verifier.c 129.9 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23

24 25
#include "disasm.h"

26 27 28 29 30 31 32 33 34
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
35 36 37 38 39 40 41 42 43 44 45 46
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
47
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
75
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
76
 * means the register has some value, but it's not a valid pointer.
77
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
78 79
 *
 * When verifier sees load or store instructions the type of base register
80
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

142
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
143
struct bpf_verifier_stack_elem {
144 145 146 147
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
148
	struct bpf_verifier_state st;
149 150
	int insn_idx;
	int prev_insn_idx;
151
	struct bpf_verifier_stack_elem *next;
152 153
};

154
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 156
#define BPF_COMPLEXITY_LIMIT_STACK	1024

157 158
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

159 160
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
161
	bool raw_mode;
162
	bool pkt_access;
163 164
	int regno;
	int access_size;
165 166
};

167 168 169 170 171 172
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
173 174
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
175
{
176
	struct bpf_verifer_log *log = &env->log;
177
	unsigned int n;
178 179
	va_list args;

180
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 182 183
		return;

	va_start(args, fmt);
184
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185
	va_end(args);
186 187 188 189 190 191 192 193 194 195 196

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
197 198
}

199 200 201 202 203 204
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

205 206 207
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
208
	[SCALAR_VALUE]		= "inv",
209 210 211 212 213
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
214
	[PTR_TO_PACKET]		= "pkt",
215
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET_END]	= "pkt_end",
217 218
};

219 220
static void print_verifier_state(struct bpf_verifier_env *env,
				 struct bpf_verifier_state *state)
221
{
222
	struct bpf_reg_state *reg;
223 224 225 226
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
227 228
		reg = &state->regs[i];
		t = reg->type;
229 230
		if (t == NOT_INIT)
			continue;
231
		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 233 234
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
235
			verbose(env, "%lld", reg->var_off.value + reg->off);
236
		} else {
237
			verbose(env, "(id=%d", reg->id);
238
			if (t != SCALAR_VALUE)
239
				verbose(env, ",off=%d", reg->off);
240
			if (type_is_pkt_pointer(t))
241
				verbose(env, ",r=%d", reg->range);
242 243 244
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
245
				verbose(env, ",ks=%d,vs=%d",
246 247
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
248 249 250 251 252
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
253
				verbose(env, ",imm=%llx", reg->var_off.value);
254 255 256
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
257
					verbose(env, ",smin_value=%lld",
258 259 260
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
261
					verbose(env, ",smax_value=%lld",
262 263
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
264
					verbose(env, ",umin_value=%llu",
265 266
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
267
					verbose(env, ",umax_value=%llu",
268 269 270
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
271

272
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273
					verbose(env, ",var_off=%s", tn_buf);
274
				}
275
			}
276
			verbose(env, ")");
277
		}
278
	}
279
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
280
		if (state->stack_slot_type[i] == STACK_SPILL)
281
			verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
282
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
283
	}
284
	verbose(env, "\n");
285 286
}

287
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
288
{
289
	struct bpf_verifier_stack_elem *elem;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

306 307
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
308
{
309
	struct bpf_verifier_stack_elem *elem;
310

311
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
312 313 314 315 316 317 318 319 320
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
321
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
322
		verbose(env, "BPF program is too complex\n");
323 324 325 326 327 328 329 330 331 332 333 334 335 336
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

337 338
static void __mark_reg_not_init(struct bpf_reg_state *reg);

339 340 341 342 343 344 345 346 347 348 349 350 351
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

352 353 354 355
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
356
{
357
	__mark_reg_known(reg, 0);
358
}
359

360 361
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
362 363
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
364
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
365 366 367 368 369 370 371 372
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

464 465 466 467 468 469 470
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
471
	__mark_reg_unbounded(reg);
472 473
}

474 475
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
476 477
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
478
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
479 480 481 482 483 484 485 486 487 488 489 490 491 492
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

493 494
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
495 496
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
497
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
498 499 500 501 502 503
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
504 505
}

506 507
static void init_reg_state(struct bpf_verifier_env *env,
			   struct bpf_reg_state *regs)
508 509 510
{
	int i;

511
	for (i = 0; i < MAX_BPF_REG; i++) {
512
		mark_reg_not_init(env, regs, i);
513 514
		regs[i].live = REG_LIVE_NONE;
	}
515 516

	/* frame pointer */
517
	regs[BPF_REG_FP].type = PTR_TO_STACK;
518
	mark_reg_known_zero(env, regs, BPF_REG_FP);
519 520 521

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
522
	mark_reg_known_zero(env, regs, BPF_REG_1);
523 524
}

525 526 527 528 529 530
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

531 532 533 534
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
535 536 537 538
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

539 540 541 542 543 544 545 546 547 548 549 550
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
551 552
			 enum reg_arg_type t)
{
553 554
	struct bpf_reg_state *regs = env->cur_state.regs;

555
	if (regno >= MAX_BPF_REG) {
556
		verbose(env, "R%d is invalid\n", regno);
557 558 559 560 561 562
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
563
			verbose(env, "R%d !read_ok\n", regno);
564 565
			return -EACCES;
		}
566
		mark_reg_read(&env->cur_state, regno);
567 568 569
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
570
			verbose(env, "frame pointer is read only\n");
571 572
			return -EACCES;
		}
573
		regs[regno].live |= REG_LIVE_WRITTEN;
574
		if (t == DST_OP)
575
			mark_reg_unknown(env, regs, regno);
576 577 578 579
	}
	return 0;
}

580 581 582 583 584 585 586
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
587
	case PTR_TO_PACKET:
588
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
589
	case PTR_TO_PACKET_END:
590 591 592 593 594 595 596
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

597 598 599
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
600 601
static int check_stack_write(struct bpf_verifier_env *env,
			     struct bpf_verifier_state *state, int off,
602
			     int size, int value_regno)
603
{
604
	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
605 606 607
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
608 609

	if (value_regno >= 0 &&
610
	    is_spillable_regtype(state->regs[value_regno].type)) {
611 612

		/* register containing pointer is being spilled into stack */
613
		if (size != BPF_REG_SIZE) {
614
			verbose(env, "invalid size of register spill\n");
615 616 617 618
			return -EACCES;
		}

		/* save register state */
619 620
		state->spilled_regs[spi] = state->regs[value_regno];
		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
621

622 623 624
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
625
		/* regular write of data into stack */
626
		state->spilled_regs[spi] = (struct bpf_reg_state) {};
627 628 629

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
630 631 632 633
	}
	return 0;
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->spilled_regs[slot].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

649 650
static int check_stack_read(struct bpf_verifier_env *env,
			    struct bpf_verifier_state *state, int off, int size,
651 652
			    int value_regno)
{
653
	u8 *slot_type;
654
	int i, spi;
655

656
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
657

658 659
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
660
			verbose(env, "invalid size of register spill\n");
661 662
			return -EACCES;
		}
663 664
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
665
				verbose(env, "corrupted spill memory\n");
666 667 668 669
				return -EACCES;
			}
		}

