nn.py 337.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
55 56
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
57 58 59 60 61 62 63
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
64
    'sequence_unpad',
X
Xin Pan 已提交
65 66 67 68 69 70 71 72
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
73
    'sequence_slice',
X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
91
    'group_norm',
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
105
    'roi_align',
X
Xin Pan 已提交
106 107 108 109
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
110
    'resize_nearest',
X
Xin Pan 已提交
111 112 113 114 115 116
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
117
    'selu',
X
Xin Pan 已提交
118 119 120
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
121
    'margin_rank_loss',
X
Xin Pan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
165
    'space_to_depth',
W
whs 已提交
166
    'affine_grid',
S
sneaxiy 已提交
167
    'sequence_reverse',
168
    'affine_channel',
B
barrierye 已提交
169
    'similarity_focus',
M
minqiyang 已提交
170
    'hash',
D
dengkaipeng 已提交
171
    'grid_sampler',
G
gmcather 已提交
172 173
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
174
    'bilinear_tensor_product',
C
chengduo 已提交
175 176
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
177
    'lstm',
178
    'psroi_pool',
H
heqiaozhi 已提交
179
    'teacher_student_sigmoid_loss',
Y
Yu Yang 已提交
180 181
]

J
jerrywgz 已提交
182 183
kIgnoreIndex = -100

Y
Yu Yang 已提交
184 185 186 187 188 189 190

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
191
       is_test=False,
192
       name=None):
Y
Yu Yang 已提交
193
    """
194
    **Fully Connected Layer**
Y
Yu Yang 已提交
195

196 197 198 199 200 201 202 203
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
204
    to the output as well.
C
caoying03 已提交
205

C
caoying03 已提交
206
    This process can be formulated as follows:
207 208 209

    .. math::

210
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
211 212 213

    In the above equation:

C
caoying03 已提交
214 215 216 217
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
218
    * :math:`Act`: The activation function.
C
caoying03 已提交
219
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
220 221

    Args:
R
ranqiu 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
237 238
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
239
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
240
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
241
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
242

243
    Returns:
F
fengjiayi 已提交
244
        Variable: The transformation result.
245 246

    Raises:
C
caoying03 已提交
247
        ValueError: If rank of the input tensor is less than 2.
248 249 250 251

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
252
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
253
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
254
    """
C
caoying03 已提交
255

C
caoying03 已提交
256
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
257 258 259 260

    dtype = helper.input_dtype()

    mul_results = []
261 262
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
263 264 265
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
266

Y
Yu Yang 已提交
267
        w = helper.create_parameter(
268
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
269
        tmp = helper.create_variable_for_type_inference(dtype)
270
        helper.append_op(
271 272 273
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
274
            outputs={"Out": tmp},
M
mozga-intel 已提交
275 276
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
277 278 279 280
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
281
    else:
X
Xin Pan 已提交
282
        pre_bias = helper.create_variable_for_type_inference(dtype)
283
        helper.append_op(
284 285 286
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
287
            attrs={"use_mkldnn": False})
288 289 290 291
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
292 293


294 295 296
def embedding(input,
              size,
              is_sparse=False,
297
              is_distributed=False,
298 299 300
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
301
    """
302 303
    **Embedding Layer**

304
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
305 306
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
307 308 309

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
310 311

    Args:
312 313 314 315 316
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
317
        is_distributed(bool): Whether to run lookup table from remote parameter server.
318 319
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
320
            with zeros whenever lookup encounters it in :attr:`input`. If
321
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
322 323
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
324
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
325

326 327 328
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
329

330 331
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
332

C
chengduoZH 已提交
333
          dict_size = len(dataset.ids)
334
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
335
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
336 337 338
    """

    helper = LayerHelper('embedding', **locals())
339 340 341
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
342 343
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
344 345
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
346
    tmp = helper.create_variable_for_type_inference(dtype)
347 348
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
349 350 351 352 353
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
354 355 356
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
357
            'remote_prefetch': remote_prefetch,
358 359
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
360 361 362
    return tmp


W
wopeizl 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
379

W
wopeizl 已提交
380 381 382 383 384 385 386 387 388 389 390
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
391

W
wopeizl 已提交
392 393 394 395
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
396

W
wopeizl 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
483 484


P
phlrain 已提交
485 486 487 488 489 490
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
491
         dropout_prob=0.0,
P
phlrain 已提交
492 493 494 495 496
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
497
    """
P
phlrain 已提交
498
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
499 500 501 502 503

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
543 544
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
545 546 547 548 549 550
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
551
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
552

L
liuhongyu 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
578
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
579 580 581 582 583 584
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
585 586 587
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
647 648 649 650 651 652 653 654 655 656 657
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
658 659
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
660 661 662
    """
    **Dynamic LSTMP Layer**

663 664 665 666 667 668
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
669 670 671 672 673

    The formula is as follows:

    .. math::

674
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
675

676
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
677

678
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
679

680
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
681

682
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
683

684
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
685

686
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
687

Y
Yibing Liu 已提交
688 689 690 691 692 693
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
694
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
695
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
696
          bias vector).
Y
Yibing Liu 已提交
697 698 699
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
700
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
701
    * :math:`h`: The hidden state.
702
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
703 704
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
705
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
706
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
707
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
708 709
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
710 711 712 713

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
714

Y
Yibing Liu 已提交
715 716 717 718 719 720 721 722 723 724 725 726
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
727
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
728 729
                               hidden-hidden weight and projection weight.

730 731
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
732 733
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
734 735
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
736
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
737 738 739 740 741

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
742
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
743 744 745 746 747 748
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
749
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
750 751 752
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
753
                                - The shape is (1 x 7D).
C
chengduo 已提交
754 755 756 757 758

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
759 760 761 762 763 764 765 766 767
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
768
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
769 770
                              default "tanh".
        proj_activation(str): The activation for projection output.
771
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
772 773
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
774 775
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
776 777

    Returns:
778 779 780 781
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
782 783

    Examples:
784

Y
Yibing Liu 已提交
785 786
        .. code-block:: python

787 788 789 790
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
791
            hidden_dim, proj_dim = 512, 256
792
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
793
                                     act=None, bias_attr=None)
794 795 796
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
797 798 799 800
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
801
    """
802

C
chengduo 已提交
803
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
804
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
805
    size = size // 4
Y
Yibing Liu 已提交
806 807 808 809 810 811 812 813 814 815
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
816 817 818 819 820 821
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
850 851 852 853 854 855 856 857 858
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
859
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
860

861
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
862
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
863

G
guosheng 已提交
864 865 866 867 868 869 870 871 872
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
873

G
guosheng 已提交
874
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
875

G
guosheng 已提交
876
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
877 878
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
879 880 881 882
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
883
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
884 885

    Args:
886 887
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
888
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
889
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
890 891
            is the hidden size.
        size(int): The dimension of the gru cell.
892
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
893 894
            hidden-hidden weight matrix. Note:

895
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
896
              :math:`D` is the hidden size.
897
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
898
              The first part are weights of the update gate and reset gate with
899
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
900
              candidate hidden state with shape :math:`(D \\times D)`.
901 902 903 904 905

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
906
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
907
            the bias in the update gate, reset gate and candidate calculations.
908 909 910
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
911 912
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
913
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
914 915 916
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
917
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
918
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
919 920 921 922
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
923 924

    Returns:
G
guosheng 已提交
925
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
926
            and sequence length is the same with the input.
927

G
guosheng 已提交
928
    Examples:
929

G
guosheng 已提交
930 931
        .. code-block:: python

932 933 934 935
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
936
            hidden_dim = 512
937
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
938
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
939 940 941 942 943 944 945 946 947
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
948
    batch_size = input.shape[0]
G
guosheng 已提交
949
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
950
    if h_0:
G
guosheng 已提交
951
        assert h_0.shape == (
Y
Yancey 已提交
952 953 954
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
955

X
Xin Pan 已提交
956 957 958 959
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
978 979 980
def gru_unit(input,
             hidden,
             size,
981 982
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
983
             activation='tanh',
984
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
985
    """
986
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
987

988 989
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
990

991
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
992

993
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
994

995
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
996 997

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
998 999 1000
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1001 1002
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1003 1004
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1005 1006 1007
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1008 1009 1010

    Args:
        input (Variable): The fc transformed input value of current step.
1011
        hidden (Variable): The hidden value of gru unit from previous step.
1012
        size (integer): The input dimension value.
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1027
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1028
            the bias in the update gate, reset gate and candidate calculations.
1029 1030 1031
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1032 1033
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1034 1035 1036 1037
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1038

1039 1040 1041 1042 1043 1044
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1045

1046
             # assuming we have x_t_data and prev_hidden of size=10
1047
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1048 1049
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1062
    size = size // 3
Y
Yu Yang 已提交
1063 1064

    # create weight
1065 1066
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1067

X
Xin Pan 已提交
1068 1069 1070
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1071
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1072
    # create bias
1073
    if helper.bias_attr:
Y
Yu Yang 已提交
1074 1075 1076
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1077
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1078 1079 1080

    helper.append_op(
        type='gru_unit',
1081
        inputs=inputs,
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1088 1089
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1090 1091 1092 1093 1094
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1095
@templatedoc()
1096
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1097 1098 1099 1100 1101 1102 1103
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1104
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1105 1106 1107 1108
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1109 1110 1111
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1112 1113

    """
Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1120 1121 1122 1123 1124 1125 1126 1127
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1143 1144 1145 1146
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1147

W
wopeizl 已提交
1148 1149
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1150

W
wopeizl 已提交
1151
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1152

W
wopeizl 已提交
1153
        label(${label_type}): ${label_comment}
1154

W
wopeizl 已提交
1155 1156
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1157

W
wopeizl 已提交
1158 1159
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1160

W
wopeizl 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1171
                "Transition": transition,
W
wopeizl 已提交
1172 1173
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1174

W
wopeizl 已提交
1175
    return viterbi_path
Y
Yu Yang 已提交
1176 1177


Y
yi.wu 已提交
1178
@templatedoc()
F
fengjiayi 已提交
1179
def cos_sim(X, Y):
Y
Yu Yang 已提交
1180
    """
Y
yi.wu 已提交
1181 1182 1183
    ${comment}

    Args:
1184 1185
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1186

Y
yi.wu 已提交
1187
    Returns:
1188
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1189
    """
F
fengjiayi 已提交
1190
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1191 1192 1193
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1204 1205 1206 1207 1208
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1209
            dropout_implementation="downgrade_in_infer"):
1210 1211 1212 1213 1214
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1215
    training. The dropout operator randomly sets (according to the given dropout
1216 1217 1218 1219
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1220 1221
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1222 1223 1224 1225 1226 1227 1228
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1240
                                           dropout op can be removed from the program.
P
phlrain 已提交
1241
                                           the program will be efficient
1242

