framework.py 189.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69

70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
182 183 184 185
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
186
    This function checks whether the program runs in dynamic graph mode or not.
187 188 189
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
190 191

    Returns:
Y
Youwei Song 已提交
192
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
193 194 195 196

    Examples:
        .. code-block:: python

197
            import paddle.fluid as fluid
L
lujun 已提交
198

199 200 201 202
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
203
    """
L
lujun 已提交
204
    return _dygraph_tracer_ is not None
205 206


207 208 209
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
210
        ), "We don't support %s in imperative mode" % func.__name__
211 212 213 214 215 216 217 218
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
219
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
220 221 222 223 224
        return func(*args, **kwargs)

    return __impl__


225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


241 242
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
243
fake_interface_only = wrap_decorator(_fake_interface_only_)
244 245


L
lujun 已提交
246 247
def _dygraph_tracer():
    return _dygraph_tracer_
248

W
Wu Yi 已提交
249

M
minqiyang 已提交
250
def _current_expected_place():
L
lujun 已提交
251
    return _dygraph_current_expected_place_
M
minqiyang 已提交
252 253


L
Leo Chen 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
271
def _cpu_num():
272
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
273 274 275 276 277 278 279 280
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
281
        os.environ['CPU_NUM'] = str(1)
282
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
283 284 285 286 287 288 289 290 291 292
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
293 294


C
chengduo 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
310
def cuda_places(device_ids=None):
L
lujun 已提交
311
    """
312 313 314 315 316
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
317 318

    If :code:`device_ids` is None, environment variable of
319
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
320 321 322
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
323
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
324 325

    If :code:`device_ids` is not None, it should be the device
326
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
327 328 329
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
330 331
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
332 333

    Returns:
334
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
335 336 337 338

    Examples:
        .. code-block:: python

339
            import paddle.fluid as fluid
L
lujun 已提交
340 341 342
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
343 344 345
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
346
        device_ids = _cuda_ids()
S
sneaxiy 已提交
347 348 349 350 351 352
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
353
    """
354
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
355 356 357
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
358 359
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
360 361
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
362

363 364
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
365 366

    Returns:
367
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
368 369 370 371

    Examples:
        .. code-block:: python

372
            import paddle.fluid as fluid
L
lujun 已提交
373 374 375
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
376 377 378 379 380 381
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
382
    """
383
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
384 385 386

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
387 388 389 390
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
391

392 393
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
394 395

    Returns:
396
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
397 398 399 400

    Examples:
        .. code-block:: python

401
            import paddle.fluid as fluid
L
lujun 已提交
402 403 404 405 406
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
407 408 409
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
410 411
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
412 413


414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
440
@signature_safe_contextmanager
441 442
def name_scope(prefix=None):
    """
443 444
    :api_attr: Static Graph

445 446
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
447 448 449
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
450 451

    Args:
T
Tao Luo 已提交
452
        prefix(str, optional): prefix. Default is none.
453 454 455

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
456

457
          import paddle.fluid as fluid
458
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
459 460 461 462 463 464
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
465
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
466
                f = fluid.layers.pow(d, 2.0)
467
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
487 488
    """
    # TODO(panyx0718): Only [0-9a-z].
489
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
490 491 492
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
493
        assert prefix, "namescope prefix can not be empty."
494 495
        global _name_scope
        _name_scope = _name_scope.child(prefix)
496 497 498 499
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
500 501 502 503 504 505 506 507 508 509 510 511


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
512 513 514
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
515 516 517 518


def grad_var_name(var_name):
    """
519 520
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
521 522 523
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
524

525
def convert_np_dtype_to_dtype_(np_dtype):
526 527
    """
    Convert the data type in numpy to the data type in Paddle
528