670 671 672
		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;

		if (value_regno >= 0) {
673
			/* restore register state from stack */
674 675 676
			state->regs[value_regno] = state->spilled_regs[spi];
			mark_stack_slot_read(state, spi);
		}
677 678 679
		return 0;
	} else {
		for (i = 0; i < size; i++) {
680
			if (slot_type[i] != STACK_MISC) {
681
				verbose(env, "invalid read from stack off %d+%d size %d\n",
682 683 684 685 686 687
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
688
			mark_reg_unknown(env, state->regs, value_regno);
689 690 691 692 693
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
694
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
695 696 697 698
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

699
	if (off < 0 || size <= 0 || off + size > map->value_size) {
700
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
701 702 703 704 705 706
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

707 708
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
709 710 711 712 713 714
				int off, int size)
{
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

715 716 717
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
718
	 */
719 720
	if (env->log.level)
		print_verifier_state(env, state);
721 722 723 724 725 726
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
727
	if (reg->smin_value < 0) {
728
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
729 730 731
			regno);
		return -EACCES;
	}
732
	err = __check_map_access(env, regno, reg->smin_value + off, size);
733
	if (err) {
734 735
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
736 737 738
		return err;
	}

739 740 741
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
742
	 */
743
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
744
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
745 746 747
			regno);
		return -EACCES;
	}
748
	err = __check_map_access(env, regno, reg->umax_value + off, size);
749
	if (err)
750 751
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
752
	return err;
753 754
}

A
Alexei Starovoitov 已提交
755 756
#define MAX_PACKET_OFF 0xffff

757
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
758 759
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
760
{
761
	switch (env->prog->type) {
762 763 764 765 766
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
767
		/* fallthrough */
768 769
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
770
	case BPF_PROG_TYPE_XDP:
771
	case BPF_PROG_TYPE_LWT_XMIT:
772
	case BPF_PROG_TYPE_SK_SKB:
773 774 775 776
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
777 778 779 780 781 782
		return true;
	default:
		return false;
	}
}

783 784
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
				 int off, int size)
A
Alexei Starovoitov 已提交
785
{
786 787
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
788

789
	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
790
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
791
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
792 793 794 795 796
		return -EACCES;
	}
	return 0;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
			       int size)
{
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
812
	if (reg->smin_value < 0) {
813
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
814 815 816 817 818
			regno);
		return -EACCES;
	}
	err = __check_packet_access(env, regno, off, size);
	if (err) {
819
		verbose(env, "R%d offset is outside of the packet\n", regno);
820 821 822 823 824
		return err;
	}
	return err;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static bool analyzer_is_valid_access(struct bpf_verifier_env *env, int off,
				     struct bpf_insn_access_aux *info)
{
	switch (env->prog->type) {
	case BPF_PROG_TYPE_XDP:
		switch (off) {
		case offsetof(struct xdp_buff, data):
			info->reg_type = PTR_TO_PACKET;
			return true;
		case offsetof(struct xdp_buff, data_end):
			info->reg_type = PTR_TO_PACKET_END;
			return true;
		}
		return false;
	case BPF_PROG_TYPE_SCHED_CLS:
		switch (off) {
		case offsetof(struct sk_buff, data):
			info->reg_type = PTR_TO_PACKET;
			return true;
		case offsetof(struct sk_buff, cb) +
		     offsetof(struct bpf_skb_data_end, data_end):
			info->reg_type = PTR_TO_PACKET_END;
			return true;
		}
		return false;
	default:
		return false;
	}
}

855
/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
856
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
857
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
858
{
859 860 861
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
862

863 864 865 866 867
	if (env->analyzer_ops) {
		if (analyzer_is_valid_access(env, off, &info)) {
			*reg_type = info.reg_type;
			return 0;
		}
868 869
	} else if (env->ops->is_valid_access &&
		   env->ops->is_valid_access(off, size, t, &info)) {
870 871 872 873 874 875
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
876
		 */
877
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
878
		*reg_type = info.reg_type;
879

880 881 882
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
883
		return 0;
884
	}
885

886
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
887 888 889
	return -EACCES;
}

890 891
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
892
{
893
	if (allow_ptr_leaks)
894 895
		return false;

896
	return reg->type != SCALAR_VALUE;
897 898
}

899 900 901 902 903
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
}

904 905
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
906
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
907
{
908
	struct tnum reg_off;
909
	int ip_align;
910 911 912 913 914

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

915 916 917 918 919 920 921
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
922
	 */
923
	ip_align = 2;
924 925 926 927 928 929

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
930 931
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
932
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
933 934
		return -EACCES;
	}
935

A
Alexei Starovoitov 已提交
936 937 938
	return 0;
}

939 940
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
941 942
				       const char *pointer_desc,
				       int off, int size, bool strict)
943
{
944 945 946 947 948 949 950 951 952 953 954
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
955
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
956
			pointer_desc, tn_buf, reg->off, off, size);
957 958 959
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
960 961 962
	return 0;
}

963 964
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
965 966
			       int off, int size)
{
967
	bool strict = env->strict_alignment;
968
	const char *pointer_desc = "";
969

970 971
	switch (reg->type) {
	case PTR_TO_PACKET:
972 973 974 975
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
976
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
977 978 979 980 981 982 983 984 985
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
986
	default:
987
		break;
988
	}
989 990
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
991 992
}

993 994 995 996 997 998
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
999
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1000 1001 1002
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1003 1004
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
1005 1006 1007 1008 1009 1010
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1011
	/* alignment checks will add in reg->off themselves */
1012
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1013 1014
	if (err)
		return err;
1015

1016 1017 1018 1019
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1020 1021
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1022
			verbose(env, "R%d leaks addr into map\n", value_regno);
1023 1024
			return -EACCES;
		}
1025

1026
		err = check_map_access(env, regno, off, size);
1027
		if (!err && t == BPF_READ && value_regno >= 0)
1028
			mark_reg_unknown(env, state->regs, value_regno);
1029

A
Alexei Starovoitov 已提交
1030
	} else if (reg->type == PTR_TO_CTX) {
1031
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1032

1033 1034
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1035
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1036 1037
			return -EACCES;
		}
1038 1039 1040 1041 1042 1043 1044
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1045 1046
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1047 1048 1049 1050
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1051
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1052
		if (!err && t == BPF_READ && value_regno >= 0) {
1053
			/* ctx access returns either a scalar, or a
1054 1055
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1056 1057
			 */
			if (reg_type == SCALAR_VALUE)
1058
				mark_reg_unknown(env, state->regs, value_regno);
1059
			else
1060 1061
				mark_reg_known_zero(env, state->regs,
						    value_regno);
1062 1063 1064
			state->regs[value_regno].id = 0;
			state->regs[value_regno].off = 0;
			state->regs[value_regno].range = 0;
1065
			state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1066
		}
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1077
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1078 1079 1080 1081
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1082
		if (off >= 0 || off < -MAX_BPF_STACK) {
1083 1084
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1085 1086
			return -EACCES;
		}
1087 1088 1089 1090

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1091 1092 1093 1094
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
1095
				verbose(env, "attempt to corrupt spilled pointer on stack\n");
1096 1097
				return -EACCES;
			}
1098 1099
			err = check_stack_write(env, state, off, size,
						value_regno);
1100
		} else {
1101 1102
			err = check_stack_read(env, state, off, size,
					       value_regno);
1103
		}
1104
	} else if (reg_is_pkt_pointer(reg)) {
1105
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1106
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1107 1108
			return -EACCES;
		}
1109 1110
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1111 1112
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1113 1114
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
1115 1116
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
1117
			mark_reg_unknown(env, state->regs, value_regno);
1118
	} else {
1119 1120
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1121 1122
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1123