P
phlrain 已提交
1243

1244 1245

    Returns:
1246
        Variable: A tensor variable is the shape with `x`.
1247 1248

    Examples:
1249

1250 1251
        .. code-block:: python

1252 1253
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1254 1255
    """

F
fengjiayi 已提交
1256
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1257 1258 1259
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1260 1261 1262 1263

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1264 1265 1266 1267 1268
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1269 1270 1271 1272
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1273 1274
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1275
        })
1276 1277 1278
    return out


J
jerrywgz 已提交
1279
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1280
    """
Y
Yibing Liu 已提交
1281 1282
    **Cross Entropy Layer**

1283 1284 1285
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1286 1287

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1288
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1289

Y
Yibing Liu 已提交
1290
        .. math::
Y
yangyaming 已提交
1291

Y
Yibing Liu 已提交
1292 1293 1294
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1295 1296
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1297 1298 1299 1300 1301

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1302
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1303 1304 1305
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1306 1307
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1308
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1309

Y
Yibing Liu 已提交
1310
    Args:
Y
yangyaming 已提交
1311
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1312 1313 1314 1315
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1316
        label (Variable|list): the ground truth which is a 2-D tensor. When
1317 1318 1319 1320
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1321
        soft_label (bool): a flag indicating whether to
1322
                                           interpretate the given labels as soft
1323
                                           labels. Default: `False`.
M
minqiyang 已提交
1324 1325
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1326
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1327 1328 1329 1330 1331

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1332 1333 1334 1335 1336
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1337 1338 1339 1340 1341 1342

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1343
    """
F
fengjiayi 已提交
1344
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1345
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1346 1347 1348 1349 1350
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1351 1352
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1353 1354 1355
    return out


F
frankwhzhang 已提交
1356
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1357 1358 1359
    """
    Bayesian Personalized Ranking Loss Operator.

1360
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1361 1362 1363 1364 1365 1366
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1367 1368 1369 1370 1371 1372
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1373 1374
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1375 1376 1377
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1378 1379 1380
    Examples:
        .. code-block:: python

1381
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1382
    """
1383 1384 1385 1386 1387 1388

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1389
                'Label': [label]},
1390 1391 1392 1393
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1394
def square_error_cost(input, label):
Y
Yu Yang 已提交
1395
    """
1396 1397
    **Square error cost layer**

1398 1399
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1414 1415
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1416 1417

    Returns:
G
guosheng 已提交
1418
        Variable: The tensor variable storing the element-wise squared error \
1419
                  difference of input and label.
1420 1421 1422 1423 1424 1425 1426 1427

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1428
    """
F
fengjiayi 已提交
1429
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1430
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1431 1432 1433 1434 1435 1436
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1437
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1438
    helper.append_op(
F
fengjiayi 已提交
1439 1440
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1441 1442 1443
    return square_out


Y
yi.wu 已提交
1444
@templatedoc()
Y
Yu Yang 已提交
1445 1446 1447 1448
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1449
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1450
    """
Y
yi.wu 已提交
1451
    **Chunk Evaluator**
Y
yi.wu 已提交
1452

Y
yangyaming 已提交
1453
    This function computes and outputs the precision, recall and
1454
    F1-score of chunk detection.
Y
yi.wu 已提交
1455

Y
yi.wu 已提交
1456 1457 1458 1459 1460 1461 1462 1463
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1464

Y
yi.wu 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1490

Y
yi.wu 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1515
    Args:
1516 1517 1518 1519 1520
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1521

Y
yi.wu 已提交
1522
    Returns:
Y
update  
yi.wu 已提交
1523 1524 1525
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1526

Y
yi.wu 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1539
    """
F
fengjiayi 已提交
1540
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1541 1542

    # prepare output
X
Xin Pan 已提交
1543 1544 1545 1546 1547 1548 1549
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1550 1551 1552 1553 1554 1555 1556 1557

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1558 1559 1560 1561
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1562 1563 1564
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1565 1566
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1567
        })
1568 1569
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1570 1571


1572
@templatedoc()
Y
Yu Yang 已提交
1573 1574 1575 1576 1577 1578 1579
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1580 1581
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1582 1583 1584 1585
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1586 1587 1588 1589 1590 1591 1592

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1606

1607 1608
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1609 1610 1611 1612 1613 1614 1615
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1616
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1627
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1628 1629 1630 1631 1632 1633
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1634
def sequence_softmax(input, use_cudnn=False, name=None):
1635 1636 1637
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1638
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1655 1656 1657
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1670 1671
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1672
    softmax_out = helper.create_variable_for_type_inference(dtype)
1673 1674 1675 1676 1677 1678 1679 1680
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1681
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1682
    """
1683
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1684
    has the same shape as the input.
Q
qiaolongfei 已提交
1685

1686 1687 1688 1689 1690 1691
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1692
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1693 1694 1695 1696 1697 1698 1699

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1700
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1701 1702 1703 1704 1705 1706 1707 1708

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1709 1710 1711
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1724 1725
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1726
    softmax_out = helper.create_variable_for_type_inference(dtype)
1727 1728 1729 1730 1731 1732 1733 1734
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1735 1736 1737
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1738 1739
           stride=1,
           padding=0,
1740
           dilation=1,
Y
Yu Yang 已提交
1741 1742 1743
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1744
           use_cudnn=True,
1745 1746
           act=None,
           name=None):
Y
Yu Yang 已提交
1747
    """
C
chengduoZH 已提交
1748
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1749 1750
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1751
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1752 1753 1754 1755 1756 1757 1758
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1759 1760 1761
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1762

1763
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1764

C
chengduoZH 已提交
1765 1766
    .. math::

C
refine  
chengduoZH 已提交
1767
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1768

T
tensor-tang 已提交
1769
    Where:
C
chengduoZH 已提交
1770

1771 1772 1773 1774 1775
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1776
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1777 1778 1779

    Example:

1780 1781
        - Input:

W
weixing02 已提交
1782
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1783

W
weixing02 已提交
1784
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1785

1786
        - Output:
T
tensor-tang 已提交
1787

W
weixing02 已提交
1788
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1789

C
chengduoZH 已提交
1790
        Where
1791 1792

        .. math::
C
chengduoZH 已提交
1793

W
weixing02 已提交
1794 1795
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1796 1797

    Args:
1798
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1799
        num_filters(int): The number of filter. It is as same as the output
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1828 1829
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1830 1831
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1832
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1833
            will be named automatically. Default: None
C
chengduoZH 已提交
1834 1835

    Returns:
G
guosheng 已提交
1836
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1837 1838
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1839
    Raises:
1840 1841
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1842

C
chengduoZH 已提交
1843 1844 1845
    Examples:
        .. code-block:: python

1846 1847
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1848 1849 1850
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1851
    assert param_attr is not False, "param_attr should not be False here."
1852
    l_type = 'conv2d'
X
xzl 已提交
1853 1854
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1855
        l_type = 'depthwise_conv2d'
1856 1857 1858 1859

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1860 1861 1862 1863 1864
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1865
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1866

C
chengduoZH 已提交
1867 1868 1869
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1870
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1871

C
chengduoZH 已提交
1872 1873
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1874 1875

    input_shape = input.shape
M
minqiyang 已提交
1876
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1877 1878

    def _get_default_param_initializer():
C
chengduo 已提交
1879 1880
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1881 1882 1883 1884 1885 1886 1887 1888
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1889
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1905
    helper.append_op(
1906
        type=l_type,
Y
Yu Yang 已提交
1907 1908 1909 1910 1911
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1912 1913 1914
        attrs={
            'strides': stride,
            'paddings': padding,
1915
            'dilations': dilation,
C
chengduoZH 已提交
1916
            'groups': groups,
1917
            'use_cudnn': use_cudnn,
1918
            'use_mkldnn': False,
C
chengduoZH 已提交
1919
        })
Y
Yu Yang 已提交
1920 1921 1922 1923 1924 1925

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1943 1944 1945 1946 1947 1948
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1958 1959
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1960 1961 1962
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1963
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1989
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1990 1991
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1992
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1993 1994
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1995
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1996 1997
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1998
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1999 2000 2001 2002 2003 2004
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2015 2016
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2017 2018
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2019
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2020
            will be named automatically. Default: None.
C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2033 2034
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2035 2036 2037
    """

    l_type = 'conv3d'
C
chengduo 已提交
2038
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2049
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2063 2064 2065
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2066 2067 2068 2069 2070 2071 2072 2073
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2074
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2089
            'use_mkldnn': False
C
chengduoZH 已提交
2090 2091
        })

2092
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2093 2094 2095 2096

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2097
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2098
    """
Y
yangyaming 已提交
2099 2100 2101
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2113
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2114 2115 2116 2117 2118
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2119
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2120 2121 2122 2123 2124 2125 2126

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2127 2128
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2129

L
Luo Tao 已提交
2130 2131
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2132
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2133
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2134
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2135 2136 2137 2138 2139 2140 2141

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2142

Y
yangyaming 已提交
2143
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2144 2145 2146 2147 2148
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2149 2150
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2151
    """
F
fengjiayi 已提交
2152
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2153
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2154 2155
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2156 2157 2158 2159 2160 2161

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2162 2163
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2164

Y
yangyaming 已提交
2165 2166 2167 2168 2169
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2170 2171 2172
    return pool_out


C
add doc  
chengduoZH 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2192
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2193 2194 2195 2196 2197
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2198
def sequence_first_step(input):
L
Luo Tao 已提交
2199
    """
L
Luo Tao 已提交
2200
    This function gets the first step of sequence.
L
Luo Tao 已提交
2201 2202 2203 2204

    .. code-block:: text

       x is a 1-level LoDTensor:
2205
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2206 2207 2208 2209 2210
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2211
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2212
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2213

L
Luo Tao 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2223

Y
yangyaming 已提交
2224
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2225 2226 2227
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2228 2229 2230
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2231
def sequence_last_step(input):
L
Luo Tao 已提交
2232
    """
L
Luo Tao 已提交
2233
    This function gets the last step of sequence.
L
Luo Tao 已提交
2234 2235 2236 2237

    .. code-block:: text

       x is a 1-level LoDTensor:
2238
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2239 2240 2241 2242 2243
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2244
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2245
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2246

L
Luo Tao 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2256

Y
yangyaming 已提交
2257
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2258 2259 2260
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2261 2262 2263
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2264 2265 2266 2267
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2268
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2269 2270 2271 2272 2273
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2274

Y
Yibing Liu 已提交
2275 2276
	- Case:

2277
            Given the input Variable **input**:
2278

2279 2280 2281
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2282

2283
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2284

2285
            the output Variable will be
2286

2287 2288 2289
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2290 2291

    NOTE: The first dimension size of **input**, **offset** and **length**
2292
          should be equal. The **offset** should start from 0.
2293

Y
Yibing Liu 已提交
2294
    Args:
2295
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2296
                         sequences.
Y
Yibing Liu 已提交
2297 2298 2299 2300 2301 2302
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2303
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2314
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2315 2316 2317 2318
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2319
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2334
@templatedoc()
Y
Yu Yang 已提交
2335
def pool2d(input,
C
chengduoZH 已提交
2336 2337
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2338 2339
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2340
           global_pooling=False,
C
chengduoZH 已提交
2341
           use_cudnn=True,
2342
           ceil_mode=False,
2343 2344
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2345
    """
F
fengjiayi 已提交
2346
    ${comment}
2347 2348

    Args:
2349 2350 2351
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2352
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2353
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2354 2355
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2356
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2357 2358 2359 2360 2361 2362
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2363 2364 2365
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2366
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2367
                        layer will be named automatically.
2368
        exclusive (bool): Whether to exclude padding points in average pooling
2369
                          mode, default is true
F
fengjiayi 已提交
2370

2371
    Returns:
F
fengjiayi 已提交
2372
        Variable: The pooling result.
F
fengjiayi 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2386 2387 2388 2389
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2390
                            global_pooling=False)
Y
Yu Yang 已提交
2391 2392 2393 2394 2395
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2396

C
chengduoZH 已提交
2397 2398 2399 2400 2401
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2402 2403 2404 2405
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2406 2407
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2408

C
Add doc  
chengduoZH 已提交
2409
    l_type = 'pool2d'
2410 2411

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2412
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2413
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2414 2415

    helper.append_op(
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2427 2428
            "use_mkldnn": False,
            "exclusive": exclusive,
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2442 2443
           name=None,
           exclusive=True):
2444 2445
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2446
    pooling configurations mentioned in input parameters.
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2459
        exclusive (bool): Whether to exclude padding points in average pooling
2460
                          mode, default is true
2461

2462
    Returns:
2463
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2464 2465 2466 2467 2468
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2469

C
chengduoZH 已提交
2470 2471 2472 2473 2474
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2475 2476 2477
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2478

C
chengduoZH 已提交
2479 2480
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2481

2482 2483
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2484
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2485
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2486 2487

    helper.append_op(
2488
        type=l_type,
Y
Yu Yang 已提交
2489 2490 2491 2492 2493 2494 2495
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2496
            "paddings": pool_padding,
2497
            "use_cudnn": use_cudnn,
2498
            "ceil_mode": ceil_mode,
2499 2500
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2501 2502 2503 2504 2505
        })

    return pool_out


2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2553 2554
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2555
          pool_out = fluid.layers.adaptive_pool2d(
2556 2557
                            input=data,
                            pool_size=[3, 3],
2558
                            pool_type='avg')
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2600
    return (pool_out, mask) if require_index else pool_out
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2654 2655
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2656
          pool_out, mask = fluid.layers.adaptive_pool3d(
2657 2658
                            input=data,
                            pool_size=[3, 3],
2659
                            pool_type='avg')
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2701
    return (pool_out, mask) if require_index else pool_out
2702 2703


Y
Yu Yang 已提交
2704 2705 2706 2707 2708 2709 2710
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2711
               data_layout='NCHW',
Y
Yang Yang 已提交
2712
               in_place=False,
2713 2714
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2715
               moving_variance_name=None,
2716
               do_model_average_for_mean_and_var=False,
2717 2718
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2719
    """
Q
qiaolongfei 已提交
2720 2721 2722 2723
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2724

Q
qiaolongfei 已提交
2725
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2726

Q
qiaolongfei 已提交
2727 2728
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2729 2730 2731
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2744

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2758
    Args:
Q
qiaolongfei 已提交
2759
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2760 2761 2762 2763
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2764 2765 2766 2767 2768 2769 2770 2771
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2772
        data_layout(string, default NCHW): NCHW|NHWC
2773
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2774 2775 2776 2777
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2778
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2779
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2780 2781 2782 2783 2784
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2785 2786

    Returns:
Q
qiaolongfei 已提交
2787
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2788 2789 2790 2791 2792 2793 2794

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2795
    """
C
chengduo 已提交
2796
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2817 2818 2819
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2820 2821

    bias = helper.create_parameter(
2822
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2823 2824 2825
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2826

2827 2828
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2829 2830 2831
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2832
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2833
        shape=param_shape,
2834 2835 2836 2837 2838 2839 2840
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2841
            trainable=False,
W
wanghaoshuang 已提交
2842
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2843
        shape=param_shape,
2844 2845
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2846 2847 2848 2849 2850 2851

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2852 2853 2854 2855
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2856

X
Xin Pan 已提交
2857 2858
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2876 2877 2878 2879
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2880
            "use_mkldnn": False,
2881 2882
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2883
        })
Y
Yu Yang 已提交
2884 2885 2886 2887

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2888
@templatedoc()
G
guosheng 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2899
    ${comment}
G
guosheng 已提交
2900 2901 2902

    The formula is as follows:

Y
yuyang18 已提交
2903
    ..  math::
G
guosheng 已提交
2904 2905 2906 2907 2908 2909 2910

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2911 2912 2913 2914 2915 2916 2917 2918
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2919

G
guosheng 已提交
2920 2921
    Args:
        input(Variable): The input tensor variable.
2922
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2923
            normalization. Default True.
2924
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2925 2926
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2927
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2928
            Default 1.
2929
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2930
            division by zero. Default 1e-05.
G
guosheng 已提交
2931
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2932 2933
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2934 2935
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2936
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2937 2938
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2939
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2940
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2941
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2942 2943 2944
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2945 2946

    Returns:
Y
yuyang18 已提交
2947
        ${y_comment}
G
guosheng 已提交
2948 2949 2950

    Examples:

Y
yuyang18 已提交
2951 2952 2953
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2969
    if shift:
G
guosheng 已提交
2970 2971 2972 2973 2974 2975
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2976 2977 2978 2979 2980
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3074 3075 3076 3077
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3078 3079 3080
                     padding=0,
                     stride=1,
                     dilation=1,
3081
                     groups=None,
C
caoying03 已提交
3082
                     param_attr=None,
3083
                     bias_attr=None,
C
chengduoZH 已提交
3084
                     use_cudnn=True,
3085
                     act=None,
C
caoying03 已提交
3086
                     name=None):
Y
Yu Yang 已提交
3087
    """
3088 3089 3090 3091 3092 3093 3094 3095
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3096 3097
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3098 3099 3100
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3101 3102 3103 3104 3105

    For each input :math:`X`, the equation is:

    .. math::

3106
        Out = \sigma (W \\ast X + b)
3107

3108
    Where:
3109 3110 3111

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3112 3113 3114 3115
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3116

3117 3118 3119 3120
    Example:

        - Input:

3121
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3122

3123
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3124 3125 3126

        - Output:

3127
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3128 3129

        Where
Y
Yu Yang 已提交
3130

3131 3132
        .. math::

3133 3134 3135 3136
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3137 3138

    Args:
3139 3140 3141 3142
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3143 3144 3145 3146
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3175
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3176 3177 3178
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3179
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3180
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3181 3182

    Returns:
3183
        Variable: The tensor variable storing the convolution transpose result.
3184 3185

    Raises:
3186 3187
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3188 3189 3190 3191

    Examples:
       .. code-block:: python

3192 3193
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3194
    """
C
chengduo 已提交
3195
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3196 3197 3198 3199 3200 3201 3202 3203
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3204 3205 3206
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3207 3208 3209
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3210

C
chengduoZH 已提交
3211 3212
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3213

Y
Yu Yang 已提交
3214 3215 3216 3217 3218
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3219

Y
Yu Yang 已提交
3220 3221
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3222

C
chengduoZH 已提交
3223
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3224
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3225
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3226
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3227
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3228 3229 3230
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3231

3232 3233 3234 3235 3236 3237 3238
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3239
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3240
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3241

Y
Yu Yang 已提交
3242 3243 3244
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3245
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3246
    helper.append_op(
3247
        type=op_type,
Y
Yu Yang 已提交
3248 3249
        inputs={'Input': [input],
                'Filter': [img_filter]},
3250
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3251
        attrs={
3252
            'output_size': output_size,
3253 3254 3255 3256 3257
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3258 3259
        })

3260 3261 3262
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3263 3264


3265
def conv3d_transpose(input,
Y
Yu Yang 已提交
3266 3267 3268
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3269 3270 3271
                     padding=0,
                     stride=1,
                     dilation=1,
3272
                     groups=None,
C
caoying03 已提交
3273
                     param_attr=None,
3274
                     bias_attr=None,
C
chengduoZH 已提交
3275
                     use_cudnn=True,
3276
                     act=None,
C
caoying03 已提交
3277
                     name=None):
Y
Yu Yang 已提交
3278
    """
3279
    **Convlution3D transpose layer**
3280

3281
    The convolution3D transpose layer calculates the output based on the input,
3282
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3283 3284 3285 3286 3287 3288
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3289 3290 3291
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3292 3293 3294 3295 3296

    For each input :math:`X`, the equation is:

    .. math::

3297
        Out = \sigma (W \\ast X + b)
3298 3299 3300

    In the above equation:

3301 3302
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3303 3304 3305 3306
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3307

3308 3309 3310 3311
    Example:

        - Input:

3312
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3313

3314
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3315 3316 3317

        - Output:

3318
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3319 3320

        Where
Y
Yu Yang 已提交
3321

3322 3323
        .. math::

3324 3325 3326
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3327 3328

    Args:
3329
        input(Variable): The input image with [N, C, D, H, W] format.
3330 3331 3332
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3333
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3334 3335
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3336
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3337 3338 3339
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3340 3341
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3342
        stride(int|tuple): The stride size. If stride is a tuple, it must
3343 3344
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3345
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3346 3347 3348
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3349 3350 3351 3352 3353
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3363 3364
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3365 3366
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3367 3368
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3369 3370

    Returns:
3371
        Variable: The tensor variable storing the convolution transpose result.
3372 3373

    Raises:
3374 3375
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3376 3377 3378 3379

    Examples:
       .. code-block:: python

3380 3381
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3382
    """
C
chengduo 已提交
3383
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3384 3385
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3386
    if not isinstance(input, Variable):
3387
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3388 3389
    input_channel = input.shape[1]

