3557 3558 3559 3560 3561 3562 3563
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3564
/* verify BPF_LD_IMM64 instruction */
3565
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3566
{
3567
	struct bpf_reg_state *regs = cur_regs(env);
3568 3569 3570
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3571
		verbose(env, "invalid BPF_LD_IMM insn\n");
3572 3573 3574
		return -EINVAL;
	}
	if (insn->off != 0) {
3575
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3576 3577 3578
		return -EINVAL;
	}

3579
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3580 3581 3582
	if (err)
		return err;

3583 3584 3585
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3586
		regs[insn->dst_reg].type = SCALAR_VALUE;
3587
		__mark_reg_known(&regs[insn->dst_reg], imm);
3588
		return 0;
3589
	}
3590 3591 3592 3593 3594 3595 3596 3597 3598

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3599 3600 3601 3602 3603
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3604
	case BPF_PROG_TYPE_SCHED_ACT:
3605 3606 3607 3608 3609 3610
		return true;
	default:
		return false;
	}
}

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3626
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3627
{
3628
	struct bpf_reg_state *regs = cur_regs(env);
3629 3630 3631
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3632
	if (!may_access_skb(env->prog->type)) {
3633
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3634 3635 3636
		return -EINVAL;
	}

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	if (env->subprog_cnt) {
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3649
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3650
	    BPF_SIZE(insn->code) == BPF_DW ||
3651
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3652
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3653 3654 3655 3656
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3657
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3658 3659 3660 3661
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3662 3663
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3664 3665 3666 3667 3668
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3669
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3670 3671 3672 3673 3674
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3675
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3676
		mark_reg_not_init(env, regs, caller_saved[i]);
3677 3678
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3679 3680

	/* mark destination R0 register as readable, since it contains
3681 3682
	 * the value fetched from the packet.
	 * Already marked as written above.
3683
	 */
3684
	mark_reg_unknown(env, regs, BPF_REG_0);
3685 3686 3687
	return 0;
}

3688 3689 3690 3691 3692 3693 3694 3695 3696
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
3697
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3698 3699 3700 3701 3702
		break;
	default:
		return 0;
	}

3703
	reg = cur_regs(env) + BPF_REG_0;
3704
	if (reg->type != SCALAR_VALUE) {
3705
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3706 3707 3708 3709 3710
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3711
		verbose(env, "At program exit the register R0 ");
3712 3713 3714 3715
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3716
			verbose(env, "has value %s", tn_buf);
3717
		} else {
3718
			verbose(env, "has unknown scalar value");
3719
		}
3720
		verbose(env, " should have been 0 or 1\n");
3721 3722 3723 3724 3725
		return -EINVAL;
	}
	return 0;
}

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3766
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3767

3768 3769 3770 3771 3772 3773 3774 3775 3776
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3777
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3778 3779 3780 3781 3782 3783 3784 3785
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3786
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3787 3788 3789
		return -EINVAL;
	}

3790 3791 3792 3793
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3794 3795 3796 3797 3798 3799 3800 3801 3802
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3803
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3804 3805 3806 3807 3808
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3809
		verbose(env, "insn state internal bug\n");
3810 3811 3812 3813 3814 3815 3816 3817
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3818
static int check_cfg(struct bpf_verifier_env *env)
3819 3820 3821 3822 3823 3824
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

3825 3826 3827 3828
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3859 3860
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3861 3862 3863 3864 3865 3866 3867 3868
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3881 3882 3883
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3884 3885
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3886 3887
		} else {
			/* conditional jump with two edges */
3888
			env->explored_states[t] = STATE_LIST_MARK;
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3915
		verbose(env, "pop stack internal bug\n");
3916 3917 3918 3919 3920 3921 3922 3923
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3924
			verbose(env, "unreachable insn %d\n", i);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3937 3938 3939 3940
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3941 3942 3943 3944
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3963
 */
3964
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3965
{
3966
	unsigned int i;
A
Alexei Starovoitov 已提交
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3984 3985
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3986
{
3987 3988
	bool equal;

3989 3990 3991 3992
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

3993 3994 3995 3996 3997 3998 3999 4000 4001
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4002 4003
		return true;

4004 4005
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4006
		return true;
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
4020 4021 4022 4023
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
4024 4025 4026
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
4027 4028 4029 4030 4031 4032 4033 4034
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4049
	case PTR_TO_PACKET_META:
4050
	case PTR_TO_PACKET:
4051
		if (rcur->type != rold->type)
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4082