1124 1125 1126 1127 1128
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
	    state->regs[value_regno].type == SCALAR_VALUE) {
		/* b/h/w load zero-extends, mark upper bits as known 0 */
		state->regs[value_regno].var_off = tnum_cast(
					state->regs[value_regno].var_off, size);
1129
		__update_reg_bounds(&state->regs[value_regno]);
A
Alexei Starovoitov 已提交
1130
	}
1131 1132 1133
	return err;
}

1134
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1135 1136 1137 1138 1139
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1140
		verbose(env, "BPF_XADD uses reserved fields\n");
1141 1142 1143 1144
		return -EINVAL;
	}

	/* check src1 operand */
1145
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1146 1147 1148 1149
	if (err)
		return err;

	/* check src2 operand */
1150
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1151 1152 1153
	if (err)
		return err;

1154
	if (is_pointer_value(env, insn->src_reg)) {
1155
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1156 1157 1158
		return -EACCES;
	}

1159
	/* check whether atomic_add can read the memory */
1160
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1161 1162 1163 1164 1165
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1166
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1167 1168 1169
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1170 1171 1172 1173 1174 1175
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1176 1177
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1178 1179 1180
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1181
 */
1182
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1183 1184
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1185
{
1186 1187
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
1188 1189
	int off, i;

1190
	if (regs[regno].type != PTR_TO_STACK) {
1191
		/* Allow zero-byte read from NULL, regardless of pointer type */
1192
		if (zero_size_allowed && access_size == 0 &&
1193
		    register_is_null(regs[regno]))
1194 1195
			return 0;

1196
		verbose(env, "R%d type=%s expected=%s\n", regno,
1197 1198
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1199
		return -EACCES;
1200
	}
1201

1202 1203 1204 1205 1206
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1207
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1208 1209 1210
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1211 1212
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
1213
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1214 1215 1216 1217
			regno, off, access_size);
		return -EACCES;
	}

1218 1219 1220
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1221 1222 1223 1224 1225 1226
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1227
	for (i = 0; i < access_size; i++) {
1228
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1229
			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1230 1231 1232 1233 1234 1235 1236
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1237 1238 1239 1240
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1241
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1242

1243
	switch (reg->type) {
1244
	case PTR_TO_PACKET:
1245
	case PTR_TO_PACKET_META:
1246
		return check_packet_access(env, regno, reg->off, access_size);
1247
	case PTR_TO_MAP_VALUE:
1248 1249
		return check_map_access(env, regno, reg->off, access_size);
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1250 1251 1252 1253 1254
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1255
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1256 1257
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1258
{
1259
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1260
	enum bpf_reg_type expected_type, type = reg->type;
1261 1262
	int err = 0;

1263
	if (arg_type == ARG_DONTCARE)
1264 1265
		return 0;

1266 1267 1268
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1269

1270 1271
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1272 1273
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1274 1275
			return -EACCES;
		}
1276
		return 0;
1277
	}
1278

1279
	if (type_is_pkt_pointer(type) &&
1280
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1281
		verbose(env, "helper access to the packet is not allowed\n");
1282 1283 1284
		return -EACCES;
	}

1285
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1286 1287
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1288 1289
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1290
			goto err_type;
1291 1292
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1293 1294
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1295
			goto err_type;
1296 1297
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1298 1299
		if (type != expected_type)
			goto err_type;
1300 1301
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1302 1303
		if (type != expected_type)
			goto err_type;
1304 1305
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1306 1307
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1308
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1309 1310
		 * happens during stack boundary checking.
		 */
1311
		if (register_is_null(*reg))
1312
			/* final test in check_stack_boundary() */;
1313 1314
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1315
			 type != expected_type)
1316
			goto err_type;
1317
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1318
	} else {
1319
		verbose(env, "unsupported arg_type %d\n", arg_type);
1320 1321 1322 1323 1324
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1325
		meta->map_ptr = reg->map_ptr;
1326 1327 1328 1329 1330
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1331
		if (!meta->map_ptr) {
1332 1333 1334 1335 1336
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1337
			verbose(env, "invalid map_ptr to access map->key\n");
1338 1339
			return -EACCES;
		}
1340
		if (type_is_pkt_pointer(type))
1341
			err = check_packet_access(env, regno, reg->off,
1342 1343 1344 1345 1346
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1347 1348 1349 1350
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1351
		if (!meta->map_ptr) {
1352
			/* kernel subsystem misconfigured verifier */
1353
			verbose(env, "invalid map_ptr to access map->value\n");
1354 1355
			return -EACCES;
		}
1356
		if (type_is_pkt_pointer(type))
1357
			err = check_packet_access(env, regno, reg->off,
1358 1359 1360 1361 1362
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1363 1364 1365
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1366 1367 1368 1369 1370 1371 1372

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1373 1374
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1375 1376
			return -EACCES;
		}
1377

1378 1379
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1380
		 */
1381 1382

		if (!tnum_is_const(reg->var_off))
1383 1384 1385 1386 1387 1388 1389
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1390
		if (reg->smin_value < 0) {
1391
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1392 1393 1394
				regno);
			return -EACCES;
		}
1395

1396
		if (reg->umin_value == 0) {
1397 1398 1399
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1400 1401 1402
			if (err)
				return err;
		}
1403

1404
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1405
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1406 1407 1408 1409
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1410
					      reg->umax_value,
1411
					      zero_size_allowed, meta);
1412 1413 1414
	}

	return err;
1415
err_type:
1416
	verbose(env, "R%d type=%s expected=%s\n", regno,
1417 1418
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1419 1420
}

1421 1422
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1423 1424 1425 1426
{
	if (!map)
		return 0;

1427 1428 1429 1430 1431 1432 1433 1434
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1435 1436
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1437 1438 1439 1440 1441 1442
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1443
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1444
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1445
		    func_id != BPF_FUNC_current_task_under_cgroup)
1446 1447
			goto error;
		break;
1448 1449 1450 1451 1452
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1453
		if (func_id != BPF_FUNC_redirect_map)
1454 1455
			goto error;
		break;
1456 1457 1458 1459 1460
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1461
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1462
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1463 1464
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1465
		break;
1466 1467 1468 1469 1470 1471
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1484
	case BPF_FUNC_perf_event_read_value:
1485 1486 1487 1488 1489 1490 1491
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1492
	case BPF_FUNC_current_task_under_cgroup:
1493
	case BPF_FUNC_skb_under_cgroup:
1494 1495 1496
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1497
	case BPF_FUNC_redirect_map:
1498 1499
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1500 1501
			goto error;
		break;
1502 1503 1504 1505 1506 1507 1508 1509
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1510 1511
	default:
		break;
1512 1513 1514
	}

	return 0;
1515
error:
1516
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1517
		map->map_type, func_id_name(func_id), func_id);
1518
	return -EINVAL;
1519 1520
}