3390 3391 3392
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3393

C
chengduoZH 已提交
3394 3395 3396
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3397 3398 3399 3400 3401 3402
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3403 3404 3405
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3406

3407
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3408
                         padding[0] - 1) // dilation[0] + 1
3409
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3410
                         padding[1] - 1) // dilation[1] + 1
3411
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3412
                         padding[2] - 1) // dilation[2] + 1
3413
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3414
    else:
3415 3416
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3417

3418
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3419
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3420 3421 3422
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3423
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3424
    helper.append_op(
3425
        type=l_type,
Y
Yu Yang 已提交
3426 3427
        inputs={'Input': [input],
                'Filter': [img_filter]},
3428
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3429 3430 3431 3432
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3433
            'groups': groups,
C
chengduoZH 已提交
3434 3435
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3436

3437 3438
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3439
    return out
Y
yangyaming 已提交
3440 3441


Y
yangyaming 已提交
3442
def sequence_expand(x, y, ref_level=-1, name=None):
3443
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3444 3445 3446 3447
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3448 3449 3450 3451 3452

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3453
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3454
                x.data = [[a], [b], [c], [d]]
3455 3456 3457
                x.dims = [4, 1]

            y is a LoDTensor:
3458 3459
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3460

Y
yangyaming 已提交
3461
            ref_level: 0
3462

Y
yangyaming 已提交
3463
            then output is a 1-level LoDTensor:
3464
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3465
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3466 3467 3468 3469
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3470
                x.data = [[a], [b], [c]]
3471 3472 3473
                x.dims = [3, 1]

            y is a LoDTensor:
3474
                y.lod = [[2, 0, 3]]
3475

Y
yangyaming 已提交
3476
            ref_level: -1
3477

Y
yangyaming 已提交
3478 3479 3480
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3481 3482 3483
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3484 3485
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3486
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3487
                        will be named automatically.
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3498
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3499
    """
Y
yangyaming 已提交
3500
    helper = LayerHelper('sequence_expand', input=x, **locals())
3501
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3502
    tmp = helper.create_variable_for_type_inference(dtype)
3503
    helper.append_op(
Y
yangyaming 已提交
3504 3505 3506 3507 3508
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3509
    return tmp
3510 3511


C
chengduo 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3568
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3569 3570 3571 3572 3573 3574 3575 3576
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3577
@templatedoc()
3578
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3579 3580 3581 3582 3583
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3584 3585 3586
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3587
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3588 3589 3590 3591
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3592 3593 3594
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3595

F
fengjiayi 已提交
3596
    Returns:
M
minqiyang 已提交
3597
        Variable: The padded sequence batch and the original lengths before
3598
                  padding. All sequences has the same length.
M
minqiyang 已提交
3599

F
fengjiayi 已提交
3600 3601 3602 3603 3604 3605 3606
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3607
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3608
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3609 3610 3611 3612 3613
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3614 3615
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3616 3617 3618 3619

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3620 3621 3622 3623 3624 3625
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3626 3627
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3628
        attrs={'padded_length': maxlen})
3629
    return out, length
F
fengjiayi 已提交
3630 3631


3632
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3633
    """
3634
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3635

3636 3637
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3647 3648 3649
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3650
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3651 3652 3653 3654 3655 3656

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3657
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3658 3659 3660 3661 3662 3663

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3664 3665
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3680
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3692 3693 3694 3695 3696 3697 3698 3699 3700
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3701 3702
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3703 3704 3705

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3706 3707

    This layer does the search in beams for one time step. Specifically, it
3708 3709 3710 3711 3712 3713
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3714

3715 3716 3717 3718 3719 3720 3721 3722
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3723

3724
    Args:
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3750

3751
    Returns:
3752 3753
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3754 3755 3756 3757

    Examples:
        .. code-block:: python

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3775 3776 3777 3778
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3779 3780 3781
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3782 3783 3784 3785 3786

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3787
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3805 3806 3807 3808 3809 3810 3811
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3822

3823 3824 3825 3826 3827 3828
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3829

3830 3831
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3832

3833 3834 3835 3836 3837 3838
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3839 3840
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3856 3857 3858 3859
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3860
              param_attr=None,
C
caoying03 已提交
3861 3862
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3863 3864 3865 3866
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3867
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3868

3869
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3870

3871
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3872

3873
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3874 3875 3876

            h_t & = o_t tanh(c_t)

3877 3878 3879 3880 3881 3882
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3883 3884 3885

        .. math::

3886
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3887 3888 3889 3890 3891 3892 3893 3894

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3895
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3896 3897

    Args:
Y
yangyaming 已提交
3898 3899 3900 3901 3902 3903
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3904
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3917 3918
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3919 3920

    Returns:
Y
yangyaming 已提交
3921
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3922 3923

    Raises:
3924 3925 3926 3927
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3928 3929 3930 3931 3932 3933

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3934
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3935
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3936
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3953
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3954 3955 3956 3957
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3958 3959
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3960 3961 3962
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3963
    size = cell_t_prev.shape[1]
3964
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3965 3966
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3967
                param_attr=param_attr,
3968
                bias_attr=bias_attr)
Y
yangyaming 已提交
3969
    dtype = x_t.dtype
X
Xin Pan 已提交
3970 3971
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3981
    return h, c
G
guosheng 已提交
3982 3983


C
caoying03 已提交
3984
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3985
    """
Y
yangyaming 已提交
3986
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3987 3988 3989

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3990
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3991 3992
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3993 3994
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3995
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3996
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3997
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3998 3999
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4000 4001 4002

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4003

G
guosheng 已提交
4004 4005 4006 4007 4008 4009
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4010
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4011 4012 4013 4014
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4015 4016 4017 4018

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4019
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4020 4021 4022
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4023 4024
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4025
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4026 4027
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4028 4029 4030 4031 4032
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4033
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4034 4035 4036 4037
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4038 4039


C
caoying03 已提交
4040
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4041
    """
Y
Yibing Liu 已提交
4042
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4043 4044 4045

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4046 4047 4048
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4049
            must be in the range :math:`[-rank(input), rank(input))`. If
4050
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4051
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4052 4053
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4054
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4055
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4056
                       will be named automatically.
G
guosheng 已提交
4057 4058

    Returns:
Y
Yibing Liu 已提交
4059
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4060

G
guosheng 已提交
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4071 4072
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4073 4074 4075 4076 4077 4078 4079

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4080 4081
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4082
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4083 4084
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4085 4086 4087 4088 4089
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4090
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4091 4092 4093 4094
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4095 4096


C
caoying03 已提交
4097
def reduce_max(input, dim=None, keep_dim=False, name=None):
4098
    """
Y
yangyaming 已提交
4099
    Computes the maximum of tensor elements over the given dimension.
4100 4101 4102

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4103
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4104 4105 4106
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4107
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4108 4109
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4110
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4111 4112
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4113 4114 4115

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4116

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4128 4129 4130 4131 4132 4133 4134

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4135 4136
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4137
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4138 4139
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4140 4141 4142 4143 4144
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4145
            'dim': dim if dim != None else [0],
4146 4147 4148 4149 4150 4151
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4152
def reduce_min(input, dim=None, keep_dim=False, name=None):
4153
    """
Y
yangyaming 已提交
4154
    Computes the minimum of tensor elements over the given dimension.
4155 4156 4157

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4158
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4159 4160 4161
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4162
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4163 4164
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4165
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4166 4167
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4168 4169 4170

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4171

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4183 4184 4185 4186 4187 4188 4189

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4190 4191
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4192
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4193 4194
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4195 4196 4197 4198 4199
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4200
            'dim': dim if dim != None else [0],
4201 4202 4203 4204
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4205 4206


4207 4208 4209 4210 4211 4212
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4213
        dim (list|int|None): The dimensions along which the product is performed. If
4214 4215
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4216 4217
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4218 4219 4220
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4221
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4222
            layer will be named automatically.
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4237
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4238
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4239 4240 4241 4242 4243 4244 4245

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4246 4247
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4248
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4249 4250
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4251 4252 4253 4254 4255
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4256
            'dim': dim if dim != None else [0],
4257 4258 4259 4260 4261 4262
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4263
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4264
    """
C
caoying03 已提交
4265
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4266 4267 4268

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4269 4270 4271 4272 4273
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4274
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4275
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4276
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4277 4278
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4279 4280

    Returns:
D
dzhwinter 已提交
4281
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4291 4292
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4308
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4331
    .. math::
4332 4333

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4334 4335 4336 4337 4338

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4339
        x(Variable|list): The input tensor to l2_normalize layer.
4340
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4341 4342
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4343
        epsilon(float): The epsilon value is used to avoid division by zero, \
4344
            the defalut value is 1e-10.
4345
        name(str|None): A name for this layer(optional). If set None, the layer \
4346
            will be named automatically.
C
caoying03 已提交
4347 4348

    Returns:
4349
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4350 4351

    Examples:
4352

C
caoying03 已提交
4353 4354
        .. code-block:: python

4355 4356 4357 4358
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4359 4360
    """

F
fengjiayi 已提交
4361 4362
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4363 4364
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4365 4366
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4367
    helper.append_op(
4368 4369 4370 4371
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4372
        attrs={
4373 4374
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4375 4376
        })
    return out
4377 4378


S
sneaxiy 已提交
4379
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4380
    """
Y
ying 已提交
4381 4382 4383 4384
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4385

C
chengduoZH 已提交
4386
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4387
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4388

4389 4390 4391 4392 4393
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4394
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4395

C
chengduoZH 已提交
4396
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4397
      performs in the following way.
G
guosheng 已提交
4398

4399
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4400
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4401
        last two dimensions and a batched matrix multiply supporting broadcast
4402
        applies on the two tensors.
G
guosheng 已提交
4403

Y
ying 已提交
4404 4405
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4406
    removed after matrix multiplication.
G
guosheng 已提交
4407 4408 4409

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4410 4411 4412
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4413
        alpha (float): The scale of output. Default 1.0.
4414
        name(str|None): A name for this layer(optional). If set None, the layer
4415
            will be named automatically.
G
guosheng 已提交
4416 4417

    Returns:
4418
        Variable: The product Tensor variable.
G
guosheng 已提交
4419

G
guosheng 已提交
4420 4421 4422
    Examples:
        .. code-block:: python

4423
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4424 4425
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4426

4427 4428
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4429

4430 4431
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4432

4433 4434
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4435 4436 4437 4438

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4439 4440
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4441

Y
ying 已提交
4442
            # x: [M], y: [N]
4443
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4444
    """
Y
ying 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4457
            y_shape = y_shape + [1]
Y
ying 已提交
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4474
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4475
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4476
    helper.append_op(
4477 4478 4479 4480
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4481 4482 4483
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4484
            'alpha': float(alpha),
S
sneaxiy 已提交
4485
        })
4486
    return out
4487 4488