4083 4084
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4085 4086 4087
	return false;
}

4088 4089
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4107 4108 4109 4110
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
			return true;

4111 4112
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4113 4114 4115 4116 4117 4118 4119
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4176 4177
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4178
{
4179 4180
	struct idpair *idmap;
	bool ret = false;
4181 4182
	int i;

4183 4184 4185
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4186
		return false;
4187 4188

	for (i = 0; i < MAX_BPF_REG; i++) {
4189
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4190
			goto out_free;
4191 4192
	}

4193 4194
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4195 4196 4197 4198
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4199 4200
}

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4222
/* A write screens off any subsequent reads; but write marks come from the
4223 4224 4225 4226 4227
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4228
 */
4229 4230 4231
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4232
{
4233 4234
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4235

4236 4237 4238 4239 4240
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4241 4242 4243 4244
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4245
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4246
			continue;
4247 4248 4249 4250
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4251 4252
		}
	}
4253

4254
	/* ... and stack slots */
4255 4256 4257 4258 4259 4260 4261 4262 4263
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4264 4265
		}
	}
4266
	return err;
4267 4268
}

4269
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4270
{
4271 4272
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4273
	struct bpf_verifier_state *cur = env->cur_state;
4274
	int i, j, err;
4275 4276 4277 4278 4279 4280 4281 4282 4283

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4284
		if (states_equal(env, &sl->state, cur)) {
4285
			/* reached equivalent register/stack state,
4286 4287
			 * prune the search.
			 * Registers read by the continuation are read by us.
4288 4289 4290 4291 4292 4293
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4294
			 */
4295 4296 4297
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4298
			return 1;
4299
		}
4300 4301 4302 4303 4304
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4305 4306 4307 4308
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4309
	 */
4310
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4311 4312 4313 4314
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4315 4316 4317 4318 4319 4320
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4321 4322
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4323
	/* connect new state to parentage chain */
4324
	cur->parent = &new_sl->state;
4325 4326 4327 4328 4329 4330
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4331
	for (i = 0; i < BPF_REG_FP; i++)
4332 4333 4334 4335 4336 4337 4338
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4339
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4340
	}
4341 4342 4343
	return 0;
}

4344 4345 4346
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
4347 4348
	if (env->dev_ops && env->dev_ops->insn_hook)
		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
4349

4350
	return 0;
4351 4352
}

4353
static int do_check(struct bpf_verifier_env *env)
4354
{
4355
	struct bpf_verifier_state *state;
4356
	struct bpf_insn *insns = env->prog->insnsi;
4357
	struct bpf_reg_state *regs;
4358
	int insn_cnt = env->prog->len, i;
4359 4360 4361 4362
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4363 4364 4365
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4366
	state->curframe = 0;
4367
	state->parent = NULL;
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4378 4379 4380 4381 4382 4383 4384
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4385
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4386 4387 4388 4389 4390 4391 4392
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4393
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4394 4395
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4396 4397 4398 4399
				insn_processed);
			return -E2BIG;
		}

4400 4401 4402 4403 4404
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4405
			if (env->log.level) {
4406
				if (do_print_state)
4407
					verbose(env, "\nfrom %d to %d: safe\n",
4408 4409
						prev_insn_idx, insn_idx);
				else
4410
					verbose(env, "%d: safe\n", insn_idx);
4411 4412 4413 4414
			}
			goto process_bpf_exit;
		}

4415 4416 4417
		if (need_resched())
			cond_resched();

4418 4419 4420
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4421
			else
4422
				verbose(env, "\nfrom %d to %d:",
4423
					prev_insn_idx, insn_idx);
4424
			print_verifier_state(env, state->frame[state->curframe]);
4425 4426 4427
			do_print_state = false;
		}

4428 4429
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
4430 4431
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
4432 4433
		}

4434 4435 4436 4437
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

4438
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4439
		env->insn_aux_data[insn_idx].seen = true;
4440
		if (class == BPF_ALU || class == BPF_ALU64) {
4441
			err = check_alu_op(env, insn);
4442 4443 4444 4445
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4446
			enum bpf_reg_type *prev_src_type, src_reg_type;
4447 4448 4449