529
    Args:
530
        np_dtype(np.dtype): the data type in numpy.
531

532 533
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
534 535

    """
536 537
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
538
        return core.VarDesc.VarType.FP32
539
    elif dtype == np.float64:
540
        return core.VarDesc.VarType.FP64
541
    elif dtype == np.float16:
542
        return core.VarDesc.VarType.FP16
543
    elif dtype == np.int32:
544
        return core.VarDesc.VarType.INT32
545
    elif dtype == np.int16:
546
        return core.VarDesc.VarType.INT16
547
    elif dtype == np.int64:
548
        return core.VarDesc.VarType.INT64
549
    elif dtype == np.bool:
550
        return core.VarDesc.VarType.BOOL
551 552
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
553 554
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
555 556
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
557
    else:
M
minqiyang 已提交
558
        raise ValueError("Not supported numpy dtype %s" % dtype)
559 560 561


def dtype_is_floating(dtype):
562 563 564
    """
    Check the data type is floating or not.
    Args:
565
        dtype(np.dtype|core.VarDesc.VarType): data type.
566 567 568 569 570
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
571
    if not isinstance(dtype, core.VarDesc.VarType):
572 573
        dtype = convert_np_dtype_to_dtype_(dtype)

574 575 576 577
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
578 579


Y
Yang Yang(Tony) 已提交
580
def _debug_string_(proto, throw_on_error=True):
581 582 583 584 585 586 587 588 589 590 591
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
592
    error_fields = list()
Y
Yang Yang(Tony) 已提交
593
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
594 595
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
596 597 598
    return proto.__str__()


599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
656
    target_block = default_main_program().current_block()
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
711 712
                temp_end = target_block.create_var(dtype='int32')
                target_block.append_op(
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
752

753
    # starts
L
Leo Chen 已提交
754
    if contain_var(slice_start):
755 756 757 758 759 760 761 762
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
763 764 765 766
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
767 768 769 770 771 772 773
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
774 775 776
    else:
        attrs['ends'] = slice_end

777 778
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
779
        if contain_var(slice_step):
780 781 782 783 784 785 786
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
787 788
        else:
            attrs['strides'] = slice_step
789 790 791 792 793 794
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
795
        slice_out_var = target_block.create_var(
796 797 798
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

799
        target_block.append_op(
800 801 802 803 804 805 806
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
807
        strided_slice_out_var = target_block.create_var(
808 809 810
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
811
        target_block.append_op(
812 813 814 815 816 817 818 819
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
820
        reverse_out_var = target_block.create_var(
821 822 823
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
824
        target_block.append_op(
825 826 827 828 829 830 831 832 833 834 835
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
836
class Variable(object):
837
    """
J
Jiabin Yang 已提交
838
    **Notes**:
839
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
840

841 842
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
843 844 845
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
846
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
847 848
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
849

850
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
851
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
852

T
tianshuo78520a 已提交
853
    Most of a Variable's member variables can be set to be None. It mean
854
    it is not available or will be specified later.
855

856
    Examples:
857 858
        In Static Graph Mode:

859 860
        .. code-block:: python

861
            import paddle.fluid as fluid
862
            cur_program = fluid.Program()
863 864 865 866
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
867
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
868 869 870 871 872 873 874 875 876

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

877 878
    """

Y
Yu Yang 已提交
879 880
    def __init__(self,
                 block,
Y
Yu Yang 已提交
881
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
882 883 884 885
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
886
                 capacity=None,
Q
QI JUN 已提交
887
                 persistable=None,
F
fengjiayi 已提交
888
                 error_clip=None,
Y
Yu Yang 已提交
889
                 stop_gradient=False,
F
fengjiayi 已提交
890
                 is_data=False,
H
Huihuang Zheng 已提交
891
                 need_check_feed=False,
H
hong 已提交
892
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
893
                 **kwargs):
Y
Yu Yang 已提交
894 895
        self.block = block
        if name is None:
Y
Yu Yang 已提交
896
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
897

Y
Yu Yang 已提交
898
        if dtype is not None:
899
            if not isinstance(dtype, core.VarDesc.VarType):
900
                dtype = convert_np_dtype_to_dtype_(dtype)
901

H
hong 已提交
902 903
        self.belong_to_optimizer = belong_to_optimizer

904 905 906 907 908
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
909

910 911 912
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
913

914 915 916 917 918 919 920
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
921

922
        if shape is not None:
923
            if is_new_var:
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
965

966 967
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
968

969 970 971 972 973 974 975
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
976

977 978 979 980
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
981

982
    @fake_interface_only
983 984
    def detach(self):
        """
J
Jiabin Yang 已提交
985
        **Notes**:
T
tianshuo78520a 已提交
986
            **This API is ONLY available in Dygraph mode**
987