1521 1522 1523 1524
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1525
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1526
		count++;
1527
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1528
		count++;
1529
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1530
		count++;
1531
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1532
		count++;
1533
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1534 1535 1536 1537 1538
		count++;

	return count > 1 ? -EINVAL : 0;
}

1539 1540
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
1541
 */
1542
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1543
{
1544 1545
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1546 1547 1548
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1549
		if (reg_is_pkt_pointer_any(&regs[i]))
1550
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
1551 1552 1553 1554 1555

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1556 1557
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1558 1559 1560
	}
}

1561
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1562
{
1563
	struct bpf_verifier_state *state = &env->cur_state;
1564
	const struct bpf_func_proto *fn = NULL;
1565
	struct bpf_reg_state *regs = state->regs;
1566
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1567
	bool changes_data;
1568 1569 1570 1571
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1572 1573
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
1574 1575 1576
		return -EINVAL;
	}

1577 1578
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
1579 1580

	if (!fn) {
1581 1582
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
1583 1584 1585 1586
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1587
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1588
		verbose(env, "cannot call GPL only function from proprietary program\n");
1589 1590 1591
		return -EINVAL;
	}

1592
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1593

1594
	memset(&meta, 0, sizeof(meta));
1595
	meta.pkt_access = fn->pkt_access;
1596

1597 1598 1599 1600 1601
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1602
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1603
			func_id_name(func_id), func_id);
1604 1605 1606
		return err;
	}

1607
	/* check args */
1608
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1609 1610
	if (err)
		return err;
1611
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1612 1613
	if (err)
		return err;
1614
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1615 1616
	if (err)
		return err;
1617
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1618 1619
	if (err)
		return err;
1620
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1621 1622 1623
	if (err)
		return err;

1624 1625 1626 1627
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1628
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1629 1630 1631 1632
		if (err)
			return err;
	}

1633
	/* reset caller saved regs */
1634
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1635
		mark_reg_not_init(env, regs, caller_saved[i]);
1636 1637
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1638

1639
	/* update return register (already marked as written above) */
1640
	if (fn->ret_type == RET_INTEGER) {
1641
		/* sets type to SCALAR_VALUE */
1642
		mark_reg_unknown(env, regs, BPF_REG_0);
1643 1644 1645
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1646 1647
		struct bpf_insn_aux_data *insn_aux;

1648
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1649
		/* There is no offset yet applied, variable or fixed */
1650
		mark_reg_known_zero(env, regs, BPF_REG_0);
1651
		regs[BPF_REG_0].off = 0;
1652 1653 1654 1655
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1656
		if (meta.map_ptr == NULL) {
1657 1658
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
1659 1660
			return -EINVAL;
		}
1661
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1662
		regs[BPF_REG_0].id = ++env->id_gen;
1663 1664 1665 1666 1667
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1668
	} else {
1669
		verbose(env, "unknown return type %d of func %s#%d\n",
1670
			fn->ret_type, func_id_name(func_id), func_id);
1671 1672
		return -EINVAL;
	}
1673

1674
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1675 1676
	if (err)
		return err;
1677

A
Alexei Starovoitov 已提交
1678 1679 1680 1681 1682
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1683 1684 1685 1686
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1709 1710
}

1711 1712 1713 1714 1715 1716 1717 1718 1719
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1720
{
1721 1722
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
	bool known = tnum_is_const(off_reg->var_off);
1723 1724 1725 1726
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1727
	u8 opcode = BPF_OP(insn->code);
1728
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1729

1730
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1731

1732
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1733 1734 1735
		print_verifier_state(env, &env->cur_state);
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
1736 1737 1738
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1739 1740 1741
		print_verifier_state(env, &env->cur_state);
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
1742 1743 1744 1745 1746 1747
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
1748 1749
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
1750 1751
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1752 1753
	}

1754 1755
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
1756
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1757 1758 1759 1760 1761
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
1762
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1763 1764 1765 1766 1767
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
1768
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1769 1770 1771 1772 1773 1774
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1775
	 */
1776 1777
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1778

1779 1780 1781 1782
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1783
		 */
1784 1785
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1786
			/* pointer += K.  Accumulate it into fixed offset */
1787 1788 1789 1790
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1791
			dst_reg->var_off = ptr_reg->var_off;
1792
			dst_reg->off = ptr_reg->off + smin_val;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1804
		 */
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1821 1822
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1823
		if (reg_is_pkt_pointer(ptr_reg)) {
1824 1825 1826 1827 1828 1829 1830 1831 1832
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
1833
				verbose(env, "R%d tried to subtract pointer from scalar\n",
1834 1835 1836 1837 1838 1839
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1840
		 */
1841 1842
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
1843
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1844 1845 1846
					dst);
			return -EACCES;
		}
1847 1848
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1849
			/* pointer -= K.  Subtract it from fixed offset */
1850 1851 1852 1853
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1854 1855
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1856
			dst_reg->off = ptr_reg->off - smin_val;
1857 1858 1859 1860 1861
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1862
		 */
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1881 1882
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1883
		if (reg_is_pkt_pointer(ptr_reg)) {
1884 1885
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1886
			if (smin_val < 0)
1887
				dst_reg->range = 0;
1888
		}
1889 1890 1891 1892 1893 1894 1895 1896 1897
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
1898
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1899 1900 1901 1902 1903
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
1904
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1905 1906
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1907 1908
	}

1909 1910 1911
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
1912 1913 1914
	return 0;
}

1915 1916 1917 1918
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
1919
{
1920
	struct bpf_reg_state *regs = env->cur_state.regs;
1921
	u8 opcode = BPF_OP(insn->code);
1922
	bool src_known, dst_known;
1923 1924
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
1925

1926 1927 1928 1929
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
1930
	}
1931 1932 1933 1934
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
1935 1936
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
1937

1938 1939
	switch (opcode) {
	case BPF_ADD:
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
1956
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
1957 1958
		break;
	case BPF_SUB:
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
1977
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
1978 1979
		break;
	case BPF_MUL:
1980 1981
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
1982
			/* Ain't nobody got time to multiply that sign */
1983 1984
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
1985 1986
			break;
		}
1987 1988
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
1989
		 */
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2007 2008
		break;
	case BPF_AND:
2009
		if (src_known && dst_known) {
2010 2011
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2012 2013
			break;
		}
2014 2015
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2016
		 */
2017
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2035 2036 2037
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2038 2039
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2040 2041
			break;
		}
2042 2043
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2044 2045
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2046 2047 2048 2049 2050 2051 2052 2053 2054
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2055
		} else {
2056 2057 2058 2059 2060
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2061
		}
2062 2063
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2064 2065
		break;
	case BPF_LSH:
2066 2067 2068 2069
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2070
			mark_reg_unknown(env, regs, insn->dst_reg);
2071 2072
			break;
		}
2073 2074
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2075
		 */
2076 2077 2078 2079 2080 2081
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2082
		} else {
2083 2084
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2085
		}
2086 2087 2088 2089 2090 2091
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2092 2093
		break;
	case BPF_RSH:
2094 2095 2096 2097
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2098
			mark_reg_unknown(env, regs, insn->dst_reg);
2099 2100 2101
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2102 2103
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2104
				/* Sign bit will be cleared */
2105 2106 2107 2108 2109 2110
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2111
		} else {
2112 2113
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2114
		}
2115
		if (src_known)
2116 2117
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2118
		else
2119 2120 2121 2122 2123
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2124 2125
		break;
	default:
2126
		mark_reg_unknown(env, regs, insn->dst_reg);
2127 2128 2129
		break;
	}