4489
def topk(input, k, name=None):
Q
qingqing01 已提交
4490 4491 4492 4493
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4494
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4495 4496 4497 4498 4499 4500
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4522 4523 4524
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4525
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4526
                 of input.
4527
        name(str|None): A name for this layer(optional). If set None, the layer
4528
                       will be named automatically.
F
fengjiayi 已提交
4529
                       Default: None
Q
qingqing01 已提交
4530 4531

    Returns:
4532 4533 4534
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4535
        within the last dimension of input.
Q
qingqing01 已提交
4536

F
fengjiayi 已提交
4537 4538
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4539 4540 4541 4542 4543 4544 4545

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4546 4547
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4559
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4560
    """
Y
ying 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4570

Y
ying 已提交
4571
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4572

4573
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4574 4575
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4576
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4577

4578
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4579 4580
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4581

4582 4583 4584
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4585
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4586
                          the length of reference string.
4587
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4588
                                     calculating edit distance.
4589
        name (str): The name of this layer. It is optional.
4590

W
wanghaoshuang 已提交
4591
    Returns:
W
wanghaoshuang 已提交
4592
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4593 4594 4595 4596

    Examples:
        .. code-block:: python

T
tink2123 已提交
4597 4598
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4599
            cost = fluid.layers.edit_distance(input=x,label=y)
4600
    """
4601
    helper = LayerHelper("edit_distance", **locals())
4602

4603
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4604
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4605 4606
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4607 4608 4609 4610 4611

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4612
            attrs={"tokens": ignored_tokens})
4613 4614 4615 4616 4617
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4618
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4619
            attrs={"tokens": ignored_tokens})
4620 4621
        label = erased_label

4622
    # edit distance op
X
Xin Pan 已提交
4623 4624
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4625 4626 4627 4628
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4629 4630
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4631 4632
        attrs={"normalized": normalized})

4633
    return edit_distance_out, sequence_num
4634 4635 4636 4637 4638


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4639

Y
ying 已提交
4640 4641 4642 4643
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4661
        input.lod = [[4, 4]]
W
whs 已提交
4662 4663
      
        Computation:
4664

W
whs 已提交
4665 4666 4667 4668 4669 4670
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4671 4672 4673 4674 4675

        output.data = [[2],
                       [1],
                       [3]]

4676
        output.lod = [[2, 1]]
4677

W
whs 已提交
4678

4679 4680
    Args:

Y
ying 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4690
        name (str): The name of this layer. It is optional.
4691 4692

    Returns:
W
whs 已提交
4693 4694 4695 4696
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4697 4698 4699 4700 4701

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4702

4703
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4704
    """
4705
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4706
    _, topk_indices = topk(input, k=1)
4707 4708

    # ctc align op
X
Xin Pan 已提交
4709
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4710 4711 4712
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4713
        outputs={"Output": [ctc_out]},
4714 4715
        attrs={"merge_repeated": True,
               "blank": blank})
4716
    return ctc_out
4717 4718


W
Wu Yi 已提交
4719
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4720
    """
4721 4722
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4723
    to compute Connectionist Temporal Classification (CTC) loss.
4724 4725
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4726 4727 4728
    input tensor.

    Args:
4729
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4730 4731 4732 4733
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4734
       label (Variable): The ground truth of variable-length sequence,
4735 4736 4737
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4738 4739
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4740 4741 4742
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4743
         follewed by a mean_op.
W
Wu Yi 已提交
4744
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4745 4746

    Returns:
4747 4748
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4749 4750

    Examples:
4751

W
wanghaoshuang 已提交
4752
        .. code-block:: python
4753

4754 4755 4756
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4757 4758

    """
F
fengjiayi 已提交
4759
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4760 4761
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4762 4763 4764 4765 4766 4767
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4768 4769 4770 4771 4772
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4773
    return loss_out
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4789 4790 4791
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4792 4793 4794 4795 4796
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4797

4798
            out.lod  = [[0, 1, 3]]
4799 4800 4801 4802

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4803 4804 4805 4806 4807 4808 4809
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4810 4811 4812

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4813 4814

    Returns:
4815

4816 4817 4818 4819 4820
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4821
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4822
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4823 4824
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4825
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4826 4827 4828 4829 4830 4831
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4832 4833


4834 4835 4836 4837
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4838 4839 4840 4841 4842 4843
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4844
        num_neg_samples=None,
4845 4846 4847
        name=None,
        sampler="uniform",
        custom_dist=None,
4848 4849
        seed=0,
        is_sparse=False):
4850 4851 4852 4853 4854 4855 4856
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4857 4858
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4859
            sample is 1.0.
C
chengduo 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4869
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4870 4871
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4872 4873 4874
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4875
        custom_dist (float[]): A float[] with size=num_total_classes.
4876 4877 4878 4879
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4880
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4881

4882
    Returns:
Y
Yibing Liu 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4910 4911 4912 4913 4914 4915 4916 4917 4918

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4919

4920
    """
Y
Yang Yu 已提交
4921 4922 4923
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4924 4925

    dim = input.shape[1]
Y
Yang Yu 已提交
4926 4927 4928 4929 4930 4931
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4932
    inputs = {}
C
chengduo 已提交
4933 4934 4935 4936 4937 4938 4939
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4940 4941 4942
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4943

4944 4945 4946 4947
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4948 4949 4950 4951 4952 4953 4954

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5007 5008 5009 5010
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5011 5012 5013 5014 5015
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5016 5017
    attrs = {
        'num_total_classes': int(num_total_classes),
5018 5019
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5020 5021
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5022
    }
Y
Yang Yu 已提交
5023 5024 5025

    helper.append_op(
        type='nce',
C
chengduo 已提交
5026
        inputs=inputs,
Y
Yang Yu 已提交
5027 5028 5029 5030 5031 5032
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5033
    return cost / (num_neg_samples + 1)
5034 5035


C
chengduo 已提交
5036 5037
def hsigmoid(input,
             label,
5038
             num_classes,
C
chengduo 已提交
5039 5040
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5041
             name=None,
5042 5043 5044
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5045
             is_sparse=False):
W
weixing02 已提交
5046 5047
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5048
    process of language model. This operator organizes the classes into a
5049 5050
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5051 5052 5053 5054 5055 5056
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5057
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5058
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5059

5060 5061 5062 5063 5064 5065 5066 5067 5068
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
5069
    Args:
M
minqiyang 已提交
5070
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5071 5072 5073 5074
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5075 5076 5077
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5089 5090 5091 5092 5093 5094 5095
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
5096
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5097 5098
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
5099 5100

    Returns:
J
JiabinYang 已提交
5101
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5102 5103 5104 5105 5106

    Examples:

        .. code-block:: python

G
guosheng 已提交
5107 5108 5109
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5110 5111 5112 5113
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5114 5115
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5116
    dim = input.shape[1]
5117
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5118 5119 5120
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5121 5122 5123 5124
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5125 5126
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5127 5128 5129
    else:
        pass

J
JiabinYang 已提交
5130 5131
    weights = None

5132
    if not is_custom:
J
JiabinYang 已提交
5133 5134 5135 5136 5137 5138 5139 5140
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5141
            shape=[num_classes, dim],
J
JiabinYang 已提交
5142 5143
            is_bias=False,
            dtype=input.dtype)
5144 5145 5146
    inputs = {
        "X": input,
        "W": weights,
5147 5148
        "PTable": path_table,
        "PathCode": path_code,
5149 5150
        "Label": label
    }
W
weixing02 已提交
5151
    if helper.bias_attr:
5152
        if not is_custom:
J
JiabinYang 已提交
5153 5154
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5155
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5156 5157 5158 5159 5160 5161
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5162
                shape=[num_classes, 1],
J
JiabinYang 已提交
5163 5164 5165
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5166 5167
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5168
        inputs=inputs,
W
weixing02 已提交
5169 5170
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5171 5172
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5173 5174 5175
    return out


Y
fix ci.  
ying 已提交
5176
def transpose(x, perm, name=None):
Y
ying 已提交
5177 5178 5179 5180 5181 5182 5183
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5184 5185 5186
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5187 5188 5189 5190 5191 5192 5193

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5194
            # use append_batch_size=False to avoid prepending extra
5195
            # batch size in shape
5196
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5197
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5198
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5199 5200
    """

Y
fix ci.  
ying 已提交
5201
    if len(perm) != len(x.shape):
Y
ying 已提交
5202 5203 5204
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5205 5206 5207 5208 5209 5210
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5211 5212

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5213 5214
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5215
    helper.append_op(
5216
        type='transpose2',
Y
fix ci.  
ying 已提交
5217
        inputs={'X': [x]},
5218 5219
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5220 5221
        attrs={'axis': perm})
    return out
5222 5223


5224 5225 5226 5227 5228 5229 5230
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5231
    """
5232 5233 5234 5235 5236 5237 5238
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5267 5268 5269 5270 5271 5272 5273 5274 5275
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5276 5277 5278
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5279 5280 5281 5282 5283
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5311 5312 5313
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5326
            output.dims = {8, 8}
5327

5328
            output.lod = [[4, 4]]
5329

T
Tink_Y 已提交
5330
    Examples:
5331 5332 5333

        .. code-block:: python

5334 5335
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5336 5337

    """
W
wanghaoshuang 已提交
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5348 5349 5350 5351 5352 5353 5354
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5355
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5356
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5357
    helper.append_op(
5358
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5359
    return out
5360 5361


Y
yuyang18 已提交
5362
@templatedoc()
5363
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5364 5365
    """
    ${comment}
5366 5367

    Args:
Y
yuyang18 已提交
5368
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5369 5370
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5371 5372 5373 5374 5375
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5376
        ${out_comment}.
5377 5378

    Examples:
Y
yuyang18 已提交
5379 5380 5381 5382
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5383 5384 5385 5386 5387 5388
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5389
    out = helper.create_variable_for_type_inference(dtype)
5390 5391 5392 5393 5394
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5395
    return helper.append_activation(out)
5396 5397


Y
yuyang18 已提交
5398
@templatedoc()
5399 5400
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5401 5402 5403 5404 5405 5406 5407
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5408 5409

    Args:
Y
yuyang18 已提交
5410 5411
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5412 5413

    Returns:
Y
yuyang18 已提交
5414
        ${out_comment}.
5415 5416
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5417 5418 5419 5420 5421

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5422
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5423 5424 5425 5426 5427 5428
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5429 5430


5431 5432 5433
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5434
                               ignore_index=kIgnoreIndex,
5435 5436
                               numeric_stable_mode=False,
                               return_softmax=False):
5437 5438
    """
    **Softmax With Cross Entropy Operator.**
5439

