verifier.c 129.3 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35

/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
36
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
64
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
65
 * means the register has some value, but it's not a valid pointer.
66
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
67 68
 *
 * When verifier sees load or store instructions the type of base register
69
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

131
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
132
struct bpf_verifier_stack_elem {
133 134 135 136
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
137
	struct bpf_verifier_state st;
138 139
	int insn_idx;
	int prev_insn_idx;
140
	struct bpf_verifier_stack_elem *next;
141 142
};

143
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
144 145
#define BPF_COMPLEXITY_LIMIT_STACK	1024

146 147
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

148 149
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
150
	bool raw_mode;
151
	bool pkt_access;
152 153
	int regno;
	int access_size;
154 155
};

156 157 158 159 160 161 162 163 164 165 166 167
/* verbose verifier prints what it's seeing
 * bpf_check() is called under lock, so no race to access these global vars
 */
static u32 log_level, log_size, log_len;
static char *log_buf;

static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
168
static __printf(1, 2) void verbose(const char *fmt, ...)
169 170 171 172 173 174 175 176 177 178 179
{
	va_list args;

	if (log_level == 0 || log_len >= log_size - 1)
		return;

	va_start(args, fmt);
	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
	va_end(args);
}

180 181 182
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
183
	[SCALAR_VALUE]		= "inv",
184 185 186 187 188
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
189 190
	[PTR_TO_PACKET]		= "pkt",
	[PTR_TO_PACKET_END]	= "pkt_end",
191 192
};

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
static const char * const func_id_str[] = {
	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
};
#undef __BPF_FUNC_STR_FN

static const char *func_id_name(int id)
{
	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);

	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
		return func_id_str[id];
	else
		return "unknown";
}

209
static void print_verifier_state(struct bpf_verifier_state *state)
210
{
211
	struct bpf_reg_state *reg;
212 213 214 215
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
216 217
		reg = &state->regs[i];
		t = reg->type;
218 219 220
		if (t == NOT_INIT)
			continue;
		verbose(" R%d=%s", i, reg_type_str[t]);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
			verbose("%lld", reg->var_off.value + reg->off);
		} else {
			verbose("(id=%d", reg->id);
			if (t != SCALAR_VALUE)
				verbose(",off=%d", reg->off);
			if (t == PTR_TO_PACKET)
				verbose(",r=%d", reg->range);
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
				verbose(",ks=%d,vs=%d",
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
				verbose(",imm=%llx", reg->var_off.value);
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
					verbose(",smin_value=%lld",
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
					verbose(",smax_value=%lld",
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
					verbose(",umin_value=%llu",
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
					verbose(",umax_value=%llu",
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
260

261 262 263
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
					verbose(",var_off=%s", tn_buf);
				}
264 265 266
			}
			verbose(")");
		}
267
	}
268
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
269
		if (state->stack_slot_type[i] == STACK_SPILL)
270
			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
271
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
272 273 274 275
	}
	verbose("\n");
}

276 277 278 279 280 281 282 283 284 285 286
static const char *const bpf_class_string[] = {
	[BPF_LD]    = "ld",
	[BPF_LDX]   = "ldx",
	[BPF_ST]    = "st",
	[BPF_STX]   = "stx",
	[BPF_ALU]   = "alu",
	[BPF_JMP]   = "jmp",
	[BPF_RET]   = "BUG",
	[BPF_ALU64] = "alu64",
};

287
static const char *const bpf_alu_string[16] = {
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	[BPF_ADD >> 4]  = "+=",
	[BPF_SUB >> 4]  = "-=",
	[BPF_MUL >> 4]  = "*=",
	[BPF_DIV >> 4]  = "/=",
	[BPF_OR  >> 4]  = "|=",
	[BPF_AND >> 4]  = "&=",
	[BPF_LSH >> 4]  = "<<=",
	[BPF_RSH >> 4]  = ">>=",
	[BPF_NEG >> 4]  = "neg",
	[BPF_MOD >> 4]  = "%=",
	[BPF_XOR >> 4]  = "^=",
	[BPF_MOV >> 4]  = "=",
	[BPF_ARSH >> 4] = "s>>=",
	[BPF_END >> 4]  = "endian",
};

static const char *const bpf_ldst_string[] = {
	[BPF_W >> 3]  = "u32",
	[BPF_H >> 3]  = "u16",
	[BPF_B >> 3]  = "u8",
	[BPF_DW >> 3] = "u64",
};

311
static const char *const bpf_jmp_string[16] = {
312 313 314
	[BPF_JA >> 4]   = "jmp",
	[BPF_JEQ >> 4]  = "==",
	[BPF_JGT >> 4]  = ">",
315
	[BPF_JLT >> 4]  = "<",
316
	[BPF_JGE >> 4]  = ">=",
317
	[BPF_JLE >> 4]  = "<=",
318 319 320
	[BPF_JSET >> 4] = "&",
	[BPF_JNE >> 4]  = "!=",
	[BPF_JSGT >> 4] = "s>",
321
	[BPF_JSLT >> 4] = "s<",
322
	[BPF_JSGE >> 4] = "s>=",
323
	[BPF_JSLE >> 4] = "s<=",
324 325 326 327
	[BPF_CALL >> 4] = "call",
	[BPF_EXIT >> 4] = "exit",
};

328 329
static void print_bpf_insn(const struct bpf_verifier_env *env,
			   const struct bpf_insn *insn)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
{
	u8 class = BPF_CLASS(insn->code);

	if (class == BPF_ALU || class == BPF_ALU64) {
		if (BPF_SRC(insn->code) == BPF_X)
			verbose("(%02x) %sr%d %s %sr%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->src_reg);
		else
			verbose("(%02x) %sr%d %s %s%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->imm);
	} else if (class == BPF_STX) {
		if (BPF_MODE(insn->code) == BPF_MEM)
			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg,
				insn->off, insn->src_reg);
		else if (BPF_MODE(insn->code) == BPF_XADD)
			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg, insn->off,
				insn->src_reg);
		else
			verbose("BUG_%02x\n", insn->code);
	} else if (class == BPF_ST) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_st_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
			insn->code,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->dst_reg,
			insn->off, insn->imm);
	} else if (class == BPF_LDX) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_ldx_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
			insn->code, insn->dst_reg,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->src_reg, insn->off);
	} else if (class == BPF_LD) {
		if (BPF_MODE(insn->code) == BPF_ABS) {
			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IND) {
			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->src_reg, insn->imm);
393 394 395 396 397 398 399 400 401 402 403 404 405
		} else if (BPF_MODE(insn->code) == BPF_IMM &&
			   BPF_SIZE(insn->code) == BPF_DW) {
			/* At this point, we already made sure that the second
			 * part of the ldimm64 insn is accessible.
			 */
			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;

			if (map_ptr && !env->allow_ptr_leaks)
				imm = 0;

			verbose("(%02x) r%d = 0x%llx\n", insn->code,
				insn->dst_reg, (unsigned long long)imm);
406 407 408 409 410 411 412 413
		} else {
			verbose("BUG_ld_%02x\n", insn->code);
			return;
		}
	} else if (class == BPF_JMP) {
		u8 opcode = BPF_OP(insn->code);

		if (opcode == BPF_CALL) {
414 415
			verbose("(%02x) call %s#%d\n", insn->code,
				func_id_name(insn->imm), insn->imm);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		} else if (insn->code == (BPF_JMP | BPF_JA)) {
			verbose("(%02x) goto pc%+d\n",
				insn->code, insn->off);
		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
			verbose("(%02x) exit\n", insn->code);
		} else if (BPF_SRC(insn->code) == BPF_X) {
			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->src_reg, insn->off);
		} else {
			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->imm, insn->off);
		}
	} else {
		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
	}
}