			/* check for reserved fields is already done */

4450
			/* check src operand */
4451
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4452 4453 4454
			if (err)
				return err;

4455
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4456 4457 4458
			if (err)
				return err;

4459 4460
			src_reg_type = regs[insn->src_reg].type;

4461 4462 4463
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4464
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4465 4466 4467 4468 4469
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

4470 4471 4472
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4473 4474
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4475
				 * save type to validate intersecting paths
4476
				 */
4477
				*prev_src_type = src_reg_type;
4478

4479
			} else if (src_reg_type != *prev_src_type &&
4480
				   (src_reg_type == PTR_TO_CTX ||
4481
				    *prev_src_type == PTR_TO_CTX)) {
4482 4483 4484 4485 4486 4487 4488
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4489
				verbose(env, "same insn cannot be used with different pointers\n");
4490 4491 4492
				return -EINVAL;
			}

4493
		} else if (class == BPF_STX) {
4494
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4495

4496
			if (BPF_MODE(insn->code) == BPF_XADD) {
4497
				err = check_xadd(env, insn_idx, insn);
4498 4499 4500 4501 4502 4503 4504
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4505
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4506 4507 4508
			if (err)
				return err;
			/* check src2 operand */
4509
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4510 4511 4512
			if (err)
				return err;

4513 4514
			dst_reg_type = regs[insn->dst_reg].type;

4515
			/* check that memory (dst_reg + off) is writeable */
4516
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4517 4518 4519 4520 4521
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

4522 4523 4524 4525 4526
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4527
				   (dst_reg_type == PTR_TO_CTX ||
4528
				    *prev_dst_type == PTR_TO_CTX)) {
4529
				verbose(env, "same insn cannot be used with different pointers\n");
4530 4531 4532
				return -EINVAL;
			}

4533 4534 4535
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4536
				verbose(env, "BPF_ST uses reserved fields\n");
4537 4538 4539
				return -EINVAL;
			}
			/* check src operand */
4540
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4541 4542 4543 4544
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
4545
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4557 4558
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4559
				    insn->dst_reg != BPF_REG_0) {
4560
					verbose(env, "BPF_CALL uses reserved fields\n");
4561 4562 4563
					return -EINVAL;
				}

4564 4565 4566 4567
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4568 4569 4570 4571 4572 4573 4574 4575
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4576
					verbose(env, "BPF_JA uses reserved fields\n");
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4588
					verbose(env, "BPF_EXIT uses reserved fields\n");
4589 4590 4591
					return -EINVAL;
				}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4602 4603 4604 4605 4606 4607
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4608
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4609 4610 4611
				if (err)
					return err;

4612
				if (is_pointer_value(env, BPF_REG_0)) {
4613
					verbose(env, "R0 leaks addr as return value\n");
4614 4615 4616
					return -EACCES;
				}

4617 4618 4619
				err = check_return_code(env);
				if (err)
					return err;
4620
process_bpf_exit:
4621 4622 4623 4624
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4639 4640 4641 4642
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4643 4644 4645 4646 4647 4648
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4649
				env->insn_aux_data[insn_idx].seen = true;
4650
			} else {
4651
				verbose(env, "invalid BPF_LD mode\n");
4652 4653 4654
				return -EINVAL;
			}
		} else {
4655
			verbose(env, "unknown insn class %d\n", class);
4656 4657 4658 4659 4660 4661
			return -EINVAL;
		}

		insn_idx++;
	}

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
	verbose(env, "processed %d insns, stack depth ", insn_processed);
	for (i = 0; i < env->subprog_cnt + 1; i++) {
		u32 depth = env->subprog_stack_depth[i];

		verbose(env, "%d", depth);
		if (i + 1 < env->subprog_cnt + 1)
			verbose(env, "+");
	}
	verbose(env, "\n");
	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4672 4673 4674
	return 0;
}

4675 4676 4677
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4678 4679
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4680 4681 4682
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4683 4684
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4685 4686 4687
					struct bpf_prog *prog)

{
4688 4689 4690 4691 4692 4693 4694
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4695
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4696 4697 4698 4699
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4700
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4701 4702
			return -EINVAL;
		}
4703 4704 4705 4706
	}
	return 0;
}

4707 4708 4709
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4710
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4711 4712 4713
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4714
	int i, j, err;
4715