988
        Returns a new Variable, detached from the current graph.
989

990
        Returns:
J
Jiabin Yang 已提交
991
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
992

993

994 995 996 997 998
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
999
                from paddle.fluid.dygraph import Linear
1000 1001 1002 1003
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1004
                    linear = Linear(32, 64)
1005
                    data = to_variable(data)
1006
                    x = linear(data)
1007 1008 1009
                    y = x.detach()

        """
1010
        pass
1011

1012
    @fake_interface_only
1013
    def numpy(self):
1014
        """
J
Jiabin Yang 已提交
1015
        **Notes**:
T
tianshuo78520a 已提交
1016
            **This API is ONLY available in Dygraph mode**
1017

J
Jiabin Yang 已提交
1018
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1019 1020 1021 1022 1023

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1024
            ndarray: dtype is same as current Variable
1025 1026 1027 1028 1029 1030

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1031
                from paddle.fluid.dygraph import Linear
1032 1033 1034 1035
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1036
                    linear = Linear(32, 64)
1037
                    data = to_variable(data)
1038
                    x = linear(data)
1039 1040 1041
                    print(x.numpy())

        """
1042
        pass
1043

1044
    @fake_interface_only
1045 1046
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1047
        **Notes**:
T
tianshuo78520a 已提交
1048
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1060
                from paddle.fluid.dygraph import Linear
1061 1062
                import numpy as np

1063
                data = np.ones([3, 1024], dtype='float32')
1064
                with fluid.dygraph.guard():
1065
                    linear = fluid.dygraph.Linear(1024, 4)
1066
                    t = to_variable(data)
1067
                    linear(t)  # call with default weight
1068
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1069 1070
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1071 1072

        """
1073
        pass
1074

1075
    @fake_interface_only
1076
    def backward(self, backward_strategy=None):
1077
        """
J
Jiabin Yang 已提交
1078
        **Notes**:
T
tianshuo78520a 已提交
1079
            **This API is ONLY available in Dygraph mode**
1080 1081 1082

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1083 1084
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1085

J
Jiabin Yang 已提交
1086 1087
        Returns:
            NoneType: None
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1100 1101
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1102 1103 1104 1105 1106 1107 1108 1109 1110
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1111
        pass
1112

1113
    @fake_interface_only
1114
    def gradient(self):
1115
        """
J
Jiabin Yang 已提交
1116
        **Notes**:
T
tianshuo78520a 已提交
1117
            **This API is ONLY available in Dygraph mode**
1118 1119 1120

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1121
        Returns:
1122
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1123 1124 1125 1126 1127 1128 1129

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1130
                # example1: return ndarray
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1158
        """
1159
        pass
1160

1161
    @fake_interface_only
1162
    def clear_gradient(self):
1163
        """
J
Jiabin Yang 已提交
1164
        **Notes**:
T
tianshuo78520a 已提交
1165
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1166 1167

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1168

J
Jiabin Yang 已提交
1169
        Clear  (set to ``0`` ) the Gradient of Current Variable
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1196
        pass
X
Xin Pan 已提交
1197

1198
    def __str__(self):
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1243

F
update  
fengjiayi 已提交
1244
    def to_string(self, throw_on_error, with_details=False):
1245 1246 1247
        """
        Get debug string.

J
Jiabin Yang 已提交
1248 1249 1250 1251 1252
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1253

1254 1255
        Returns:
            str: The debug string.
1256 1257 1258 1259 1260

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1261

1262 1263 1264 1265 1266
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1267
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1268
                print("=============with detail===============")
1269
                print(new_variable.to_string(True, True))
1270
        """
F
update  
fengjiayi 已提交
1271 1272
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1273
        protostr = self.desc.serialize_to_string()
1274
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1275 1276 1277 1278
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1279 1280 1281
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1282
        return res_str
1283 1284 1285

    __repr__ = __str__

1286
    @property
1287
    def stop_gradient(self):
J
Jiabin Yang 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1303 1304
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1305 1306 1307
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1308 1309
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1310 1311 1312 1313
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1314
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1315 1316
                assert (out1.gradient() == 0).all()
        """
1317
        return self._stop_gradient
1318

1319 1320
    @stop_gradient.setter
    def stop_gradient(self, s):
1321
        self._stop_gradient = s
1322

1323 1324
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1346
        return self.desc.persistable()
1347

Y
Yu Yang 已提交
1348 1349
    @persistable.setter
    def persistable(self, p):
1350
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1351