437
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
438
{
439
	struct bpf_verifier_stack_elem *elem;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

456 457
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
458
{
459
	struct bpf_verifier_stack_elem *elem;
460

461
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
462 463 464 465 466 467 468 469 470
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
471
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
		verbose("BPF program is too complex\n");
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

487 488
static void __mark_reg_not_init(struct bpf_reg_state *reg);

489 490 491 492 493 494 495 496 497 498 499 500 501
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

502 503 504 505
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
506
{
507
	__mark_reg_known(reg, 0);
508
}
509

510 511 512 513 514 515 516 517 518 519 520 521
static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_known_zero(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

588 589 590 591 592 593 594
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
595
	__mark_reg_unbounded(reg);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_unknown(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
		verbose("mark_reg_not_init(regs, %u)\n", regno);
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
626 627
}

628
static void init_reg_state(struct bpf_reg_state *regs)
629 630 631
{
	int i;

632
	for (i = 0; i < MAX_BPF_REG; i++) {
633
		mark_reg_not_init(regs, i);
634 635
		regs[i].live = REG_LIVE_NONE;
	}
636 637

	/* frame pointer */
638 639
	regs[BPF_REG_FP].type = PTR_TO_STACK;
	mark_reg_known_zero(regs, BPF_REG_FP);
640 641 642

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
643
	mark_reg_known_zero(regs, BPF_REG_1);
644 645
}

646 647 648 649 650 651
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

652 653 654 655
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
656 657 658 659
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

660 661 662 663 664 665 666 667 668 669 670 671
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
672 673
			 enum reg_arg_type t)
{
674 675
	struct bpf_reg_state *regs = env->cur_state.regs;

676 677 678 679 680 681 682 683 684 685 686
	if (regno >= MAX_BPF_REG) {
		verbose("R%d is invalid\n", regno);
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
			verbose("R%d !read_ok\n", regno);
			return -EACCES;
		}
687
		mark_reg_read(&env->cur_state, regno);
688 689 690 691 692 693
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
			verbose("frame pointer is read only\n");
			return -EACCES;
		}
694
		regs[regno].live |= REG_LIVE_WRITTEN;
695
		if (t == DST_OP)
696
			mark_reg_unknown(regs, regno);
697 698 699 700
	}
	return 0;
}

701 702 703 704 705 706 707
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
708 709
	case PTR_TO_PACKET:
	case PTR_TO_PACKET_END:
710 711 712 713 714 715 716
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

717 718 719
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
720 721
static int check_stack_write(struct bpf_verifier_state *state, int off,
			     int size, int value_regno)
722
{
723
	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
724 725 726
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
727 728

	if (value_regno >= 0 &&
729
	    is_spillable_regtype(state->regs[value_regno].type)) {
730 731

		/* register containing pointer is being spilled into stack */
732
		if (size != BPF_REG_SIZE) {
733 734 735 736 737
			verbose("invalid size of register spill\n");
			return -EACCES;
		}

		/* save register state */
738 739
		state->spilled_regs[spi] = state->regs[value_regno];
		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
740

741 742 743
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
744
		/* regular write of data into stack */
745
		state->spilled_regs[spi] = (struct bpf_reg_state) {};
746 747 748

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
749 750 751 752
	}
	return 0;
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->spilled_regs[slot].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

768
static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
769 770
			    int value_regno)
{
771
	u8 *slot_type;
772
	int i, spi;
773

774
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
775

776 777
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
778 779 780
			verbose("invalid size of register spill\n");
			return -EACCES;
		}
781 782
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
783 784 785 786 787
				verbose("corrupted spill memory\n");
				return -EACCES;
			}
		}

788 789 790
		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;

		if (value_regno >= 0) {
791
			/* restore register state from stack */
792 793 794
			state->regs[value_regno] = state->spilled_regs[spi];
			mark_stack_slot_read(state, spi);
		}
795 796 797
		return 0;
	} else {
		for (i = 0; i < size; i++) {
798
			if (slot_type[i] != STACK_MISC) {
799 800 801 802 803 804 805
				verbose("invalid read from stack off %d+%d size %d\n",
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
806
			mark_reg_unknown(state->regs, value_regno);
807 808 809 810 811
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
812
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
813 814 815 816
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

817
	if (off < 0 || size <= 0 || off + size > map->value_size) {
818 819 820 821 822 823 824
		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

825 826
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
827 828 829 830 831 832
				int off, int size)
{
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

833 834 835
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
836 837 838 839 840 841 842 843 844
	 */
	if (log_level)
		print_verifier_state(state);
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
845
	if (reg->smin_value < 0) {
846 847 848 849
		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
			regno);
		return -EACCES;
	}
850
	err = __check_map_access(env, regno, reg->smin_value + off, size);
851
	if (err) {
852
		verbose("R%d min value is outside of the array range\n", regno);
853 854 855
		return err;
	}

856 857 858
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
859
	 */
860
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
861 862 863 864
		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
			regno);
		return -EACCES;
	}
865
	err = __check_map_access(env, regno, reg->umax_value + off, size);
866 867 868
	if (err)
		verbose("R%d max value is outside of the array range\n", regno);
	return err;
869 870
}

A
Alexei Starovoitov 已提交
871 872
#define MAX_PACKET_OFF 0xffff

873
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
874 875
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
876
{
877
	switch (env->prog->type) {
878 879 880 881 882
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
883
		/* fallthrough */
884 885
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
886
	case BPF_PROG_TYPE_XDP:
887
	case BPF_PROG_TYPE_LWT_XMIT:
888
	case BPF_PROG_TYPE_SK_SKB:
889 890 891 892
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
893 894 895 896 897 898
		return true;
	default:
		return false;
	}
}

899 900
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
				 int off, int size)
A
Alexei Starovoitov 已提交
901
{
902 903
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
904

905
	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
906 907
		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
908 909 910 911 912
		return -EACCES;
	}
	return 0;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
			       int size)
{
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
928
	if (reg->smin_value < 0) {
929 930 931 932 933 934 935 936 937 938 939 940 941
		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
			regno);
		return -EACCES;
	}
	err = __check_packet_access(env, regno, off, size);
	if (err) {
		verbose("R%d offset is outside of the packet\n", regno);
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
942
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
943
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
944
{
945 946 947
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
948

949 950 951 952
	/* for analyzer ctx accesses are already validated and converted */
	if (env->analyzer_ops)
		return 0;

953
	if (env->prog->aux->ops->is_valid_access &&
954
	    env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
955 956 957 958 959 960
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
961
		 */
962
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
963
		*reg_type = info.reg_type;
964

965 966 967
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
968
		return 0;
969
	}
970 971 972 973 974

	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
	return -EACCES;
}

975 976
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
977
{
978
	if (allow_ptr_leaks)
979 980
		return false;

981
	return reg->type != SCALAR_VALUE;
982 983
}

984 985 986 987 988
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
}

989
static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
990
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
991
{
992
	struct tnum reg_off;
993
	int ip_align;
994 995 996 997 998