2130 2131
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2158
					verbose(env, "R%d pointer %s pointer prohibited\n",
2159 2160 2161 2162
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2163
				mark_reg_unknown(env, regs, insn->dst_reg);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2198
		__mark_reg_known(&off_reg, insn->imm);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2215 2216
		print_verifier_state(env, &env->cur_state);
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2217 2218 2219
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2220 2221
		print_verifier_state(env, &env->cur_state);
		verbose(env, "verifier internal error: no src_reg\n");
2222 2223 2224
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2225 2226
}

2227
/* check validity of 32-bit and 64-bit arithmetic operations */
2228
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2229
{
2230
	struct bpf_reg_state *regs = env->cur_state.regs;
2231 2232 2233 2234 2235 2236 2237 2238
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2239
				verbose(env, "BPF_NEG uses reserved fields\n");
2240 2241 2242 2243
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2244 2245
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2246
				verbose(env, "BPF_END uses reserved fields\n");
2247 2248 2249 2250 2251
				return -EINVAL;
			}
		}

		/* check src operand */
2252
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2253 2254 2255
		if (err)
			return err;

2256
		if (is_pointer_value(env, insn->dst_reg)) {
2257
			verbose(env, "R%d pointer arithmetic prohibited\n",
2258 2259 2260 2261
				insn->dst_reg);
			return -EACCES;
		}

2262
		/* check dest operand */
2263
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2264 2265 2266 2267 2268 2269 2270
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2271
				verbose(env, "BPF_MOV uses reserved fields\n");
2272 2273 2274 2275
				return -EINVAL;
			}

			/* check src operand */
2276
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2277 2278 2279 2280
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2281
				verbose(env, "BPF_MOV uses reserved fields\n");
2282 2283 2284 2285 2286
				return -EINVAL;
			}
		}

		/* check dest operand */
2287
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2288 2289 2290 2291 2292 2293 2294 2295 2296
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2297
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2298
			} else {
2299
				/* R1 = (u32) R2 */
2300
				if (is_pointer_value(env, insn->src_reg)) {
2301 2302
					verbose(env,
						"R%d partial copy of pointer\n",
2303 2304 2305
						insn->src_reg);
					return -EACCES;
				}
2306
				mark_reg_unknown(env, regs, insn->dst_reg);
2307
				/* high 32 bits are known zero. */
2308 2309
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2310
				__update_reg_bounds(&regs[insn->dst_reg]);
2311 2312 2313 2314 2315
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2316
			regs[insn->dst_reg].type = SCALAR_VALUE;
2317
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2318 2319 2320
		}

	} else if (opcode > BPF_END) {
2321
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2322 2323 2324 2325 2326 2327
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2328
				verbose(env, "BPF_ALU uses reserved fields\n");
2329 2330 2331
				return -EINVAL;
			}
			/* check src1 operand */
2332
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2333 2334 2335 2336
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2337
				verbose(env, "BPF_ALU uses reserved fields\n");
2338 2339 2340 2341 2342
				return -EINVAL;
			}
		}

		/* check src2 operand */
2343
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2344 2345 2346 2347 2348
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2349
			verbose(env, "div by zero\n");
2350 2351 2352
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2353 2354 2355 2356 2357
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2358
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2359 2360 2361 2362
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2363
		/* check dest operand */
2364
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2365 2366 2367
		if (err)
			return err;

2368
		return adjust_reg_min_max_vals(env, insn);
2369 2370 2371 2372 2373
	}

	return 0;
}

2374
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2375 2376
				   struct bpf_reg_state *dst_reg,
				   enum bpf_reg_type type)
A
Alexei Starovoitov 已提交
2377
{
2378
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2379
	int i;
2380

2381 2382 2383 2384
	if (dst_reg->off < 0)
		/* This doesn't give us any range */
		return;

2385 2386
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2387 2388 2389 2390 2391
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2392
	/* LLVM can generate four kind of checks:
2393
	 *
2394
	 * Type 1/2:
2395 2396 2397 2398 2399 2400
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2401 2402 2403 2404 2405
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2406 2407 2408 2409 2410
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2411
	 * Type 3/4:
2412 2413 2414 2415 2416 2417
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2418 2419 2420 2421 2422
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2423 2424 2425 2426 2427 2428 2429
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
2430
	 */
2431

2432 2433 2434 2435 2436
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2437
	for (i = 0; i < MAX_BPF_REG; i++)
2438
		if (regs[i].type == type && regs[i].id == dst_reg->id)
2439
			/* keep the maximum range already checked */
2440
			regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
A
Alexei Starovoitov 已提交
2441 2442 2443 2444 2445

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2446
		if (reg->type == type && reg->id == dst_reg->id)
2447
			reg->range = max_t(u16, reg->range, dst_reg->off);
A
Alexei Starovoitov 已提交
2448 2449 2450
	}
}

2451 2452 2453
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2454
 * In JEQ/JNE cases we also adjust the var_off values.
2455 2456 2457 2458 2459
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2460 2461 2462 2463 2464 2465 2466 2467
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2468

2469 2470 2471 2472 2473
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2474
		__mark_reg_known(true_reg, val);
2475 2476 2477 2478 2479
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2480
		__mark_reg_known(false_reg, val);
2481 2482
		break;
	case BPF_JGT:
2483 2484 2485
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2486
	case BPF_JSGT:
2487 2488
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2489
		break;
2490 2491 2492 2493 2494 2495 2496 2497
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2498
	case BPF_JGE:
2499 2500 2501
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2502
	case BPF_JSGE:
2503 2504
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2505
		break;
2506 2507 2508 2509 2510 2511 2512 2513
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2514 2515 2516 2517
	default:
		break;
	}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2529 2530
}

2531 2532
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2533 2534 2535 2536 2537
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2538 2539
	if (__is_pointer_value(false, false_reg))
		return;
2540

2541 2542 2543 2544 2545
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2546
		__mark_reg_known(true_reg, val);
2547 2548 2549 2550 2551
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2552
		__mark_reg_known(false_reg, val);
2553 2554
		break;
	case BPF_JGT:
2555 2556 2557
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2558
	case BPF_JSGT:
2559 2560
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2561
		break;
2562 2563 2564 2565 2566 2567 2568 2569
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2570
	case BPF_JGE:
2571 2572 2573
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2574
	case BPF_JSGE:
2575 2576
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2577
		break;
2578 2579 2580 2581 2582 2583 2584 2585
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2586 2587 2588 2589
	default:
		break;
	}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2601 2602 2603 2604 2605 2606
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2607 2608 2609 2610 2611 2612 2613 2614
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2615 2616
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2646
		break;
2647
	}
2648 2649
}

2650
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2651
			 bool is_null)
2652 2653 2654 2655
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2656 2657 2658 2659
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2660 2661
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2662
				 reg->off)) {
2663 2664
			__mark_reg_known_zero(reg);
			reg->off = 0;
2665 2666 2667
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2668 2669 2670 2671
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2672
			reg->type = PTR_TO_MAP_VALUE;
2673
		}
2674 2675 2676 2677 2678
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2679 2680 2681 2682 2683 2684 2685
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2686
			  bool is_null)
2687 2688
{
	struct bpf_reg_state *regs = state->regs;
2689
	u32 id = regs[regno].id;
2690 2691 2692
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2693
		mark_map_reg(regs, i, id, is_null);
2694 2695 2696 2697