5440 5441 5442 5443
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5444

5445 5446 5447
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5448

5449 5450 5451
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5452

5453
    The equation is as follows:
5454

5455
    1) Hard label (one-hot label, so every sample has exactly one class)
5456

5457 5458 5459 5460
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5461

5462 5463 5464
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5465

5466 5467 5468 5469
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5470 5471 5472
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5473

S
sneaxiy 已提交
5474 5475 5476 5477 5478 5479 5480 5481
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5482 5483 5484 5485 5486 5487 5488 5489
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5490 5491
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5492
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5493 5494 5495
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5496 5497 5498
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5499
                                    stable algorithm. Default: False
5500
        return_softmax (bool): A flag indicating whether to return the softmax
5501
                               along with the cross entropy loss. Default: False
5502

5503
    Returns:
5504 5505 5506 5507
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5508
                              2-D tensor with shape [N x K].
5509 5510 5511 5512 5513 5514 5515

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5516 5517
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5518 5519
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5520 5521
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5522 5523 5524 5525 5526 5527
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5528 5529 5530 5531 5532
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5533 5534 5535 5536

    if return_softmax:
        return loss, softmax

5537 5538 5539 5540 5541
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5542 5543
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5544
    For each instance, it computes the smooth L1 loss element by element first
5545
    and then sums all the losses. So the shape of ouput Variable is
5546
    [batch_size, 1].
5547

5548 5549
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5550
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5551
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5552
            L1 loss op with same shape as :attr:`x`.
5553
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5554 5555
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5556
            by this tensor element by element.
5557
        outside_weight (Variable|None): A tensor with rank at least 2. This
5558 5559
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5560
            element by element.
5561
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5562 5563
           scalar with default value 1.0.

5564
    Returns:
5565
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5566 5567 5568 5569 5570

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5571 5572
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5573
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5574
            out = fluid.layers.smooth_l1(x=fc, y=label)
5575
    """
5576

5577
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5578 5579
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5592 5593 5594 5595


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5596
    This layer creates the one-hot representations for input indices.
5597 5598

    Args:
Y
Yibing Liu 已提交
5599 5600
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5601 5602

    Returns:
Y
Yibing Liu 已提交
5603
        Variable: The one-hot representations of input.
5604 5605

    Examples:
C
caoying03 已提交
5606
        .. code-block:: python
5607

Y
Yibing Liu 已提交
5608 5609
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5610 5611
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5612
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5613 5614 5615 5616 5617 5618
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5619 5620


Y
Yu Yang 已提交
5621
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5622
    """
Y
yi.wu 已提交
5623 5624 5625
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5626 5627 5628 5629 5630 5631

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5632 5633
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5634 5635 5636 5637 5638 5639

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5640 5641
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5642 5643
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5644 5645 5646 5647 5648
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5649
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5650
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5651 5652
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5653 5654
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5655 5656 5657
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5658 5659


5660
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5661
    """
C
caoying03 已提交
5662 5663
    Gives a new shape to the input Tensor without changing its data.

5664 5665 5666 5667 5668
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5669

5670
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5671

5672 5673 5674 5675
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5676
    2. 0 means the actual dimension value is going to be copied from the
5677 5678 5679 5680
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5681 5682

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5683
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5684
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5685

5686
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5687 5688
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5689 5690
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5691
    dimensions.
C
caoying03 已提交
5692

5693
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5694 5695 5696 5697
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5698 5699

    Args:
5700
        x(variable): The input tensor.
C
caoying03 已提交
5701 5702
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5703 5704 5705 5706 5707
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5708 5709
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5710 5711 5712 5713 5714 5715 5716
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5717
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5718

5719
    Returns:
G
guosheng 已提交
5720 5721 5722 5723
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5724

X
Xin Pan 已提交
5725 5726 5727
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5728 5729
    Examples:
        .. code-block:: python
G
guosheng 已提交
5730

5731
            data = fluid.layers.data(
5732
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5733
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5734
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5735 5736 5737
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5738
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5739 5740 5741 5742 5743
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5744

5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5760
    helper = LayerHelper("reshape2", **locals())
5761 5762
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5763
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5764
    helper.append_op(
5765
        type="reshape2",
X
Xin Pan 已提交
5766
        inputs=inputs,
D
dzhwinter 已提交
5767
        attrs={"shape": shape},
5768 5769
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5770

D
dzhwinter 已提交
5771
    return helper.append_activation(out)
5772

5773

5774
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5775
    """
M
minqiyang 已提交
5776 5777 5778
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5779
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5780

Y
Yibing Liu 已提交
5781 5782
    Examples:
    Case 1:
M
minqiyang 已提交
5783
      Given
Y
Yibing Liu 已提交
5784 5785 5786 5787 5788 5789 5790 5791
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5792
        and
Y
Yibing Liu 已提交
5793 5794 5795
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5796

Y
Yibing Liu 已提交
5797
    Args:
5798
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5799
        axes (list): List of integers, indicating the dimensions to be squeezed.
5800
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5801 5802 5803 5804 5805 5806 5807 5808

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5809
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5810 5811
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5812 5813
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5814
    helper.append_op(
5815
        type="squeeze2",
5816
        inputs={"X": input},
Y
Yibing Liu 已提交
5817
        attrs={"axes": axes},
5818 5819
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5820

5821 5822 5823
    return out


5824
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5825
    """
M
minqiyang 已提交
5826 5827 5828
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5829

M
minqiyang 已提交
5830 5831
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5832
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5833

Y
Yibing Liu 已提交
5834
    Args:
5835
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5836
        axes (list): List of integers, indicating the dimensions to be inserted.
5837
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5838 5839 5840 5841 5842 5843 5844 5845

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5846
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5847 5848
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5849 5850
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5851
    helper.append_op(
5852
        type="unsqueeze2",
5853
        inputs={"X": input},
Y
Yibing Liu 已提交
5854
        attrs={"axes": axes},
5855 5856
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5857

5858 5859
    return out

5860

Y
yangyaming 已提交
5861
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5862
    """
Y
Yibing Liu 已提交
5863
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5864 5865 5866 5867
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5868
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5869 5870 5871 5872 5873 5874

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5875
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5876 5877 5878
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5879
            target_lod: [4, 2]
Y
yangyaming 已提交
5880 5881

            then we get a 1-level LoDTensor:
5882
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5883 5884 5885 5886 5887 5888
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5889
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5890 5891 5892 5893
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5894
                y.data = [[2, 4]]
Y
yangyaming 已提交
5895 5896 5897
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5898
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5899 5900 5901 5902 5903 5904
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5905
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5906 5907 5908 5909
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5910
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5911 5912 5913 5914
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5915
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5916 5917 5918 5919 5920
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5921
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5922
                           from :attr:`y`.
Y
yangyaming 已提交
5923
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5924
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5925 5926

    Returns:
Y
Yibing Liu 已提交
5927
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5928 5929

    Raises:
Y
Yibing Liu 已提交
5930
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5940
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5966
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5995 5996
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6009 6010 6011
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6025 6026 6027 6028


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6029
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6030
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6031

G
guosheng 已提交
6032 6033 6034 6035
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6058
                         The length of :attr:paddings must be
G
guosheng 已提交
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6069

G
guosheng 已提交
6070 6071 6072 6073 6074 6075
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6076
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6077 6078 6079 6080 6081 6082 6083
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6084 6085


C
chengduo 已提交
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6117 6118
		And
            pad_value = -1,
C
chengduo 已提交
6119

T
Tink_Y 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6155
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6165 6166 6167 6168 6169 6170 6171
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6172 6173
    called label-smoothing regularization (LSR).

6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6197
                              be :math:`(1, class\_num)`.
6198 6199
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6200
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6220
    smooth_label = helper.create_variable_for_type_inference(dtype)
6221 6222 6223 6224 6225 6226 6227
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6228 6229


W
wopeizl 已提交
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6266 6267


J
jerrywgz 已提交
6268 6269 6270 6271 6272 6273
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6274 6275
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6292 6293 6294
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6295 6296 6297 6298 6299 6300
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6301
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6342 6343
        .. code-block:: python

W
whs 已提交
6344 6345 6346 6347
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6348
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6349 6350 6351 6352 6353 6354
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6355 6356


6357 6358 6359 6360
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6361 6362
                 resample='BILINEAR',
                 actual_shape=None):
6363
    """
Q
qiaolongfei 已提交
6364
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6365

6366
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6367 6368 6369
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6370

6371
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6372

6373
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6374

6375
    Args:
6376
        input (Variable): The input tensor of image resize layer,
6377 6378
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6379
        out_shape(list|tuple|Variable|None): Output shape of image resize
6380 6381
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6382
        scale(float|None): The multiplier for the input height or width.
6383 6384 6385
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6386 6387
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6388
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6389
                       currently.
6390
                       Default: 'BILINEAR'
6391 6392 6393
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6394
                                :attr:`out_shape` and :attr:`scale` specifying
6395 6396 6397 6398 6399 6400 6401
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6402 6403
                                constructing stage.
                                Default: None
6404 6405

    Returns:
Q
update  
qiaolongfei 已提交
6406 6407
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6408

6409 6410 6411
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6412
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6413 6414 6415 6416
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6417 6418 6419
    Examples:
        .. code-block:: python

6420
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6421
    """
6422 6423 6424 6425
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6426 6427
    if resample not in resample_methods:
        raise ValueError(
6428
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6429
        )
6430
    resample_type = resample_methods[resample]
6431
    if out_shape is None and scale is None:
6432
        raise ValueError("One of out_shape and scale must not be None.")
6433
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6434
    dtype = helper.input_dtype()
6435 6436 6437 6438

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6439 6440 6441
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6442
    if out_shape is not None:
6443 6444 6445 6446
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6447
            inputs['OutSize'] = out_shape
6448 6449 6450 6451 6452 6453 6454 6455
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6456 6457 6458 6459
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6460 6461 6462 6463 6464
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6465
    out = helper.create_variable_for_type_inference(dtype)
6466
    helper.append_op(
6467
        type='{}_interp'.format(resample_type),
6468
        inputs=inputs,
6469
        outputs={"Out": out},
6470 6471 6472
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6473
    return out
F
stash  
fengjiayi 已提交
6474 6475


6476
@templatedoc(op_type="bilinear_interp")
6477 6478 6479 6480 6481
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6482
    """
6483 6484
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6485 6486
    in priority order.

6487 6488 6489 6490
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6491 6492
    again in the other direction.