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

999 1000 1001 1002 1003 1004 1005
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1006
	 */
1007
	ip_align = 2;
1008 1009 1010 1011 1012 1013 1014 1015

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
		verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1016 1017
		return -EACCES;
	}
1018

A
Alexei Starovoitov 已提交
1019 1020 1021
	return 0;
}

1022 1023 1024
static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
				       const char *pointer_desc,
				       int off, int size, bool strict)
1025
{
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
		verbose("misaligned %saccess off %s+%d+%d size %d\n",
			pointer_desc, tn_buf, reg->off, off, size);
1039 1040 1041
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1042 1043 1044
	return 0;
}

1045 1046
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1047 1048
			       int off, int size)
{
1049
	bool strict = env->strict_alignment;
1050
	const char *pointer_desc = "";
1051

1052 1053
	switch (reg->type) {
	case PTR_TO_PACKET:
1054
		/* special case, because of NET_IP_ALIGN */
1055
		return check_pkt_ptr_alignment(reg, off, size, strict);
1056 1057 1058 1059 1060 1061 1062 1063 1064
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1065
	default:
1066
		break;
1067
	}
1068
	return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
1069 1070
}

1071 1072 1073 1074 1075 1076
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1077
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1078 1079 1080
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1081 1082
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
1083 1084 1085 1086 1087 1088
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1089
	/* alignment checks will add in reg->off themselves */
1090
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1091 1092
	if (err)
		return err;
1093

1094 1095 1096 1097
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1098 1099 1100 1101 1102
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into map\n", value_regno);
			return -EACCES;
		}
1103

1104
		err = check_map_access(env, regno, off, size);
1105
		if (!err && t == BPF_READ && value_regno >= 0)
1106
			mark_reg_unknown(state->regs, value_regno);
1107

A
Alexei Starovoitov 已提交
1108
	} else if (reg->type == PTR_TO_CTX) {
1109
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1110

1111 1112 1113 1114 1115
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into ctx\n", value_regno);
			return -EACCES;
		}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
			verbose("variable ctx access var_off=%s off=%d size=%d",
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1128
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1129
		if (!err && t == BPF_READ && value_regno >= 0) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			/* ctx access returns either a scalar, or a
			 * PTR_TO_PACKET[_END].  In the latter case, we know
			 * the offset is zero.
			 */
			if (reg_type == SCALAR_VALUE)
				mark_reg_unknown(state->regs, value_regno);
			else
				mark_reg_known_zero(state->regs, value_regno);
			state->regs[value_regno].id = 0;
			state->regs[value_regno].off = 0;
			state->regs[value_regno].range = 0;
1141
			state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1142
		}
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
			verbose("variable stack access var_off=%s off=%d size=%d",
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1158 1159 1160 1161
		if (off >= 0 || off < -MAX_BPF_STACK) {
			verbose("invalid stack off=%d size=%d\n", off, size);
			return -EACCES;
		}
1162 1163 1164 1165

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1166 1167 1168 1169 1170 1171 1172
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
				verbose("attempt to corrupt spilled pointer on stack\n");
				return -EACCES;
			}
1173
			err = check_stack_write(state, off, size, value_regno);
1174
		} else {
1175
			err = check_stack_read(state, off, size, value_regno);
1176
		}
1177
	} else if (reg->type == PTR_TO_PACKET) {
1178
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
A
Alexei Starovoitov 已提交
1179 1180 1181
			verbose("cannot write into packet\n");
			return -EACCES;
		}
1182 1183 1184 1185 1186
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into packet\n", value_regno);
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
1187 1188
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
1189
			mark_reg_unknown(state->regs, value_regno);
1190 1191
	} else {
		verbose("R%d invalid mem access '%s'\n",
A
Alexei Starovoitov 已提交
1192
			regno, reg_type_str[reg->type]);
1193 1194
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1195

1196 1197 1198 1199 1200
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
	    state->regs[value_regno].type == SCALAR_VALUE) {
		/* b/h/w load zero-extends, mark upper bits as known 0 */
		state->regs[value_regno].var_off = tnum_cast(
					state->regs[value_regno].var_off, size);
1201
		__update_reg_bounds(&state->regs[value_regno]);
A
Alexei Starovoitov 已提交
1202
	}
1203 1204 1205
	return err;
}

1206
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
		verbose("BPF_XADD uses reserved fields\n");
		return -EINVAL;
	}

	/* check src1 operand */
1217
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1218 1219 1220 1221
	if (err)
		return err;

	/* check src2 operand */
1222
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1223 1224 1225
	if (err)
		return err;

1226 1227 1228 1229 1230
	if (is_pointer_value(env, insn->src_reg)) {
		verbose("R%d leaks addr into mem\n", insn->src_reg);
		return -EACCES;
	}

1231
	/* check whether atomic_add can read the memory */
1232
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1233 1234 1235 1236 1237
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1238
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1239 1240 1241
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1242 1243 1244 1245 1246 1247
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1248 1249
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1250 1251 1252
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1253
 */
1254
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1255 1256
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1257
{
1258 1259
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
1260 1261
	int off, i;

1262
	if (regs[regno].type != PTR_TO_STACK) {
1263
		/* Allow zero-byte read from NULL, regardless of pointer type */
1264
		if (zero_size_allowed && access_size == 0 &&
1265
		    register_is_null(regs[regno]))
1266 1267 1268 1269 1270
			return 0;

		verbose("R%d type=%s expected=%s\n", regno,
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1271
		return -EACCES;
1272
	}
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
		verbose("invalid variable stack read R%d var_off=%s\n",
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1283 1284 1285 1286 1287 1288 1289
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
		verbose("invalid stack type R%d off=%d access_size=%d\n",
			regno, off, access_size);
		return -EACCES;
	}

1290 1291 1292
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1293 1294 1295 1296 1297 1298
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1299
	for (i = 0; i < access_size; i++) {
1300
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1301 1302 1303 1304 1305 1306 1307 1308
			verbose("invalid indirect read from stack off %d+%d size %d\n",
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1309 1310 1311 1312
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1313
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1314

1315
	switch (reg->type) {
1316
	case PTR_TO_PACKET:
1317
		return check_packet_access(env, regno, reg->off, access_size);
1318
	case PTR_TO_MAP_VALUE:
1319 1320
		return check_map_access(env, regno, reg->off, access_size);
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1321 1322 1323 1324 1325
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1326
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1327 1328
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1329
{
1330
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1331
	enum bpf_reg_type expected_type, type = reg->type;
1332 1333
	int err = 0;

1334
	if (arg_type == ARG_DONTCARE)
1335 1336
		return 0;

1337 1338 1339
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1340

1341 1342 1343 1344 1345
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
			verbose("R%d leaks addr into helper function\n", regno);
			return -EACCES;
		}
1346
		return 0;
1347
	}
1348

1349 1350
	if (type == PTR_TO_PACKET &&
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1351
		verbose("helper access to the packet is not allowed\n");
1352 1353 1354
		return -EACCES;
	}