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
2698
		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2699 2700 2701
	}
}

2702
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2703 2704
			     struct bpf_insn *insn, int *insn_idx)
{
2705 2706
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2707 2708 2709
	u8 opcode = BPF_OP(insn->code);
	int err;

2710
	if (opcode > BPF_JSLE) {
2711
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2712 2713 2714 2715 2716
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
2717
			verbose(env, "BPF_JMP uses reserved fields\n");
2718 2719 2720 2721
			return -EINVAL;
		}

		/* check src1 operand */
2722
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2723 2724
		if (err)
			return err;
2725 2726

		if (is_pointer_value(env, insn->src_reg)) {
2727
			verbose(env, "R%d pointer comparison prohibited\n",
2728 2729 2730
				insn->src_reg);
			return -EACCES;
		}
2731 2732
	} else {
		if (insn->src_reg != BPF_REG_0) {
2733
			verbose(env, "BPF_JMP uses reserved fields\n");
2734 2735 2736 2737 2738
			return -EINVAL;
		}
	}

	/* check src2 operand */
2739
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2740 2741 2742
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2743 2744
	dst_reg = &regs[insn->dst_reg];

2745 2746 2747
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2748 2749
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2769 2770
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2771 2772 2773 2774
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2775 2776
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2795 2796 2797 2798
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2799
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2800
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2801 2802
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2803 2804 2805
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
2806 2807
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
A
Alexei Starovoitov 已提交
2808 2809 2810
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2811
		find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET);
2812 2813 2814
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2815
		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET);
2816 2817 2818
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2819 2820
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET);
2821 2822 2823
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
		find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET_META);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET_META);
2844
	} else if (is_pointer_value(env, insn->dst_reg)) {
2845 2846
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
2847
		return -EACCES;
2848
	}
2849 2850
	if (env->log.level)
		print_verifier_state(env, this_branch);
2851 2852 2853
	return 0;
}

2854 2855 2856 2857 2858 2859 2860 2861
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2862
/* verify BPF_LD_IMM64 instruction */
2863
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2864
{
2865
	struct bpf_reg_state *regs = env->cur_state.regs;
2866 2867 2868
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
2869
		verbose(env, "invalid BPF_LD_IMM insn\n");
2870 2871 2872
		return -EINVAL;
	}
	if (insn->off != 0) {
2873
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2874 2875 2876
		return -EINVAL;
	}

2877
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2878 2879 2880
	if (err)
		return err;

2881 2882 2883
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

2884
		regs[insn->dst_reg].type = SCALAR_VALUE;
2885
		__mark_reg_known(&regs[insn->dst_reg], imm);
2886
		return 0;
2887
	}
2888 2889 2890 2891 2892 2893 2894 2895 2896

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2897 2898 2899 2900 2901
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2902
	case BPF_PROG_TYPE_SCHED_ACT:
2903 2904 2905 2906 2907 2908
		return true;
	default:
		return false;
	}
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2924
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2925
{
2926
	struct bpf_reg_state *regs = env->cur_state.regs;
2927 2928 2929
	u8 mode = BPF_MODE(insn->code);
	int i, err;

2930
	if (!may_access_skb(env->prog->type)) {
2931
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2932 2933 2934 2935
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2936
	    BPF_SIZE(insn->code) == BPF_DW ||
2937
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2938
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
2939 2940 2941 2942
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
2943
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2944 2945 2946 2947
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2948 2949
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2950 2951 2952 2953 2954
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
2955
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2956 2957 2958 2959 2960
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
2961
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2962
		mark_reg_not_init(env, regs, caller_saved[i]);
2963 2964
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2965 2966

	/* mark destination R0 register as readable, since it contains
2967 2968
	 * the value fetched from the packet.
	 * Already marked as written above.
2969
	 */
2970
	mark_reg_unknown(env, regs, BPF_REG_0);
2971 2972 2973
	return 0;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
		break;
	default:
		return 0;
	}

	reg = &env->cur_state.regs[BPF_REG_0];
	if (reg->type != SCALAR_VALUE) {
2990
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
2991 2992 2993 2994 2995
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
2996
		verbose(env, "At program exit the register R0 ");
2997 2998 2999 3000
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3001
			verbose(env, "has value %s", tn_buf);
3002
		} else {
3003
			verbose(env, "has unknown scalar value");
3004
		}
3005
		verbose(env, " should have been 0 or 1\n");
3006 3007 3008 3009 3010
		return -EINVAL;
	}
	return 0;
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3051
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3062
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3063 3064 3065 3066 3067 3068 3069 3070
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3071
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3072 3073 3074
		return -EINVAL;
	}

3075 3076 3077 3078
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3079 3080 3081 3082 3083 3084 3085 3086 3087
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3088
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3089 3090 3091 3092 3093
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3094
		verbose(env, "insn state internal bug\n");
3095 3096 3097 3098 3099 3100 3101 3102
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3103
static int check_cfg(struct bpf_verifier_env *env)
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3140 3141
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3154 3155 3156
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3157 3158
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3159 3160
		} else {
			/* conditional jump with two edges */
3161
			env->explored_states[t] = STATE_LIST_MARK;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3188
		verbose(env, "pop stack internal bug\n");
3189 3190 3191 3192 3193 3194 3195 3196
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3197
			verbose(env, "unreachable insn %d\n", i);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3210 3211 3212 3213
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3214 3215 3216 3217
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3236
 */
3237
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3238
{
3239
	unsigned int i;
A
Alexei Starovoitov 已提交
3240

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3257 3258
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3259
{
3260 3261 3262 3263 3264
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3265 3266
		return true;

3267 3268
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3269
		return true;
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3283 3284 3285 3286
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3287 3288 3289
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3290 3291 3292 3293 3294 3295 3296 3297
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
3312
	case PTR_TO_PACKET_META:
3313
	case PTR_TO_PACKET:
3314
		if (rcur->type != rold->type)
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3346

3347 3348
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3349 3350 3351
	return false;
}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3378 3379
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3380
			 struct bpf_verifier_state *cur)
3381
{
3382 3383
	struct idpair *idmap;
	bool ret = false;
3384 3385
	int i;

3386 3387 3388
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3389
		return false;
3390 3391

	for (i = 0; i < MAX_BPF_REG; i++) {
3392
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3393
			goto out_free;
3394 3395 3396
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
3397 3398 3399 3400 3401 3402 3403 3404
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
3405
			goto out_free;
3406 3407
		if (i % BPF_REG_SIZE)
			continue;
3408 3409
		if (old->stack_slot_type[i] != STACK_SPILL)
			continue;
3410 3411
		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
			     &cur->spilled_regs[i / BPF_REG_SIZE],
3412
			     idmap))
3413 3414
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
3415 3416
			 * are the same as well.
			 * Ex: explored safe path could have stored
3417
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3418
			 * but current path has stored:
3419
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3420 3421 3422
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
3423
			goto out_free;
3424 3425
		else
			continue;
3426
	}
3427 3428 3429 3430
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3431 3432
}