Y
Yu Yang 已提交
1352 1353
    @property
    def name(self):
J
Jiabin Yang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1370
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1392 1393
    @name.setter
    def name(self, new_name):
1394
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1395

Y
Yu Yang 已提交
1396 1397
    @property
    def shape(self):
J
Jiabin Yang 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1415
        # convert to tuple, make it as same as numpy API.
1416
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1417 1418

    @property
F
fengjiayi 已提交
1419
    def dtype(self):
J
Jiabin Yang 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1436
        return self.desc.dtype()
Y
Yu Yang 已提交
1437 1438 1439

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1461 1462 1463
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1464
        return self.desc.lod_level()
Y
Yu Yang 已提交
1465

Y
Yu Yang 已提交
1466 1467
    @property
    def type(self):
J
Jiabin Yang 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1484
        return self.desc.type()
Y
Yu Yang 已提交
1485

W
Wu Yi 已提交
1486
    def _set_error_clip(self, error_clip):
1487 1488 1489 1490 1491 1492 1493 1494 1495
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1496 1497
        self.error_clip = error_clip

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1538
            raise ValueError("slice step can not be zero")
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1614
    def _cloneVar(self, copy=False):
1615 1616
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1617 1618
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1619 1620 1621 1622
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1623
        new_var = self._cloneVar()
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1634
        new_var = self._cloneVar()
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1645
                return self._cloneVar(True)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1664
                return self._cloneVar(True)
1665
            index = int(item)
1666
            if (index > 0 and index >= self.shape[axis]) \
1667 1668 1669 1670 1671 1672 1673
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1674
        return _getitem_impl_(self, item)
1675

Y
Yu Yang 已提交
1676

F
fengjiayi 已提交
1677 1678 1679
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1680

1681 1682
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1683 1684 1685 1686
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1687
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1688 1689 1690 1691
        ret_values.append(op_proto)
    return ret_values


1692 1693 1694 1695 1696 1697 1698
class ComplexVariable(object):
    """
    The Variable defined on the complex number domain. It contains two common 
    real number Variables as its members, :attr:`real` and :attr:`imag` 
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1699
        **The constructor of ComplexVariable should not be invoked directly.**
1700

1701
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexVariable with complex number data.**
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

    Args:
        real (Variable): The Variable holding real-part data.
        imag (Variable): The Variable holding imaginery-part data.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            a = np.array([1.0+2.0j, 0.2])
            with fluid.dygraph.guard():
                var = fluid.dygraph.to_variable(a, name="new_var")
                print(var.name, var.dtype, var.shape)
                # ({'real': u'new_var.real', 'imag': u'new_var.imag'}, 'complex128', [2L]) 
                print(var.numpy())
                # [1. +2.j 0.2+0.j]
    """

    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
        return "REAL: " + self.real.__str__() + "IMAG: " + self.imag.__str__()

    __repr__ = __str__


F
fengjiayi 已提交
1773
class OpProtoHolder(object):
1774 1775 1776 1777
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1787
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1788 1789 1790 1791 1792 1793
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1794 1795 1796 1797 1798 1799 1800 1801
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1802 1803
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1804 1805
        return self.op_proto_map[type]

1806 1807 1808 1809 1810 1811
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1812 1813 1814 1815
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1816
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1817
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1818 1819
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1820 1821
        }

F
fengjiayi 已提交
1822

X
Xin Pan 已提交
1823
class Operator(object):
1824
    """
1825 1826 1827 1828 1829 1830 1831
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1832
        type(str): The type of operator. Default None.
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1853
        Block.append_op or Block._prepend_op instead.
1854 1855 1856 1857

    Examples:
        .. code-block:: python

1858
            import paddle.fluid as fluid
1859
            cur_program = fluid.Program()
1860 1861 1862 1863 1864
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1865
    """
1866
    OP_WITHOUT_KERNEL_SET = {
1867 1868
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1869 1870
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1871
        'c_sync_comm_stream'
1872
    }
1873

Y
Yu Yang 已提交
1874 1875
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1876
                 desc,
Y
Yu Yang 已提交
1877 1878 1879
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1880
                 attrs=None):
L
lujun 已提交
1881
        if in_dygraph_mode():
1882 1883
            if type is None:
                raise ValueError(
1884
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1885
            self._type = type
M
minqiyang 已提交
1886
            self.attrs = attrs if attrs else {}
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1901
                )] = self.block.program._op_role
1902 1903 1904