1355
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1356 1357
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1358 1359
		if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
1360 1361
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1362 1363
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1364
			goto err_type;
1365 1366
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1367 1368
		if (type != expected_type)
			goto err_type;
1369 1370
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1371 1372
		if (type != expected_type)
			goto err_type;
1373 1374
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1375 1376
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1377
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1378 1379
		 * happens during stack boundary checking.
		 */
1380
		if (register_is_null(*reg))
1381
			/* final test in check_stack_boundary() */;
1382
		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1383
			 type != expected_type)
1384
			goto err_type;
1385
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1386 1387 1388 1389 1390 1391 1392
	} else {
		verbose("unsupported arg_type %d\n", arg_type);
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1393
		meta->map_ptr = reg->map_ptr;
1394 1395 1396 1397 1398
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1399
		if (!meta->map_ptr) {
1400 1401 1402 1403 1404 1405 1406 1407
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
			verbose("invalid map_ptr to access map->key\n");
			return -EACCES;
		}
1408
		if (type == PTR_TO_PACKET)
1409
			err = check_packet_access(env, regno, reg->off,
1410 1411 1412 1413 1414
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1415 1416 1417 1418
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1419
		if (!meta->map_ptr) {
1420 1421 1422 1423
			/* kernel subsystem misconfigured verifier */
			verbose("invalid map_ptr to access map->value\n");
			return -EACCES;
		}
1424
		if (type == PTR_TO_PACKET)
1425
			err = check_packet_access(env, regno, reg->off,
1426 1427 1428 1429 1430
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1431 1432 1433
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1434 1435 1436 1437 1438 1439 1440

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1441
			verbose("ARG_CONST_SIZE cannot be first argument\n");
1442 1443
			return -EACCES;
		}
1444

1445 1446
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1447
		 */
1448 1449

		if (!tnum_is_const(reg->var_off))
1450 1451 1452 1453 1454 1455 1456
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1457
		if (reg->smin_value < 0) {
1458 1459 1460 1461
			verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
				regno);
			return -EACCES;
		}
1462

1463
		if (reg->umin_value == 0) {
1464 1465 1466
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1467 1468 1469
			if (err)
				return err;
		}
1470

1471
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1472 1473 1474 1475 1476
			verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1477
					      reg->umax_value,
1478
					      zero_size_allowed, meta);
1479 1480 1481
	}

	return err;
1482 1483 1484 1485
err_type:
	verbose("R%d type=%s expected=%s\n", regno,
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1486 1487
}

1488 1489 1490 1491 1492
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
	if (!map)
		return 0;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
		    func_id != BPF_FUNC_perf_event_output)
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1508
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1509
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1510
		    func_id != BPF_FUNC_current_task_under_cgroup)
1511 1512
			goto error;
		break;
1513 1514 1515 1516 1517
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1518
		if (func_id != BPF_FUNC_redirect_map)
1519 1520
			goto error;
		break;
1521
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1522
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1523 1524
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1525
		break;
1526 1527 1528 1529 1530 1531
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1551
	case BPF_FUNC_current_task_under_cgroup:
1552
	case BPF_FUNC_skb_under_cgroup:
1553 1554 1555
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1556 1557 1558 1559
	case BPF_FUNC_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_DEVMAP)
			goto error;
		break;
1560 1561 1562 1563 1564 1565 1566 1567
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1568 1569
	default:
		break;
1570 1571 1572
	}

	return 0;
1573
error:
1574 1575
	verbose("cannot pass map_type %d into func %s#%d\n",
		map->map_type, func_id_name(func_id), func_id);
1576
	return -EINVAL;
1577 1578
}

1579 1580 1581 1582
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1583
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1584
		count++;
1585
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1586
		count++;
1587
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1588
		count++;
1589
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1590
		count++;
1591
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1592 1593 1594 1595 1596
		count++;

	return count > 1 ? -EINVAL : 0;
}

1597 1598 1599
/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
 * so turn them into unknown SCALAR_VALUE.
 */
1600
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1601
{
1602 1603
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1604 1605 1606 1607 1608
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET ||
		    regs[i].type == PTR_TO_PACKET_END)
1609
			mark_reg_unknown(regs, i);
A
Alexei Starovoitov 已提交
1610 1611 1612 1613 1614 1615 1616 1617

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type != PTR_TO_PACKET &&
		    reg->type != PTR_TO_PACKET_END)
			continue;
1618
		__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1619 1620 1621
	}
}

1622
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1623
{
1624
	struct bpf_verifier_state *state = &env->cur_state;
1625
	const struct bpf_func_proto *fn = NULL;
1626
	struct bpf_reg_state *regs = state->regs;
1627
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1628
	bool changes_data;
1629 1630 1631 1632
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1633
		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1634 1635 1636 1637 1638 1639 1640
		return -EINVAL;
	}

	if (env->prog->aux->ops->get_func_proto)
		fn = env->prog->aux->ops->get_func_proto(func_id);

	if (!fn) {
1641
		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1642 1643 1644 1645
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1646
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1647 1648 1649 1650
		verbose("cannot call GPL only function from proprietary program\n");
		return -EINVAL;
	}

1651
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1652

1653
	memset(&meta, 0, sizeof(meta));
1654
	meta.pkt_access = fn->pkt_access;
1655

1656 1657 1658 1659 1660
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1661 1662
		verbose("kernel subsystem misconfigured func %s#%d\n",
			func_id_name(func_id), func_id);
1663 1664 1665
		return err;
	}

1666
	/* check args */
1667
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1668 1669
	if (err)
		return err;
1670
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1671 1672
	if (err)
		return err;
1673
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1674 1675
	if (err)
		return err;
1676
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1677 1678
	if (err)
		return err;
1679
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1680 1681 1682
	if (err)
		return err;

1683 1684 1685 1686
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1687
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1688 1689 1690 1691
		if (err)
			return err;
	}

1692
	/* reset caller saved regs */
1693
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1694
		mark_reg_not_init(regs, caller_saved[i]);
1695 1696
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1697

1698
	/* update return register (already marked as written above) */
1699
	if (fn->ret_type == RET_INTEGER) {
1700 1701
		/* sets type to SCALAR_VALUE */
		mark_reg_unknown(regs, BPF_REG_0);
1702 1703 1704
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1705 1706
		struct bpf_insn_aux_data *insn_aux;

1707
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1708 1709 1710
		/* There is no offset yet applied, variable or fixed */
		mark_reg_known_zero(regs, BPF_REG_0);
		regs[BPF_REG_0].off = 0;
1711 1712 1713 1714
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1715
		if (meta.map_ptr == NULL) {
1716 1717 1718
			verbose("kernel subsystem misconfigured verifier\n");
			return -EINVAL;
		}
1719
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1720
		regs[BPF_REG_0].id = ++env->id_gen;
1721 1722 1723 1724 1725
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1726
	} else {
1727 1728
		verbose("unknown return type %d of func %s#%d\n",
			fn->ret_type, func_id_name(func_id), func_id);
1729 1730
		return -EINVAL;
	}
1731

1732
	err = check_map_func_compatibility(meta.map_ptr, func_id);
1733 1734
	if (err)
		return err;
1735

A
Alexei Starovoitov 已提交
1736 1737 1738 1739 1740
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1741 1742 1743 1744
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1778
{
1779 1780
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
	bool known = tnum_is_const(off_reg->var_off);
1781 1782 1783 1784
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1785
	u8 opcode = BPF_OP(insn->code);
1786
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1787