6493
    For details of bilinear interpolation, please refer to Wikipedia:
6494
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6495 6496 6497 6498 6499

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6500

Y
yuyang18 已提交
6501 6502 6503 6504 6505
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6506 6507 6508
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6509
                                :attr:`out_shape` and :attr:`scale` specifying
6510 6511 6512 6513 6514 6515 6516
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6517 6518
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6519 6520 6521

    Returns:
        ${out_comment}.
6522 6523 6524 6525 6526

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6527 6528
    """

6529
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6530 6531


6532
@templatedoc(op_type="nearest_interp")
6533 6534 6535 6536 6537
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6538
    """
6539
    Resize input by performing nearest neighbor interpolation in both the
6540 6541
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6542 6543
    out_shape and scale in priority order.

6544
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6545
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6546 6547 6548 6549 6550

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6551

Y
yuyang18 已提交
6552 6553 6554 6555 6556
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6557 6558 6559
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6560
                                :attr:`out_shape` and :attr:`scale` specifying
6561 6562 6563 6564 6565 6566 6567
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6568 6569
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6570 6571 6572

    Returns:
        ${out_comment}.
6573 6574 6575 6576 6577

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6578 6579
    """

6580
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6581 6582 6583 6584


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6585 6586 6587
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6588 6589 6590 6591 6592 6593 6594
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6595
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6596

6597
    Returns:
Q
update  
qiaolongfei 已提交
6598
        Variable: The output is a 4-D tensor of the shape
6599
        (num_batches, channls, out_h, out_w).
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6610 6611 6612
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6613 6614 6615
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6616 6617
def gather(input, index):
    """
Q
qiaolongfei 已提交
6618 6619
    **Gather Layer**

6620
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6621 6622 6623 6624
    of X indexed by `index` and concatenate them together.

    .. math::

6625
        Out = X[Index]
W
whs 已提交
6626 6627 6628 6629 6630 6631 6632


    .. code-block:: text


                Given:

6633 6634
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6645
        input (Variable): The source input with rank>=1.
W
whs 已提交
6646 6647 6648 6649 6650 6651
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6652

W
whs 已提交
6653 6654 6655 6656 6657 6658
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6659
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6660 6661 6662 6663 6664 6665 6666 6667
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6699
    out = helper.create_variable_for_type_inference(dtype)
6700 6701 6702 6703 6704 6705 6706 6707 6708
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6759
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6760 6761 6762 6763 6764 6765 6766 6767 6768
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6782

6783 6784 6785
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6786
    """
F
stash  
fengjiayi 已提交
6787
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6788
    dtype = x.dtype
X
Xin Pan 已提交
6789
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6790
    if seed is None:
6791
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6792
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6793
    if isinstance(seed, int):
F
fengjiayi 已提交
6794 6795 6796 6797 6798
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6799 6800 6801 6802
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6803
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6804 6805
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6806 6807
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6808
    return out
W
whs 已提交
6809 6810


6811
def log(x, name=None):
W
wanghaoshuang 已提交
6812 6813 6814 6815 6816
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6817
        Out = \\ln(x)
W
wanghaoshuang 已提交
6818 6819

    Args:
6820
        x (Variable): Input tensor.
6821 6822
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6823 6824 6825 6826 6827 6828 6829 6830

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6831
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6832 6833
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6834
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6835
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6836
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6837 6838 6839
    return out


6840
def relu(x, name=None):
W
wanghaoshuang 已提交
6841 6842
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6843
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6844 6845 6846 6847
    the tensor elementwise.

    .. math::

6848
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6849 6850

    Args:
6851
        x (Variable): The input tensor.
6852 6853
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6854 6855 6856 6857 6858 6859 6860 6861

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6862
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6863 6864
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6865
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6866
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6867 6868
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6869
    return out
6870 6871


C
chengduo 已提交
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6913 6914 6915
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6916 6917 6918 6919
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6920
    .. math::
6921 6922

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6923

6924
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6925 6926 6927 6928 6929
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6930
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6931
                           Its shape should be the same as input.
6932
        num_classes (int): The possible number of labels.
W
whs 已提交
6933 6934 6935 6936

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6937
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6938 6939 6940 6941

    Examples:

        .. code-block:: python
6942

W
whs 已提交
6943 6944 6945 6946
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6947 6948 6949
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6950 6951
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6952 6953
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6954
        outputs={
W
whs 已提交
6955 6956 6957
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6958 6959 6960
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7029
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7030 7031 7032 7033 7034

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7035
            isinstance(shape, Variable)):
7036 7037 7038 7039 7040
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7041
    out = helper.create_variable_for_type_inference(x.dtype)
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7059 7060


W
whs 已提交
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7078

W
whs 已提交
7079
              out_shape = [2, 3, 5, 5]
7080

W
whs 已提交
7081
          Step 1:
7082

W
whs 已提交
7083 7084 7085
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7086

W
whs 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7157
            isinstance(out_shape, Variable)):
W
whs 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7179 7180 7181 7182 7183 7184 7185 7186
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7187

7188 7189
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7190

7191 7192 7193 7194
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7195

7196 7197 7198 7199 7200
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7201 7202 7203

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7239
    out = helper.create_variable_for_type_inference("float32")
7240 7241 7242 7243 7244 7245 7246 7247

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7248 7249


M
minqiyang 已提交
7250 7251
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7252
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7253
    which compares left score and right score passed in.
M
minqiyang 已提交
7254
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7255 7256 7257 7258 7259 7260

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7261
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7262 7263
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7264
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7265 7266 7267
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7268
       Variable: The ranking loss.
M
minqiyang 已提交
7269
    Raises:
M
minqiyang 已提交
7270
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7271 7272 7273 7274 7275 7276 7277
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7278
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7279 7280 7281 7282 7283 7284
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7285 7286
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7310
        .. code-block:: text
W
whs 已提交
7311

T
Tink_Y 已提交
7312
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7313

T
Tink_Y 已提交
7314 7315
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7316

T
Tink_Y 已提交
7317
	      Case 0:
M
minqiyang 已提交
7318

T
Tink_Y 已提交
7319 7320 7321
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7322

T
Tink_Y 已提交
7323 7324 7325
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7326

T
Tink_Y 已提交
7327
	      Case 1:
M
minqiyang 已提交
7328

T
Tink_Y 已提交
7329 7330
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7331

T
Tink_Y 已提交
7332 7333 7334
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7335

T
Tink_Y 已提交
7336
	      Case 2:
M
minqiyang 已提交
7337

T
Tink_Y 已提交
7338 7339
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7340

T
Tink_Y 已提交
7341 7342 7343
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7344 7345


W
whs 已提交
7346 7347
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7348
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7372
    out = helper.create_variable_for_type_inference(dtype)
7373 7374 7375 7376 7377 7378 7379 7380 7381
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7382
    helper.append_op(
7383
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7384 7385 7386 7387

    return out


7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7400 7401 7402 7403 7404

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7405 7406
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7407 7408
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7409
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7430 7431 7432 7433 7434

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7435 7436
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7437 7438
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7439
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7460 7461 7462 7463 7464

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7465 7466
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7467 7468
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7469
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7491 7492 7493 7494 7495

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7496
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7497
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7498 7499
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7500
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7523 7524 7525 7526 7527

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7528 7529
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7530 7531
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7532
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7554 7555 7556 7557 7558

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7559 7560
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7561 7562
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7563
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7564 7565 7566 7567 7568 7569 7570 7571
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7572 7573 7574 7575
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7576
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7577 7578 7579

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7580
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7581
          weight (alpha).
J
jerrywgz 已提交
7582
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7583 7584 7585
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7586
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7587
          will be named automatically.
J
jerrywgz 已提交
7588 7589 7590 7591 7592 7593 7594 7595

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7596
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7610
        attr=helper.param_attr,
J
jerrywgz 已提交
7611 7612 7613 7614
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7615
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7616 7617 7618 7619 7620 7621 7622 7623 7624
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7635
    Returns:
7636
        output(${out_type}): ${out_comment}
7637 7638 7639 7640 7641 7642 7643

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7644 7645
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7646
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7665
    Returns:
7666
        output(${out_type}): ${out_comment}
7667 7668 7669 7670 7671 7672 7673

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7674 7675
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7676
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7694
    Returns:
7695
        output(${out_type}): ${out_comment}
7696 7697 7698 7699 7700 7701 7702

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7703 7704
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7705
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7706 7707 7708 7709 7710 7711 7712 7713
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7727

7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7738 7739
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7755
        ValueError: If axis is not in range [0, rank(x)].
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7772 7773
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7774
    helper.append_op(
7775
        type='flatten2',
7776
        inputs={"X": x},
7777 7778
        outputs={'Out': out,
                 'XShape': x_shape},
7779 7780
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7781 7782


C
chenweihang 已提交
7783
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7784
    """
C
chenweihang 已提交
7785
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7786
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7787 7788
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7789

C
chenweihang 已提交
7790 7791 7792 7793
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7794
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7795 7796 7797 7798 7799 7800
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7801
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7802 7803 7804
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7805 7806 7807
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7819 7820
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7821 7822 7823 7824 7825 7826
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7827
    return out
7828

7829

S
sneaxiy 已提交
7830 7831 7832 7833 7834 7835 7836 7837 7838
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7839

S
sneaxiy 已提交
7840
    .. math::
7841

S
sneaxiy 已提交
7842 7843 7844
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7845
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7846 7847 7848 7849
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7850 7851 7852
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7853 7854
    Returns:
        Variable: The output sequence mask.
7855

S
sneaxiy 已提交
7856 7857
    """

Q
qingqing01 已提交
7858
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7859
    if name is None:
X
Xin Pan 已提交
7860
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7861
    else:
X
Xin Pan 已提交
7862
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7863

Q
qingqing01 已提交
7864 7865 7866
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7867 7868
        outputs={'Y': out},
        attrs={
7869
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7870 7871 7872
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7873 7874


X
Xin Pan 已提交
7875
def stack(x, axis=0):
S
sneaxiy 已提交
7876 7877 7878 7879
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7880 7881 7882 7883 7884 7885 7886

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7887
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7888
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7889 7890

    Args:
7891
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7892
        axis (int|None): The axis along which all inputs are stacked.
7893

S
sneaxiy 已提交
7894 7895
    Returns:
        Variable: The stacked variable.
7896

S
sneaxiy 已提交
7897 7898
    """

X
Xin Pan 已提交
7899 7900 7901 7902 7903 7904
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7905
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7906
    helper.append_op(
S
sneaxiy 已提交
7907 7908
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7909

X
Xin Pan 已提交
7910
    return out
D
dzhwinter 已提交
7911 7912 7913 7914 7915 7916 7917