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1905 1906
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1907 1908 1909 1910 1911 1912 1913 1914

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1915
                    "`type` to initialized an Operator can not be None.")
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1965
                        for index, arg in enumerate(in_args):
1966 1967 1968 1969
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1970
                            elif isinstance(arg, (Variable, core.VarBase)):
1971
                                in_arg_names.append(cpt.to_text(arg.name))
1972
                            else:
1973 1974 1975 1976
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1977 1978
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2005
                        if not in_dygraph_mode():
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2025
    def _has_kernel(self, op_type):
2026 2027
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2028
    def to_string(self, throw_on_error):
2029
        """
2030 2031
        Get debug string.

2032
        Args:
2033 2034
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2035

2036 2037
        Returns:
            str: The debug string.
2038 2039

        """
2040
        protostr = self.desc.serialize_to_string()
2041
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2042 2043
        return _debug_string_(proto, throw_on_error)

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2137
    def __str__(self):
2138
        return self._to_readable_code()
2139 2140 2141

    __repr__ = __str__

F
fengjiayi 已提交
2142 2143
    @property
    def type(self):
2144
        return self.desc.type()
F
fengjiayi 已提交
2145 2146

    def input(self, name):
2147
        """
2148
        Get the input arguments according to the input parameter name.
2149

2150 2151
        Args:
            name(str): The input parameter name.
2152

2153 2154 2155
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2156
        """
F
fengjiayi 已提交
2157 2158
        return self.desc.input(name)

W
Wu Yi 已提交
2159
    def _rename_input(self, old_name, new_name):
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2170
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2171

W
Wu Yi 已提交
2172
    def _rename_output(self, old_name, new_name):
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2183
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2184

F
fengjiayi 已提交
2185 2186 2187 2188
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2189 2190 2191 2192 2193 2194 2195 2196
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2197
    def output(self, name):
2198
        """
2199
        Get output arguments by the output parameter name.
2200

2201 2202
        Args:
            name(str): The output parameter name.
2203

2204 2205 2206
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2207
        """
F
fengjiayi 已提交
2208 2209 2210 2211 2212 2213
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2214 2215 2216 2217 2218 2219 2220 2221
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2222
    def has_attr(self, name):
2223
        """
2224 2225
        Whether this Operator has the attribute with name or not.

2226
        Args:
2227
            name(str): the attribute name.
2228

2229 2230
        Returns:
            bool: True if has this attribute.
2231 2232

        """
F
fengjiayi 已提交
2233 2234 2235
        return self.desc.has_attr(name)

    def attr_type(self, name):
2236
        """
2237
        Get the type of attribute by attribute's name.
2238

2239 2240
        Args:
            name(str): the attribute name.
2241

2242 2243
        Returns:
            core.AttrType: the attribute type.
2244
        """
F
fengjiayi 已提交
2245 2246
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2247
    def _set_attr(self, name, val):
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2258 2259
        self._update_desc_attr(name, val)

2260 2261 2262
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2274 2275
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2276 2277
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2278
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2279 2280 2281 2282
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2283
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2284

F
fengjiayi 已提交
2285 2286 2287 2288 2289
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2290
        """
2291 2292
        Get the attribute by name.

2293
        Args:
2294
            name(str): the attribute name.
2295

2296 2297
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2298 2299
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2300
        return self.desc.attr(name)
Y
Yu Yang 已提交
2301

W
Wu Yi 已提交
2302
    def _block_attr_id(self, name):
2303
        """
G
gongweibao 已提交
2304
        Get the block attribute's id by name.
2305

2306 2307
        Args:
            name(str): the attribute name.
2308

2309 2310
        Returns:
            int: the block index.
2311
        """
W
Wu Yi 已提交
2312
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2313

W
Wu Yi 已提交
2314
    def _block_attr(self, name):
G
gongweibao 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2325
        id = self._block_attr_id(name)
G
gongweibao 已提交
2326 2327 2328
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2329
    def _blocks_attr(self, name):
G
gongweibao 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2340
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2341 2342 2343 2344 2345
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2346
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2357
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2358

J
JiayiFeng 已提交
2359
    def all_attrs(self):
F
fengjiayi 已提交
2360
        """
2361 2362 2363
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2364
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2365 2366 2367 2368
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2369 2370
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2371
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2372 2373 2374
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2375
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2376 2377 2378 2379
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2380 2381
        return attr_map