1788
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1789

1790
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1791
		print_verifier_state(&env->cur_state);
1792 1793 1794 1795 1796 1797
		verbose("verifier internal error: known but bad sbounds\n");
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: known but bad ubounds\n");
1798 1799 1800 1801 1802 1803 1804 1805 1806
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
			verbose("R%d 32-bit pointer arithmetic prohibited\n",
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1807 1808
	}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1830
	 */
1831 1832
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1833

1834 1835 1836 1837
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1838
		 */
1839 1840
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1841
			/* pointer += K.  Accumulate it into fixed offset */
1842 1843 1844 1845
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1846
			dst_reg->var_off = ptr_reg->var_off;
1847
			dst_reg->off = ptr_reg->off + smin_val;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1859
		 */
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
		if (ptr_reg->type == PTR_TO_PACKET) {
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
				verbose("R%d tried to subtract pointer from scalar\n",
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1895
		 */
1896 1897 1898 1899 1900 1901
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
				verbose("R%d subtraction from stack pointer prohibited\n",
					dst);
			return -EACCES;
		}
1902 1903
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1904
			/* pointer -= K.  Subtract it from fixed offset */
1905 1906 1907 1908
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1909 1910
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1911
			dst_reg->off = ptr_reg->off - smin_val;
1912 1913 1914 1915 1916
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1917
		 */
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1936 1937 1938 1939 1940
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
		if (ptr_reg->type == PTR_TO_PACKET) {
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1941
			if (smin_val < 0)
1942
				dst_reg->range = 0;
1943
		}
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
			verbose("R%d bitwise operator %s on pointer prohibited\n",
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
			verbose("R%d pointer arithmetic with %s operator prohibited\n",
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1962 1963
	}

1964 1965 1966
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
1967 1968 1969
	return 0;
}

1970 1971 1972 1973
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
1974
{
1975
	struct bpf_reg_state *regs = env->cur_state.regs;
1976
	u8 opcode = BPF_OP(insn->code);
1977
	bool src_known, dst_known;
1978 1979
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
1980

1981 1982 1983 1984
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
1985
	}
1986 1987 1988 1989
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
1990 1991
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
1992

1993 1994
	switch (opcode) {
	case BPF_ADD:
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2011
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2012 2013
		break;
	case BPF_SUB:
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2032
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2033 2034
		break;
	case BPF_MUL:
2035 2036
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2037
			/* Ain't nobody got time to multiply that sign */
2038 2039
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2040 2041
			break;
		}
2042 2043
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2044
		 */
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2062 2063
		break;
	case BPF_AND:
2064
		if (src_known && dst_known) {
2065 2066
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2067 2068
			break;
		}
2069 2070
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2071
		 */
2072
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2090 2091 2092
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2093 2094
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2095 2096
			break;
		}
2097 2098
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2099 2100
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2101 2102 2103 2104 2105 2106 2107 2108 2109
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2110
		} else {
2111 2112 2113 2114 2115
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2116
		}
2117 2118
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2119 2120
		break;
	case BPF_LSH:
2121 2122 2123 2124
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2125 2126 2127
			mark_reg_unknown(regs, insn->dst_reg);
			break;
		}
2128 2129
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2130
		 */
2131 2132 2133 2134 2135 2136
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2137
		} else {
2138 2139
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2140
		}
2141 2142 2143 2144 2145 2146
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2147 2148
		break;
	case BPF_RSH:
2149 2150 2151 2152
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2153 2154 2155 2156
			mark_reg_unknown(regs, insn->dst_reg);
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2157 2158
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2159
				/* Sign bit will be cleared */
2160 2161 2162 2163 2164 2165
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2166
		} else {
2167 2168
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2169
		}
2170
		if (src_known)
2171 2172
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2173
		else
2174 2175 2176 2177 2178
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2179 2180
		break;
	default:
2181
		mark_reg_unknown(regs, insn->dst_reg);
2182 2183 2184
		break;
	}

2185 2186
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
					verbose("R%d pointer %s pointer prohibited\n",
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
				mark_reg_unknown(regs, insn->dst_reg);
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2253
		__mark_reg_known(&off_reg, insn->imm);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: unexpected ptr_reg\n");
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
		print_verifier_state(&env->cur_state);
		verbose("verifier internal error: no src_reg\n");
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2280 2281
}

2282
/* check validity of 32-bit and 64-bit arithmetic operations */
2283
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2284
{
2285
	struct bpf_reg_state *regs = env->cur_state.regs;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
				verbose("BPF_NEG uses reserved fields\n");
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2299 2300
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2301 2302 2303 2304 2305 2306
				verbose("BPF_END uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src operand */
2307
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2308 2309 2310
		if (err)
			return err;

2311 2312 2313 2314 2315 2316
		if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		}

2317
		/* check dest operand */
2318
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}

			/* check src operand */
2331
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check dest operand */
2342
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2343 2344 2345 2346 2347 2348 2349 2350 2351
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2352
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2353
			} else {
2354
				/* R1 = (u32) R2 */
2355 2356 2357 2358 2359
				if (is_pointer_value(env, insn->src_reg)) {
					verbose("R%d partial copy of pointer\n",
						insn->src_reg);
					return -EACCES;
				}
2360
				mark_reg_unknown(regs, insn->dst_reg);
2361
				/* high 32 bits are known zero. */
2362 2363
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2364
				__update_reg_bounds(&regs[insn->dst_reg]);
2365 2366 2367 2368 2369
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2370
			regs[insn->dst_reg].type = SCALAR_VALUE;
2371
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		}

	} else if (opcode > BPF_END) {
		verbose("invalid BPF_ALU opcode %x\n", opcode);
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
			/* check src1 operand */
2386
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src2 operand */
2397
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2398 2399 2400 2401 2402 2403 2404 2405 2406
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
			verbose("div by zero\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
				verbose("invalid shift %d\n", insn->imm);
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2417
		/* check dest operand */
2418
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2419 2420 2421
		if (err)
			return err;

2422
		return adjust_reg_min_max_vals(env, insn);
2423 2424 2425 2426 2427
	}

	return 0;
}

2428 2429
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
				   struct bpf_reg_state *dst_reg)
A
Alexei Starovoitov 已提交
2430
{
2431
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2432
	int i;
2433

2434 2435 2436 2437
	if (dst_reg->off < 0)
		/* This doesn't give us any range */
		return;

2438 2439
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2440 2441 2442 2443 2444
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2445
	/* LLVM can generate four kind of checks:
2446
	 *
2447
	 * Type 1/2:
2448 2449 2450 2451 2452 2453
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2454 2455 2456 2457 2458
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2459 2460 2461 2462 2463
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2464
	 * Type 3/4:
2465 2466 2467 2468 2469 2470
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2471 2472 2473 2474 2475
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2476 2477 2478 2479 2480 2481 2482
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
2483
	 */
2484

2485 2486 2487 2488 2489
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2490 2491
	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2492
			/* keep the maximum range already checked */
2493
			regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
A
Alexei Starovoitov 已提交
2494 2495 2496 2497 2498 2499

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2500
			reg->range = max_t(u16, reg->range, dst_reg->off);
A
Alexei Starovoitov 已提交
2501 2502 2503
	}
}

2504 2505 2506
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2507
 * In JEQ/JNE cases we also adjust the var_off values.
2508 2509 2510 2511 2512
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2513 2514 2515 2516 2517 2518 2519 2520
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2521