3433 3434 3435 3436 3437 3438
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3439 3440 3441
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3442
	bool writes = parent == state->parent; /* Observe write marks */
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3454 3455 3456
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (parent->spilled_regs[i].live & REG_LIVE_READ)
			continue;
3469 3470 3471
		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3472
			parent->spilled_regs[i].live |= REG_LIVE_READ;
3473 3474 3475 3476 3477 3478
			touched = true;
		}
	}
	return touched;
}

3479 3480 3481 3482 3483 3484 3485 3486 3487
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3498
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3499
{
3500 3501
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3502
	int i;
3503 3504 3505 3506 3507 3508 3509 3510 3511

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3512
		if (states_equal(env, &sl->state, &env->cur_state)) {
3513
			/* reached equivalent register/stack state,
3514 3515
			 * prune the search.
			 * Registers read by the continuation are read by us.
3516 3517 3518 3519 3520 3521
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3522
			 */
3523
			propagate_liveness(&sl->state, &env->cur_state);
3524
			return 1;
3525
		}
3526 3527 3528 3529 3530 3531 3532 3533 3534
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3535
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3536 3537 3538 3539 3540 3541 3542
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3543 3544
	/* connect new state to parentage chain */
	env->cur_state.parent = &new_sl->state;
3545 3546 3547 3548 3549 3550
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3551 3552 3553 3554 3555
	for (i = 0; i < BPF_REG_FP; i++)
		env->cur_state.regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3556 3557 3558
	return 0;
}

3559 3560 3561 3562 3563 3564 3565 3566 3567
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

3568
static int do_check(struct bpf_verifier_env *env)
3569
{
3570
	struct bpf_verifier_state *state = &env->cur_state;
3571
	struct bpf_insn *insns = env->prog->insnsi;
3572
	struct bpf_reg_state *regs = state->regs;
3573 3574 3575 3576 3577
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

3578
	init_reg_state(env, regs);
3579
	state->parent = NULL;
3580 3581 3582 3583 3584 3585 3586
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
3587
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3588 3589 3590 3591 3592 3593 3594
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3595
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3596 3597
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
3598 3599 3600 3601
				insn_processed);
			return -E2BIG;
		}

3602 3603 3604 3605 3606
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
3607
			if (env->log.level) {
3608
				if (do_print_state)
3609
					verbose(env, "\nfrom %d to %d: safe\n",
3610 3611
						prev_insn_idx, insn_idx);
				else
3612
					verbose(env, "%d: safe\n", insn_idx);
3613 3614 3615 3616
			}
			goto process_bpf_exit;
		}

3617 3618 3619
		if (need_resched())
			cond_resched();

3620 3621 3622
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
3623
			else
3624
				verbose(env, "\nfrom %d to %d:",
3625
					prev_insn_idx, insn_idx);
3626
			print_verifier_state(env, &env->cur_state);
3627 3628 3629
			do_print_state = false;
		}

3630 3631
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
3632 3633
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
3634 3635
		}

3636 3637 3638 3639
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3640
		if (class == BPF_ALU || class == BPF_ALU64) {
3641
			err = check_alu_op(env, insn);
3642 3643 3644 3645
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3646
			enum bpf_reg_type *prev_src_type, src_reg_type;
3647 3648 3649

			/* check for reserved fields is already done */

3650
			/* check src operand */
3651
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3652 3653 3654
			if (err)
				return err;

3655
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3656 3657 3658
			if (err)
				return err;

3659 3660
			src_reg_type = regs[insn->src_reg].type;

3661 3662 3663
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3664
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3665 3666 3667 3668 3669
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3670 3671 3672
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3673 3674
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3675
				 * save type to validate intersecting paths
3676
				 */
3677
				*prev_src_type = src_reg_type;
3678

3679
			} else if (src_reg_type != *prev_src_type &&
3680
				   (src_reg_type == PTR_TO_CTX ||
3681
				    *prev_src_type == PTR_TO_CTX)) {
3682 3683 3684 3685 3686 3687 3688
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
3689
				verbose(env, "same insn cannot be used with different pointers\n");
3690 3691 3692
				return -EINVAL;
			}

3693
		} else if (class == BPF_STX) {
3694
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3695

3696
			if (BPF_MODE(insn->code) == BPF_XADD) {
3697
				err = check_xadd(env, insn_idx, insn);
3698 3699 3700 3701 3702 3703 3704
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3705
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3706 3707 3708
			if (err)
				return err;
			/* check src2 operand */
3709
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3710 3711 3712
			if (err)
				return err;

3713 3714
			dst_reg_type = regs[insn->dst_reg].type;

3715
			/* check that memory (dst_reg + off) is writeable */
3716
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3717 3718 3719 3720 3721
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3722 3723 3724 3725 3726
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3727
				   (dst_reg_type == PTR_TO_CTX ||
3728
				    *prev_dst_type == PTR_TO_CTX)) {
3729
				verbose(env, "same insn cannot be used with different pointers\n");
3730 3731 3732
				return -EINVAL;
			}

3733 3734 3735
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
3736
				verbose(env, "BPF_ST uses reserved fields\n");
3737 3738 3739
				return -EINVAL;
			}
			/* check src operand */
3740
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3741 3742 3743 3744
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3745
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3759
					verbose(env, "BPF_CALL uses reserved fields\n");
3760 3761 3762
					return -EINVAL;
				}

3763
				err = check_call(env, insn->imm, insn_idx);
3764 3765 3766 3767 3768 3769 3770 3771
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3772
					verbose(env, "BPF_JA uses reserved fields\n");
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3784
					verbose(env, "BPF_EXIT uses reserved fields\n");
3785 3786 3787 3788 3789 3790 3791 3792 3793
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3794
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3795 3796 3797
				if (err)
					return err;

3798
				if (is_pointer_value(env, BPF_REG_0)) {
3799
					verbose(env, "R0 leaks addr as return value\n");
3800 3801 3802
					return -EACCES;
				}

3803 3804 3805
				err = check_return_code(env);
				if (err)
					return err;
3806
process_bpf_exit:
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3823 3824 3825 3826
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3827 3828 3829 3830 3831 3832 3833
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
3834
				verbose(env, "invalid BPF_LD mode\n");
3835 3836 3837
				return -EINVAL;
			}
		} else {
3838
			verbose(env, "unknown insn class %d\n", class);
3839 3840 3841 3842 3843 3844
			return -EINVAL;
		}

		insn_idx++;
	}

3845 3846
	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
		env->prog->aux->stack_depth);
3847 3848 3849
	return 0;
}

3850 3851 3852
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
3853 3854
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3855 3856 3857
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

3858 3859
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
3860 3861 3862
					struct bpf_prog *prog)

{
3863 3864 3865 3866 3867 3868 3869
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
3870
			verbose(env, "perf_event programs can only use preallocated hash map\n");
3871 3872 3873 3874
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
3875
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
3876 3877
			return -EINVAL;
		}
3878 3879 3880 3881
	}
	return 0;
}

3882 3883 3884
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
3885
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3886 3887 3888
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
3889
	int i, j, err;
3890

3891
	err = bpf_prog_calc_tag(env->prog);
3892 3893 3894
	if (err)
		return err;