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7918

D
dzhwinter 已提交
7919 7920 7921
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7922
    raised.
D
dzhwinter 已提交
7923 7924

    Args:
M
minqiyang 已提交
7925
        x (Variable): Input variable.
D
dzhwinter 已提交
7926 7927
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7928

D
dzhwinter 已提交
7929 7930
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7931

D
dzhwinter 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7943
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7944 7945 7946 7947 7948 7949 7950 7951

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7964

W
whs 已提交
7965 7966 7967 7968
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7969

W
whs 已提交
7970
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7971

W
whs 已提交
7972
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7973

W
whs 已提交
7974 7975 7976 7977
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7978

W
whs 已提交
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7995
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7996 7997 7998 7999 8000 8001
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8002 8003


G
fix  
gongweibao 已提交
8004 8005 8006
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8007
@templatedoc()
G
fix  
gongweibao 已提交
8008 8009 8010 8011 8012 8013 8014 8015 8016
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8017
    ${comment}
G
fix  
gongweibao 已提交
8018 8019

    Args:
G
gongweibao 已提交
8020 8021 8022
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8023
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8024 8025 8026
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8027 8028
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8029
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8030

8031 8032 8033 8034 8035
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8036 8037 8038
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8039
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8056 8057


G
gongweibao 已提交
8058
@templatedoc()
X
Xin Pan 已提交
8059
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8060
    """
G
gongweibao 已提交
8061
    ${comment}
G
fix  
gongweibao 已提交
8062 8063

    Args:
G
gongweibao 已提交
8064 8065 8066 8067
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8068 8069 8070
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8071
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8072

8073 8074 8075 8076
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8077 8078 8079
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8080
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8091
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8092 8093 8094 8095 8096
        })

    return out


G
gongweibao 已提交
8097
@templatedoc()
G
fix  
gongweibao 已提交
8098
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8099
    """
G
gongweibao 已提交
8100
    ${comment}
G
fix  
gongweibao 已提交
8101 8102

    Args:
G
gongweibao 已提交
8103 8104 8105 8106
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8107
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8108 8109

    Returns:
G
gongweibao 已提交
8110
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8111

8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8122 8123 8124
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8125
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8137
@templatedoc()
G
fix  
gongweibao 已提交
8138 8139 8140 8141 8142 8143 8144 8145 8146
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8147
    ${comment}
G
fix  
gongweibao 已提交
8148 8149

    Args:
G
gongweibao 已提交
8150 8151
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8152
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8153 8154 8155 8156
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8157
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8158 8159

    Returns:
G
gongweibao 已提交
8160
        out (Variable): ${out_comment}
8161 8162 8163 8164 8165 8166 8167 8168

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8169 8170 8171
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8172
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8191
@templatedoc()
X
Xin Pan 已提交
8192
def sum(x):
G
fix  
gongweibao 已提交
8193
    """
G
gongweibao 已提交
8194
    ${comment}
G
fix  
gongweibao 已提交
8195 8196

    Args:
G
gongweibao 已提交
8197
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8198 8199

    Returns:
G
gongweibao 已提交
8200
        out (Variable): ${out_comment}
8201 8202 8203 8204 8205 8206

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8207 8208 8209
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8210 8211
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8212 8213 8214 8215
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8216
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8217 8218 8219 8220

    return out


G
gongweibao 已提交
8221
@templatedoc()
G
fix  
gongweibao 已提交
8222 8223
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8224
    ${comment}
G
fix  
gongweibao 已提交
8225 8226

    Args:
G
gongweibao 已提交
8227 8228 8229 8230
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8231 8232

    Returns:
G
gongweibao 已提交
8233
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8234

8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8246 8247 8248
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8249 8250
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8262
@templatedoc()
G
fix  
gongweibao 已提交
8263 8264
def shape(input):
    """
G
gongweibao 已提交
8265
    ${comment}
G
fix  
gongweibao 已提交
8266 8267

    Args:
G
gongweibao 已提交
8268
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8269 8270

    Returns:
G
gongweibao 已提交
8271
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8272

8273 8274 8275 8276 8277 8278
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8279 8280 8281
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8282 8283
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8284
    helper.append_op(
G
fix  
gongweibao 已提交
8285
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8286 8287

    return out
G
merge  
gongweibao 已提交
8288 8289


S
sneaxiy 已提交
8290 8291 8292 8293 8294 8295 8296 8297
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8298 8299
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8300
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8301 8302 8303
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8304

S
sneaxiy 已提交
8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8316
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8317 8318 8319 8320 8321 8322 8323 8324
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8325
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8326
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8327 8328 8329 8330 8331 8332

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8333
    if name is None:
X
Xin Pan 已提交
8334
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8335 8336 8337
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8348
    return helper.append_activation(out)
S
sneaxiy 已提交
8349 8350


X
Xin Pan 已提交
8351
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8352 8353 8354
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8355
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8356 8357 8358
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8359
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8360 8361 8362
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8363
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8364 8365 8366
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8367
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8368 8369 8370
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8371
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8372 8373 8374
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8375
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8387 8388
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8389
        ])
M
minqiyang 已提交
8390 8391


8392
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8393 8394
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8395 8396
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8397 8398 8399

    if out is None:
        if name is None:
X
Xin Pan 已提交
8400
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8416
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8428 8429 8430 8431 8432 8433 8434 8435 8436

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8437 8438 8439 8440 8441 8442 8443
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8444
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8456 8457 8458 8459 8460 8461 8462 8463 8464

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8465 8466 8467 8468 8469 8470 8471
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8472
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8484 8485 8486 8487 8488 8489 8490 8491 8492

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8493 8494 8495 8496 8497 8498 8499
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8500
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8511 8512 8513 8514 8515 8516 8517

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8518 8519 8520 8521
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8537 8538 8539 8540 8541 8542 8543

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8544 8545 8546 8547 8548
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8549 8550 8551 8552
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8576 8577 8578 8579 8580 8581 8582

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8583 8584 8585 8586 8587
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8588 8589 8590 8591
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8592 8593 8594 8595 8596 8597 8598 8599

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8618
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8619 8620 8621 8622 8623 8624 8625 8626 8627 8628
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8671
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8672 8673 8674 8675 8676 8677 8678 8679 8680
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8681 8682
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8683 8684 8685 8686 8687 8688
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8689 8690 8691 8692
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8693 8694 8695 8696 8697 8698
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8699
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8700 8701 8702 8703 8704 8705 8706 8707 8708
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8709
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8710 8711 8712 8713 8714 8715 8716 8717
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8718
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8739
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8750 8751


J
JiabinYang 已提交
8752
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8753
    """
J
JiabinYang 已提交
8754
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8755 8756 8757

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8758
    The attr blocksize indicates the input block size.
8759 8760

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8761
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8762 8763

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8764
    (but keeping all data)
J
JiabinYang 已提交
8765

J
JiabinYang 已提交
8766
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8767
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8768 8769 8770 8771 8772
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8773
    Args:
J
JiabinYang 已提交
8774
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8775
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8776 8777

    Returns:
J
JiabinYang 已提交
8778
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8779 8780

    Raises:
J
JiabinYang 已提交
8781
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8782 8783 8784 8785 8786 8787

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8788
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8789
                x=data, blocksize=2)
J
JiabinYang 已提交
8790 8791
    """

J
JiabinYang 已提交
8792
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8793

J
JiabinYang 已提交
8794 8795
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8796 8797

    if name is None:
J
JiabinYang 已提交
8798 8799
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8800 8801 8802 8803 8804
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8805
        type="space_to_depth",
J
JiabinYang 已提交
8806
        inputs={"X": x},
J
JiabinYang 已提交
8807
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8808
        outputs={"Out": out})
J
JiabinYang 已提交
8809 8810
    return out

J
JiabinYang 已提交
8811

S
sneaxiy 已提交
8812 8813
@templatedoc()
def sequence_reverse(x, name=None):
8814
    """
S
sneaxiy 已提交
8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8826
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8827 8828 8829 8830 8831 8832 8833 8834 8835 8836
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8837 8838


8839 8840 8841 8842 8843 8844
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8845

8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8865
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8878 8879


B
barrierye 已提交
8880
def similarity_focus(input, axis, indexes, name=None):
8881
    """
B
barrierye 已提交
8882
    SimilarityFocus Operator
B
barrierye 已提交
8883 8884

    Generate a similarity focus mask with the same shape of input using the following method:
8885 8886 8887
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8888
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8889 8890 8891 8892 8893 8894 8895
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8896
       each index.
B
barrierye 已提交
8897 8898 8899 8900
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8950
    Args:
8951
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8952
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8953
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8954
            1, 2 or 3.
B
barrierye 已提交
8955
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8956 8957

    Returns:
8958
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8959
            as the input.
8960

B
barrierye 已提交
8961 8962 8963
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8964 8965
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8978 8979 8980 8981 8982
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8983 8984 8985 8986 8987 8988 8989
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8990 8991


M
minqiyang 已提交
8992 8993
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8994 8995
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8996 8997
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9036
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9037
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9038 9039 9040 9041 9042 9043 9044 9045 9046

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9047 9048
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9049 9050
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9051 9052 9053 9054 9055 9056 9057
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9058 9059


D
dengkaipeng 已提交
9060
@templatedoc()
9061 9062
def grid_sampler(x, grid, name=None):
    """
9063
    This operation samples input X by using bilinear interpolation based on
9064
    flow field grid, which is usually gennerated by affine_grid. The grid of
9065 9066 9067 9068
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9069
    interpolation value of 4 nearest corner points.
9070 9071 9072 9073 9074 9075 9076 9077

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9078
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9108 9109

    Args:
9110 9111 9112
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9113 9114

    Returns:
9115
        out(Variable): Output of shape [N, C, H, W] data samples input X
9116 9117 9118 9119 9120 9121 9122 9123 9124
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9125 9126 9127 9128 9129 9130 9131 9132 9133
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9134
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9135 9136
    ipts = {'X': x, 'Grid': grid}

9137
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9138 9139 9140
    return out


G
gmcather 已提交
9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
H
heqiaozhi 已提交
9207
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound 
H
heqiaozhi 已提交
9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9276 9277 9278 9279 9280 9281 9282 9283 9284 9285


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9286
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9287

Q
Qiao Longfei 已提交
9288
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9289 9290 9291
    For example:

    .. math::
9292
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9293

Q
Qiao Longfei 已提交
9294
    In this formula:
9295 9296
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9297
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9298
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9299 9300 9301
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9302 9303
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9304 9305 9306
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9307
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9308
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9309
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9310 9311 9312 9313
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9314
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9315 9316 9317 9318

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9319
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9320 9321
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9322
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9323 9324 9325 9326

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9327
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421


@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out