2522 2523 2524 2525 2526
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2527
		__mark_reg_known(true_reg, val);
2528 2529 2530 2531 2532
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2533
		__mark_reg_known(false_reg, val);
2534 2535
		break;
	case BPF_JGT:
2536 2537 2538
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2539
	case BPF_JSGT:
2540 2541
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2542
		break;
2543 2544 2545 2546 2547 2548 2549 2550
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2551
	case BPF_JGE:
2552 2553 2554
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2555
	case BPF_JSGE:
2556 2557
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2558
		break;
2559 2560 2561 2562 2563 2564 2565 2566
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2567 2568 2569 2570
	default:
		break;
	}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2582 2583
}

2584 2585
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2586 2587 2588 2589 2590
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2591 2592
	if (__is_pointer_value(false, false_reg))
		return;
2593

2594 2595 2596 2597 2598
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2599
		__mark_reg_known(true_reg, val);
2600 2601 2602 2603 2604
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2605
		__mark_reg_known(false_reg, val);
2606 2607
		break;
	case BPF_JGT:
2608 2609 2610
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2611
	case BPF_JSGT:
2612 2613
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2614
		break;
2615 2616 2617 2618 2619 2620 2621 2622
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2623
	case BPF_JGE:
2624 2625 2626
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2627
	case BPF_JSGE:
2628 2629
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2630
		break;
2631 2632 2633 2634 2635 2636 2637 2638
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2639 2640 2641 2642
	default:
		break;
	}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2654 2655 2656 2657 2658 2659
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2660 2661 2662 2663 2664 2665 2666 2667
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2668 2669
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2699
		break;
2700
	}
2701 2702
}

2703
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2704
			 bool is_null)
2705 2706 2707 2708
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2709 2710 2711 2712
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2713 2714
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2715
				 reg->off)) {
2716 2717
			__mark_reg_known_zero(reg);
			reg->off = 0;
2718 2719 2720
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2721 2722 2723 2724
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2725
			reg->type = PTR_TO_MAP_VALUE;
2726
		}
2727 2728 2729 2730 2731
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2732 2733 2734 2735 2736 2737 2738
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2739
			  bool is_null)
2740 2741
{
	struct bpf_reg_state *regs = state->regs;
2742
	u32 id = regs[regno].id;
2743 2744 2745
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2746
		mark_map_reg(regs, i, id, is_null);
2747 2748 2749 2750

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
2751
		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2752 2753 2754
	}
}

2755
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2756 2757
			     struct bpf_insn *insn, int *insn_idx)
{
2758 2759
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2760 2761 2762
	u8 opcode = BPF_OP(insn->code);
	int err;

2763
	if (opcode > BPF_JSLE) {
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		verbose("invalid BPF_JMP opcode %x\n", opcode);
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}

		/* check src1 operand */
2775
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2776 2777
		if (err)
			return err;
2778 2779 2780 2781 2782 2783

		if (is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer comparison prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
2784 2785 2786 2787 2788 2789 2790 2791
	} else {
		if (insn->src_reg != BPF_REG_0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}
	}

	/* check src2 operand */
2792
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2793 2794 2795
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2796 2797
	dst_reg = &regs[insn->dst_reg];

2798 2799 2800
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2801 2802
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2822 2823
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2824 2825 2826 2827
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2828 2829
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2848 2849 2850 2851
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2852
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2853
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2854 2855
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2856 2857 2858
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
2859 2860
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
A
Alexei Starovoitov 已提交
2861 2862 2863
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2864
		find_good_pkt_pointers(this_branch, dst_reg);
2865 2866 2867 2868
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
		find_good_pkt_pointers(other_branch, dst_reg);
2869 2870 2871 2872
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2873 2874 2875 2876
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
2877 2878 2879
	} else if (is_pointer_value(env, insn->dst_reg)) {
		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
		return -EACCES;
2880 2881
	}
	if (log_level)
2882
		print_verifier_state(this_branch);
2883 2884 2885
	return 0;
}

2886 2887 2888 2889 2890 2891 2892 2893
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2894
/* verify BPF_LD_IMM64 instruction */
2895
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2896
{
2897
	struct bpf_reg_state *regs = env->cur_state.regs;
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
		verbose("invalid BPF_LD_IMM insn\n");
		return -EINVAL;
	}
	if (insn->off != 0) {
		verbose("BPF_LD_IMM64 uses reserved fields\n");
		return -EINVAL;
	}

2909
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2910 2911 2912
	if (err)
		return err;

2913 2914 2915
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

2916
		regs[insn->dst_reg].type = SCALAR_VALUE;
2917
		__mark_reg_known(&regs[insn->dst_reg], imm);
2918
		return 0;
2919
	}
2920 2921 2922 2923 2924 2925 2926 2927 2928

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2929 2930 2931 2932 2933
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2934
	case BPF_PROG_TYPE_SCHED_ACT:
2935 2936 2937 2938 2939 2940
		return true;
	default:
		return false;
	}
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2956
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2957
{
2958
	struct bpf_reg_state *regs = env->cur_state.regs;
2959 2960 2961
	u8 mode = BPF_MODE(insn->code);
	int i, err;

2962
	if (!may_access_skb(env->prog->type)) {
A
Alexei Starovoitov 已提交
2963
		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2964 2965 2966 2967
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2968
	    BPF_SIZE(insn->code) == BPF_DW ||
2969
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
A
Alexei Starovoitov 已提交
2970
		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2971 2972 2973 2974
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
2975
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
2986
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2987 2988 2989 2990 2991
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
2992
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2993
		mark_reg_not_init(regs, caller_saved[i]);
2994 2995
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2996 2997

	/* mark destination R0 register as readable, since it contains
2998 2999
	 * the value fetched from the packet.
	 * Already marked as written above.
3000
	 */
3001
	mark_reg_unknown(regs, BPF_REG_0);
3002 3003 3004
	return 0;
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3045
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3056
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
		verbose("jump out of range from insn %d to %d\n", t, w);
		return -EINVAL;
	}

3069 3070 3071 3072
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
		verbose("back-edge from insn %d to %d\n", t, w);
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
		verbose("insn state internal bug\n");
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3097
static int check_cfg(struct bpf_verifier_env *env)
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3134 3135
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3148 3149 3150
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3151 3152
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3153 3154
		} else {
			/* conditional jump with two edges */
3155
			env->explored_states[t] = STATE_LIST_MARK;
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
		verbose("pop stack internal bug\n");
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
			verbose("unreachable insn %d\n", i);
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3204 3205 3206 3207
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3208 3209 3210 3211
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3230
 */
3231
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3232
{
3233
	unsigned int i;
A
Alexei Starovoitov 已提交
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3251 3252
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3253
{
3254 3255 3256 3257 3258
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3259 3260
		return true;

3261 3262
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3263
		return true;
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3277 3278 3279 3280
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3281 3282 3283
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3284 3285 3286 3287 3288 3289 3290 3291
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
	case PTR_TO_PACKET:
		if (rcur->type != PTR_TO_PACKET)
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3339

3340 3341
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3342 3343 3344
	return false;
}

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3371 3372
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3373
			 struct bpf_verifier_state *cur)
3374
{
3375 3376
	struct idpair *idmap;
	bool ret = false;
3377 3378
	int i;