3895
	for (i = 0; i < insn_cnt; i++, insn++) {
3896
		if (BPF_CLASS(insn->code) == BPF_LDX &&
3897
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3898
			verbose(env, "BPF_LDX uses reserved fields\n");
3899 3900 3901
			return -EINVAL;
		}

3902 3903 3904
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3905
			verbose(env, "BPF_STX uses reserved fields\n");
3906 3907 3908
			return -EINVAL;
		}

3909 3910 3911 3912 3913 3914 3915
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
3916
				verbose(env, "invalid bpf_ld_imm64 insn\n");
3917 3918 3919 3920 3921 3922 3923 3924
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3925 3926
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
3927 3928 3929 3930
				return -EINVAL;
			}

			f = fdget(insn->imm);
3931
			map = __bpf_map_get(f);
3932
			if (IS_ERR(map)) {
3933
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
3934 3935 3936 3937
					insn->imm);
				return PTR_ERR(map);
			}

3938
			err = check_map_prog_compatibility(env, map, env->prog);
3939 3940 3941 3942 3943
			if (err) {
				fdput(f);
				return err;
			}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
3965 3966 3967 3968 3969 3970 3971
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
3987
static void release_maps(struct bpf_verifier_env *env)
3988 3989 3990 3991 3992 3993 3994 3995
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3996
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

4042 4043 4044
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4045
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4046
{
4047
	const struct bpf_verifier_ops *ops = env->ops;
4048
	int i, cnt, size, ctx_field_size, delta = 0;
4049
	const int insn_cnt = env->prog->len;
4050
	struct bpf_insn insn_buf[16], *insn;
4051
	struct bpf_prog *new_prog;
4052
	enum bpf_access_type type;
4053 4054
	bool is_narrower_load;
	u32 target_size;
4055

4056 4057 4058 4059
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4060
			verbose(env, "bpf verifier is misconfigured\n");
4061 4062
			return -EINVAL;
		} else if (cnt) {
4063
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4064 4065
			if (!new_prog)
				return -ENOMEM;
4066

4067
			env->prog = new_prog;
4068
			delta += cnt - 1;
4069 4070 4071 4072
		}
	}

	if (!ops->convert_ctx_access)
4073 4074
		return 0;

4075
	insn = env->prog->insnsi + delta;
4076

4077
	for (i = 0; i < insn_cnt; i++, insn++) {
4078 4079 4080
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4081
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4082
			type = BPF_READ;
4083 4084 4085
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4086
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4087 4088
			type = BPF_WRITE;
		else
4089 4090
			continue;

4091
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4092 4093
			continue;

4094
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4095
		size = BPF_LDST_BYTES(insn);
4096 4097 4098 4099 4100 4101

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4102
		is_narrower_load = size < ctx_field_size;
4103
		if (is_narrower_load) {
4104 4105 4106 4107
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4108
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4109 4110
				return -EINVAL;
			}
4111

4112
			size_code = BPF_H;
4113 4114 4115 4116
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4117

4118 4119 4120
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4121 4122 4123 4124 4125 4126

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4127
			verbose(env, "bpf verifier is misconfigured\n");
4128 4129
			return -EINVAL;
		}
4130 4131

		if (is_narrower_load && size < target_size) {
4132 4133
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4134
								(1 << size * 8) - 1);
4135 4136
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4137
								(1 << size * 8) - 1);
4138
		}
4139

4140
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4141 4142 4143
		if (!new_prog)
			return -ENOMEM;

4144
		delta += cnt - 1;
4145 4146 4147

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4148
		insn      = new_prog->insnsi + i + delta;
4149 4150 4151 4152 4153
	}

	return 0;
}

4154
/* fixup insn->imm field of bpf_call instructions
4155
 * and inline eligible helpers as explicit sequence of BPF instructions
4156 4157 4158
 *
 * this function is called after eBPF program passed verification
 */
4159
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4160
{
4161 4162
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4163
	const struct bpf_func_proto *fn;
4164
	const int insn_cnt = prog->len;
4165 4166 4167 4168
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4169

4170 4171 4172
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4173

4174 4175 4176 4177 4178
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4179 4180 4181 4182 4183 4184
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4185
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4186

4187 4188 4189 4190
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4191
			 */
4192
			insn->imm = 0;
4193
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4194 4195
			continue;
		}
4196

4197 4198 4199 4200 4201
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4202
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4203 4204
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4205 4206 4207 4208
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4209
				verbose(env, "bpf verifier is misconfigured\n");
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4226
		if (insn->imm == BPF_FUNC_redirect_map) {
4227 4228 4229 4230 4231 4232
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4247
patch_call_imm:
4248
		fn = env->ops->get_func_proto(insn->imm);
4249 4250 4251 4252
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
4253 4254
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
4255 4256
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4257
		}
4258
		insn->imm = fn->func - __bpf_call_base;
4259 4260
	}

4261 4262
	return 0;
}
4263

4264
static void free_states(struct bpf_verifier_env *env)
4265
{
4266
	struct bpf_verifier_state_list *sl, *sln;
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4286
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4287
{
4288
	struct bpf_verifier_env *env;
4289
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
4290 4291
	int ret = -EINVAL;

4292
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4293 4294
	 * allocate/free it every time bpf_check() is called
	 */
4295
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4296 4297
	if (!env)
		return -ENOMEM;
4298
	log = &env->log;
4299

4300 4301 4302 4303 4304
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4305
	env->prog = *prog;
4306
	env->ops = bpf_verifier_ops[env->prog->type];
4307

4308 4309 4310 4311 4312 4313 4314
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
4315 4316 4317
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
4318 4319

		ret = -EINVAL;
4320 4321 4322
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
4323
			goto err_unlock;
4324
	}
4325 4326 4327

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4328
		env->strict_alignment = true;
4329

4330 4331 4332 4333
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4334
	env->explored_states = kcalloc(env->prog->len,
4335
				       sizeof(struct bpf_verifier_state_list *),
4336 4337 4338 4339 4340
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4341 4342 4343 4344
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4345 4346
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4347
	ret = do_check(env);
4348

4349
skip_full_check:
4350
	while (pop_stack(env, NULL) >= 0);
4351
	free_states(env);
4352

4353 4354 4355 4356
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4357
	if (ret == 0)
4358
		ret = fixup_bpf_calls(env);
4359

4360
	if (log->level && bpf_verifier_log_full(log))
4361
		ret = -ENOSPC;
4362
	if (log->level && !log->ubuf) {
4363
		ret = -EFAULT;
4364
		goto err_release_maps;
4365 4366
	}

4367 4368
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4369 4370 4371
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4372

4373
		if (!env->prog->aux->used_maps) {
4374
			ret = -ENOMEM;
4375
			goto err_release_maps;
4376 4377
		}

4378
		memcpy(env->prog->aux->used_maps, env->used_maps,
4379
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4380
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4381 4382 4383 4384 4385 4386

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4387

4388
err_release_maps:
4389
	if (!env->prog->aux->used_maps)
4390 4391 4392 4393
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4394
	*prog = env->prog;
4395
err_unlock:
4396
	mutex_unlock(&bpf_verifier_lock);
4397 4398 4399
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4400 4401
	return ret;
}
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
4419
	env->ops = bpf_verifier_ops[env->prog->type];
4420 4421 4422 4423 4424 4425
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

4426
	env->strict_alignment = false;
4427 4428
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);