4716
	err = bpf_prog_calc_tag(env->prog);
4717 4718 4719
	if (err)
		return err;

4720
	for (i = 0; i < insn_cnt; i++, insn++) {
4721
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4722
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4723
			verbose(env, "BPF_LDX uses reserved fields\n");
4724 4725 4726
			return -EINVAL;
		}

4727 4728 4729
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4730
			verbose(env, "BPF_STX uses reserved fields\n");
4731 4732 4733
			return -EINVAL;
		}

4734 4735 4736 4737 4738 4739 4740
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4741
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4742 4743 4744 4745 4746 4747 4748 4749
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4750 4751
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4752 4753 4754 4755
				return -EINVAL;
			}

			f = fdget(insn->imm);
4756
			map = __bpf_map_get(f);
4757
			if (IS_ERR(map)) {
4758
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4759 4760 4761 4762
					insn->imm);
				return PTR_ERR(map);
			}

4763
			err = check_map_prog_compatibility(env, map, env->prog);
4764 4765 4766 4767 4768
			if (err) {
				fdput(f);
				return err;
			}

4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4790 4791 4792 4793 4794 4795 4796
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4812
static void release_maps(struct bpf_verifier_env *env)
4813 4814 4815 4816 4817 4818 4819 4820
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4821
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4832 4833 4834 4835 4836 4837 4838 4839
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
4840
	int i;
4841 4842 4843 4844 4845 4846 4847 4848 4849

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
4850 4851
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
4852 4853 4854 4855 4856
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
	for (i = 0; i < env->subprog_cnt; i++) {
		if (env->subprog_starts[i] < off)
			continue;
		env->subprog_starts[i] += len - 1;
	}
}

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
4880
	adjust_subprog_starts(env, off, len);
4881 4882 4883
	return new_prog;
}

A
Alexei Starovoitov 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
/* The verifier does more data flow analysis than llvm and will not explore
 * branches that are dead at run time. Malicious programs can have dead code
 * too. Therefore replace all dead at-run-time code with nops.
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
		memcpy(insn + i, &nop, sizeof(nop));
	}
}

4903 4904 4905
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4906
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4907
{
4908
	const struct bpf_verifier_ops *ops = env->ops;
4909
	int i, cnt, size, ctx_field_size, delta = 0;
4910
	const int insn_cnt = env->prog->len;
4911
	struct bpf_insn insn_buf[16], *insn;
4912
	struct bpf_prog *new_prog;
4913
	enum bpf_access_type type;
4914 4915
	bool is_narrower_load;
	u32 target_size;
4916

4917 4918 4919 4920
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4921
			verbose(env, "bpf verifier is misconfigured\n");
4922 4923
			return -EINVAL;
		} else if (cnt) {
4924
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4925 4926
			if (!new_prog)
				return -ENOMEM;
4927

4928
			env->prog = new_prog;
4929
			delta += cnt - 1;
4930 4931 4932 4933
		}
	}

	if (!ops->convert_ctx_access)
4934 4935
		return 0;

4936
	insn = env->prog->insnsi + delta;
4937

4938
	for (i = 0; i < insn_cnt; i++, insn++) {
4939 4940 4941
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4942
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4943
			type = BPF_READ;
4944 4945 4946
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4947
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4948 4949
			type = BPF_WRITE;
		else
4950 4951
			continue;

4952
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4953 4954
			continue;

4955
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4956
		size = BPF_LDST_BYTES(insn);
4957 4958 4959 4960 4961 4962

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4963
		is_narrower_load = size < ctx_field_size;
4964
		if (is_narrower_load) {
4965 4966 4967 4968
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4969
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4970 4971
				return -EINVAL;
			}
4972

4973
			size_code = BPF_H;
4974 4975 4976 4977
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4978

4979 4980 4981
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4982 4983 4984 4985 4986 4987

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4988
			verbose(env, "bpf verifier is misconfigured\n");
4989 4990
			return -EINVAL;
		}
4991 4992

		if (is_narrower_load && size < target_size) {
4993 4994
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4995
								(1 << size * 8) - 1);
4996 4997
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4998
								(1 << size * 8) - 1);
4999
		}
5000

5001
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5002 5003 5004
		if (!new_prog)
			return -ENOMEM;

5005
		delta += cnt - 1;
5006 5007 5008

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5009
		insn      = new_prog->insnsi + i + delta;
5010 5011 5012 5013 5014
	}

	return 0;
}

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
static int fixup_call_args(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;