3379 3380 3381
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3382
		return false;
3383 3384

	for (i = 0; i < MAX_BPF_REG; i++) {
3385
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3386
			goto out_free;
3387 3388 3389
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
3390 3391 3392 3393 3394 3395 3396 3397
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
3398
			goto out_free;
3399 3400
		if (i % BPF_REG_SIZE)
			continue;
3401 3402
		if (old->stack_slot_type[i] != STACK_SPILL)
			continue;
3403 3404
		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
			     &cur->spilled_regs[i / BPF_REG_SIZE],
3405
			     idmap))
3406 3407
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
3408 3409
			 * are the same as well.
			 * Ex: explored safe path could have stored
3410
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3411
			 * but current path has stored:
3412
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3413 3414 3415
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
3416
			goto out_free;
3417 3418
		else
			continue;
3419
	}
3420 3421 3422 3423
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3424 3425
}

3426 3427 3428 3429 3430 3431
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3432 3433 3434
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3435
	bool writes = parent == state->parent; /* Observe write marks */
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3447 3448 3449
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
			continue;
		if (parent->spilled_regs[i].live & REG_LIVE_READ)
			continue;
3462 3463 3464
		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3465
			parent->spilled_regs[i].live |= REG_LIVE_READ;
3466 3467 3468 3469 3470 3471
			touched = true;
		}
	}
	return touched;
}

3472 3473 3474 3475 3476 3477 3478 3479 3480
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3491
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3492
{
3493 3494
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3495
	int i;
3496 3497 3498 3499 3500 3501 3502 3503 3504

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3505
		if (states_equal(env, &sl->state, &env->cur_state)) {
3506
			/* reached equivalent register/stack state,
3507 3508
			 * prune the search.
			 * Registers read by the continuation are read by us.
3509 3510 3511 3512 3513 3514
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3515
			 */
3516
			propagate_liveness(&sl->state, &env->cur_state);
3517
			return 1;
3518
		}
3519 3520 3521 3522 3523 3524 3525 3526 3527
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3528
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3529 3530 3531 3532 3533 3534 3535
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3536 3537
	/* connect new state to parentage chain */
	env->cur_state.parent = &new_sl->state;
3538 3539 3540 3541 3542 3543
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3544 3545 3546 3547 3548
	for (i = 0; i < BPF_REG_FP; i++)
		env->cur_state.regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3549 3550 3551
	return 0;
}

3552 3553 3554 3555 3556 3557 3558 3559 3560
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

3561
static int do_check(struct bpf_verifier_env *env)
3562
{
3563
	struct bpf_verifier_state *state = &env->cur_state;
3564
	struct bpf_insn *insns = env->prog->insnsi;
3565
	struct bpf_reg_state *regs = state->regs;
3566 3567 3568 3569 3570 3571
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

	init_reg_state(regs);
3572
	state->parent = NULL;
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
			verbose("invalid insn idx %d insn_cnt %d\n",
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3588
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3589
			verbose("BPF program is too large. Processed %d insn\n",
3590 3591 3592 3593
				insn_processed);
			return -E2BIG;
		}

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
			if (log_level) {
				if (do_print_state)
					verbose("\nfrom %d to %d: safe\n",
						prev_insn_idx, insn_idx);
				else
					verbose("%d: safe\n", insn_idx);
			}
			goto process_bpf_exit;
		}

3609 3610 3611
		if (need_resched())
			cond_resched();

3612 3613 3614 3615 3616 3617
		if (log_level > 1 || (log_level && do_print_state)) {
			if (log_level > 1)
				verbose("%d:", insn_idx);
			else
				verbose("\nfrom %d to %d:",
					prev_insn_idx, insn_idx);
A
Alexei Starovoitov 已提交
3618
			print_verifier_state(&env->cur_state);
3619 3620 3621 3622 3623
			do_print_state = false;
		}

		if (log_level) {
			verbose("%d: ", insn_idx);
3624
			print_bpf_insn(env, insn);
3625 3626
		}

3627 3628 3629 3630
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3631
		if (class == BPF_ALU || class == BPF_ALU64) {
3632
			err = check_alu_op(env, insn);
3633 3634 3635 3636
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3637
			enum bpf_reg_type *prev_src_type, src_reg_type;
3638 3639 3640

			/* check for reserved fields is already done */

3641
			/* check src operand */
3642
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3643 3644 3645
			if (err)
				return err;

3646
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3647 3648 3649
			if (err)
				return err;

3650 3651
			src_reg_type = regs[insn->src_reg].type;

3652 3653 3654
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3655
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3656 3657 3658 3659 3660
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3661 3662 3663
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3664 3665
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3666
				 * save type to validate intersecting paths
3667
				 */
3668
				*prev_src_type = src_reg_type;
3669

3670
			} else if (src_reg_type != *prev_src_type &&
3671
				   (src_reg_type == PTR_TO_CTX ||
3672
				    *prev_src_type == PTR_TO_CTX)) {
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3684
		} else if (class == BPF_STX) {
3685
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3686

3687
			if (BPF_MODE(insn->code) == BPF_XADD) {
3688
				err = check_xadd(env, insn_idx, insn);
3689 3690 3691 3692 3693 3694 3695
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3696
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3697 3698 3699
			if (err)
				return err;
			/* check src2 operand */
3700
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3701 3702 3703
			if (err)
				return err;

3704 3705
			dst_reg_type = regs[insn->dst_reg].type;

3706
			/* check that memory (dst_reg + off) is writeable */
3707
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3708 3709 3710 3711 3712
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3713 3714 3715 3716 3717
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3718
				   (dst_reg_type == PTR_TO_CTX ||
3719
				    *prev_dst_type == PTR_TO_CTX)) {
3720 3721 3722 3723
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

3724 3725 3726 3727 3728 3729 3730
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
				verbose("BPF_ST uses reserved fields\n");
				return -EINVAL;
			}
			/* check src operand */
3731
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3732 3733 3734 3735
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3736
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_CALL uses reserved fields\n");
					return -EINVAL;
				}

3754
				err = check_call(env, insn->imm, insn_idx);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_JA uses reserved fields\n");
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_EXIT uses reserved fields\n");
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3785
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3786 3787 3788
				if (err)
					return err;

3789 3790 3791 3792 3793
				if (is_pointer_value(env, BPF_REG_0)) {
					verbose("R0 leaks addr as return value\n");
					return -EACCES;
				}

3794
process_bpf_exit:
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3811 3812 3813 3814
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
				verbose("invalid BPF_LD mode\n");
				return -EINVAL;
			}
		} else {
			verbose("unknown insn class %d\n", class);
			return -EINVAL;
		}

		insn_idx++;
	}

3833 3834
	verbose("processed %d insns, stack depth %d\n",
		insn_processed, env->prog->aux->stack_depth);
3835 3836 3837
	return 0;
}

3838 3839 3840
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
3841 3842
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3843 3844 3845
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

3846 3847 3848 3849
static int check_map_prog_compatibility(struct bpf_map *map,
					struct bpf_prog *prog)

{
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
			verbose("perf_event programs can only use preallocated hash map\n");
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
			verbose("perf_event programs can only use preallocated inner hash map\n");
			return -EINVAL;
		}
3865 3866 3867 3868
	}
	return 0;
}

3869 3870 3871
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
3872
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3873 3874 3875
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
3876
	int i, j, err;
3877

3878
	err = bpf_prog_calc_tag(env->prog);
3879 3880 3881
	if (err)
		return err;