	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
	return 0;
}

5033
/* fixup insn->imm field of bpf_call instructions
5034
 * and inline eligible helpers as explicit sequence of BPF instructions
5035 5036 5037
 *
 * this function is called after eBPF program passed verification
 */
5038
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5039
{
5040 5041
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5042
	const struct bpf_func_proto *fn;
5043
	const int insn_cnt = prog->len;
5044 5045 5046 5047
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5048

5049 5050 5051
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5052 5053
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5054

5055 5056 5057 5058
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5059 5060
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5061
		if (insn->imm == BPF_FUNC_tail_call) {
5062 5063 5064 5065 5066 5067
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5068
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5069

5070 5071 5072 5073
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5074
			 */
5075
			insn->imm = 0;
5076
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5077 5078
			continue;
		}
5079

5080 5081 5082 5083 5084
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5085
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5086 5087
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5088 5089 5090 5091
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5092
				verbose(env, "bpf verifier is misconfigured\n");
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5109
		if (insn->imm == BPF_FUNC_redirect_map) {
5110 5111 5112 5113 5114 5115
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5130
patch_call_imm:
5131
		fn = env->ops->get_func_proto(insn->imm);
5132 5133 5134 5135
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5136 5137
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5138 5139
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5140
		}
5141
		insn->imm = fn->func - __bpf_call_base;
5142 5143
	}

5144 5145
	return 0;
}
5146

5147
static void free_states(struct bpf_verifier_env *env)
5148
{
5149
	struct bpf_verifier_state_list *sl, *sln;
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5161
				free_verifier_state(&sl->state, false);
5162 5163 5164 5165 5166 5167 5168 5169
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5170
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5171
{
5172
	struct bpf_verifier_env *env;
5173
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
5174 5175
	int ret = -EINVAL;

5176 5177 5178 5179
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5180
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5181 5182
	 * allocate/free it every time bpf_check() is called
	 */
5183
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5184 5185
	if (!env)
		return -ENOMEM;
5186
	log = &env->log;
5187

5188 5189 5190 5191 5192
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5193
	env->prog = *prog;
5194
	env->ops = bpf_verifier_ops[env->prog->type];
5195

5196 5197 5198 5199 5200 5201 5202
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5203 5204 5205
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5206 5207

		ret = -EINVAL;
5208 5209 5210
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5211
			goto err_unlock;
5212
	}
5213 5214 5215

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5216
		env->strict_alignment = true;
5217

5218 5219 5220 5221 5222 5223
	if (env->prog->aux->offload) {
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5224 5225 5226 5227
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5228
	env->explored_states = kcalloc(env->prog->len,
5229
				       sizeof(struct bpf_verifier_state_list *),
5230 5231 5232 5233 5234
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5235 5236
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5237 5238 5239 5240
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5241
	ret = do_check(env);
5242 5243 5244 5245
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5246

5247
skip_full_check:
5248
	while (!pop_stack(env, NULL, NULL));
5249
	free_states(env);
5250

A
Alexei Starovoitov 已提交
5251 5252 5253
	if (ret == 0)
		sanitize_dead_code(env);

5254 5255 5256 5257
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5258
	if (ret == 0)
5259
		ret = fixup_bpf_calls(env);
5260

5261 5262 5263
	if (ret == 0)
		ret = fixup_call_args(env);

5264
	if (log->level && bpf_verifier_log_full(log))
5265
		ret = -ENOSPC;
5266
	if (log->level && !log->ubuf) {
5267
		ret = -EFAULT;
5268
		goto err_release_maps;
5269 5270
	}

5271 5272
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5273 5274 5275
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5276

5277
		if (!env->prog->aux->used_maps) {
5278
			ret = -ENOMEM;
5279
			goto err_release_maps;
5280 5281
		}

5282
		memcpy(env->prog->aux->used_maps, env->used_maps,
5283
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5284
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5285 5286 5287 5288 5289 5290

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5291

5292
err_release_maps:
5293
	if (!env->prog->aux->used_maps)
5294 5295 5296 5297
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5298
	*prog = env->prog;
5299
err_unlock:
5300
	mutex_unlock(&bpf_verifier_lock);
5301 5302 5303
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5304 5305
	return ret;
}