3882
	for (i = 0; i < insn_cnt; i++, insn++) {
3883
		if (BPF_CLASS(insn->code) == BPF_LDX &&
3884
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3885 3886 3887 3888
			verbose("BPF_LDX uses reserved fields\n");
			return -EINVAL;
		}

3889 3890 3891 3892 3893 3894 3895
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
			verbose("BPF_STX uses reserved fields\n");
			return -EINVAL;
		}

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
				verbose("invalid bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
				verbose("unrecognized bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			f = fdget(insn->imm);
3917
			map = __bpf_map_get(f);
3918 3919 3920 3921 3922 3923
			if (IS_ERR(map)) {
				verbose("fd %d is not pointing to valid bpf_map\n",
					insn->imm);
				return PTR_ERR(map);
			}

3924 3925 3926 3927 3928 3929
			err = check_map_prog_compatibility(map, env->prog);
			if (err) {
				fdput(f);
				return err;
			}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
3951 3952 3953 3954 3955 3956 3957
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
3973
static void release_maps(struct bpf_verifier_env *env)
3974 3975 3976 3977 3978 3979 3980 3981
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3982
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

4028 4029 4030
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4031
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4032
{
4033
	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4034
	int i, cnt, size, ctx_field_size, delta = 0;
4035
	const int insn_cnt = env->prog->len;
4036
	struct bpf_insn insn_buf[16], *insn;
4037
	struct bpf_prog *new_prog;
4038
	enum bpf_access_type type;
4039 4040
	bool is_narrower_load;
	u32 target_size;
4041

4042 4043 4044 4045 4046 4047 4048
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		} else if (cnt) {
4049
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4050 4051
			if (!new_prog)
				return -ENOMEM;
4052

4053
			env->prog = new_prog;
4054
			delta += cnt - 1;
4055 4056 4057 4058
		}
	}

	if (!ops->convert_ctx_access)
4059 4060
		return 0;

4061
	insn = env->prog->insnsi + delta;
4062

4063
	for (i = 0; i < insn_cnt; i++, insn++) {
4064 4065 4066
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4067
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4068
			type = BPF_READ;
4069 4070 4071
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4072
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4073 4074
			type = BPF_WRITE;
		else
4075 4076
			continue;

4077
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4078 4079
			continue;

4080
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4081
		size = BPF_LDST_BYTES(insn);
4082 4083 4084 4085 4086 4087

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4088
		is_narrower_load = size < ctx_field_size;
4089
		if (is_narrower_load) {
4090 4091 4092 4093 4094 4095 4096
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
				verbose("bpf verifier narrow ctx access misconfigured\n");
				return -EINVAL;
			}
4097

4098
			size_code = BPF_H;
4099 4100 4101 4102
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4103

4104 4105 4106
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4107 4108 4109 4110 4111 4112

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4113 4114 4115
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		}
4116 4117

		if (is_narrower_load && size < target_size) {
4118 4119
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4120
								(1 << size * 8) - 1);
4121 4122
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4123
								(1 << size * 8) - 1);
4124
		}
4125

4126
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4127 4128 4129
		if (!new_prog)
			return -ENOMEM;

4130
		delta += cnt - 1;
4131 4132 4133

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4134
		insn      = new_prog->insnsi + i + delta;
4135 4136 4137 4138 4139
	}

	return 0;
}

4140
/* fixup insn->imm field of bpf_call instructions
4141
 * and inline eligible helpers as explicit sequence of BPF instructions
4142 4143 4144
 *
 * this function is called after eBPF program passed verification
 */
4145
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4146
{
4147 4148
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4149
	const struct bpf_func_proto *fn;
4150
	const int insn_cnt = prog->len;
4151 4152 4153 4154
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4155

4156 4157 4158
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4159

4160 4161 4162 4163 4164
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4165 4166 4167 4168 4169 4170
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4171
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4172

4173 4174 4175 4176
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4177
			 */
4178
			insn->imm = 0;
4179
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4180 4181
			continue;
		}
4182

4183 4184 4185 4186 4187
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4188
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4189 4190
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose("bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4212
		if (insn->imm == BPF_FUNC_redirect_map) {
4213 4214 4215 4216 4217 4218
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4233
patch_call_imm:
4234 4235 4236 4237 4238 4239 4240 4241
		fn = prog->aux->ops->get_func_proto(insn->imm);
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
			verbose("kernel subsystem misconfigured func %s#%d\n",
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4242
		}
4243
		insn->imm = fn->func - __bpf_call_base;
4244 4245
	}

4246 4247
	return 0;
}
4248

4249
static void free_states(struct bpf_verifier_env *env)
4250
{
4251
	struct bpf_verifier_state_list *sl, *sln;
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4271
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4272
{
4273
	char __user *log_ubuf = NULL;
4274
	struct bpf_verifier_env *env;
A
Alexei Starovoitov 已提交
4275 4276
	int ret = -EINVAL;

4277
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4278 4279
	 * allocate/free it every time bpf_check() is called
	 */
4280
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4281 4282 4283
	if (!env)
		return -ENOMEM;

4284 4285 4286 4287 4288
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4289
	env->prog = *prog;
4290

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
		log_level = attr->log_level;
		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
		log_size = attr->log_size;
		log_len = 0;

		ret = -EINVAL;
		/* log_* values have to be sane */
		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
		    log_level == 0 || log_ubuf == NULL)
4307
			goto err_unlock;
4308 4309 4310 4311

		ret = -ENOMEM;
		log_buf = vmalloc(log_size);
		if (!log_buf)
4312
			goto err_unlock;
4313 4314 4315
	} else {
		log_level = 0;
	}
4316 4317 4318

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4319
		env->strict_alignment = true;
4320

4321 4322 4323 4324
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4325
	env->explored_states = kcalloc(env->prog->len,
4326
				       sizeof(struct bpf_verifier_state_list *),
4327 4328 4329 4330 4331
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4332 4333 4334 4335
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4336 4337
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4338
	ret = do_check(env);
4339

4340
skip_full_check:
4341
	while (pop_stack(env, NULL) >= 0);
4342
	free_states(env);
4343

4344 4345 4346 4347
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4348
	if (ret == 0)
4349
		ret = fixup_bpf_calls(env);
4350

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	if (log_level && log_len >= log_size - 1) {
		BUG_ON(log_len >= log_size);
		/* verifier log exceeded user supplied buffer */
		ret = -ENOSPC;
		/* fall through to return what was recorded */
	}

	/* copy verifier log back to user space including trailing zero */
	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
		ret = -EFAULT;
		goto free_log_buf;
	}

4364 4365
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4366 4367 4368
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4369

4370
		if (!env->prog->aux->used_maps) {
4371 4372 4373 4374
			ret = -ENOMEM;
			goto free_log_buf;
		}

4375
		memcpy(env->prog->aux->used_maps, env->used_maps,
4376
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4377
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4378 4379 4380 4381 4382 4383

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4384 4385 4386 4387

free_log_buf:
	if (log_level)
		vfree(log_buf);
4388
	if (!env->prog->aux->used_maps)
4389 4390 4391 4392
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4393
	*prog = env->prog;
4394
err_unlock:
4395
	mutex_unlock(&bpf_verifier_lock);
4396 4397 4398
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4399 4400
	return ret;
}
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	log_level = 0;
4425

4426
	env->strict_alignment = false;
4427 4428
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);