2382 2383 2384 2385 2386 2387 2388 2389 2390
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2391

Y
Yu Yang 已提交
2392
class Block(object):
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2407
        use `Program._create_block()` to create a block.
2408 2409 2410 2411

    Examples:
        .. code-block:: python

2412 2413 2414
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2415 2416 2417 2418 2419 2420 2421 2422 2423
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2424
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2425
        self.desc = program.desc.block(idx)
2426
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2427
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2428
        self.program = program
2429
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2430

2431
    def __str__(self):
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2478

F
fengjiayi 已提交
2479 2480
    def to_string(self, throw_on_error, with_details=False):
        """
2481 2482
        Get debug string.

F
fengjiayi 已提交
2483 2484
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2485
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2486
            with_details(bool): more details about variables and parameters
2487 2488
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2489

2490 2491
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2492 2493 2494 2495
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2496
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2497 2498
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2499
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2500
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2501
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2502
            for op in self.ops:
F
fengjiayi 已提交
2503 2504
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2505 2506 2507
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2508 2509
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2510 2511
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2512 2513 2514

    __repr__ = __str__

Y
Yu Yang 已提交
2515 2516
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2517
        return self.desc.parent
Y
Yu Yang 已提交
2518

Y
Yu Yang 已提交
2519 2520 2521 2522
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2523
    def _set_forward_block_idx(self, idx):
2524 2525 2526 2527 2528 2529 2530 2531 2532
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2533
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2534

2535 2536 2537 2538 2539 2540 2541 2542
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2543 2544
    @property
    def idx(self):
Y
Yu Yang 已提交
2545
        return self.desc.id
Y
Yu Yang 已提交
2546

Q
Qiao Longfei 已提交
2547
    def var(self, name):
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2561
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2562 2563 2564
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2565 2566
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2567
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2568
        return v
Q
Qiao Longfei 已提交
2569

X
Xin Pan 已提交
2570
    def _find_var_recursive(self, name):
2571 2572 2573 2574 2575 2576 2577
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2578
            Variable: the Variable with the giving name. Or None if not found.
2579
        """
Y
Yu Yang 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2604
        return None
Y
Yu Yang 已提交
2605

X
Xin Pan 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2625

Q
Qiao Longfei 已提交
2626
    def all_parameters(self):
2627
        return list(self.iter_parameters())
2628

2629
    def iter_parameters(self):
M
minqiyang 已提交
2630
        return (item[1] for item in six.iteritems(self.vars)
2631
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2632

Y
Yu Yang 已提交
2633
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2634 2635 2636
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2637 2638 2639
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2640
        return var
Y
Yu Yang 已提交
2641

Q
Qiao Longfei 已提交
2642 2643 2644
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2645
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2646 2647
        """
        Rename variable in vars and ops' inputs and outputs
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2660
        """
M
minqiyang 已提交
2661 2662
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2663

T
typhoonzero 已提交
2664
        if not self.has_var(name):
2665
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2666 2667
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2668
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2669 2670 2671 2672 2673 2674
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2675
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2676 2677 2678 2679
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2680
        orig_var_type = v.type
M
minqiyang 已提交
2681
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2682
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2683
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2684
        if var_type == "Parameter":
L
Leo Chen 已提交
2685 2686
            if in_dygraph_mode():
                var = ParamBase(
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2697 2698
                var = Parameter(
                    self,
2699 2700 2701 2702 2703 2704 2705 2706 2707
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2708
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2709 2710
            var = Variable(
                self,
T
typhoonzero 已提交
2711
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2712 2713 2714 2715
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2716
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2717 2718 2719
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2720
        self._sync_with_cpp()
2721
        return var
T
typhoonzero 已提交
2722

W
Wu Yi 已提交
2723 2724
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2725
        self.desc._remove_var(cpt.to_bytes(name))
2726 2727
        del self.vars[name]

Y
Yu Yang 已提交
2728 2729
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2730
        param = None
L
Leo Chen 已提交
2731
        if in_dygraph_mode():
2732
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2733 2734
        else:
            param = Parameter(global_block, *args, **kwargs)
2735
        if 'initializer' in kwargs:
2736 2737 2738 2739 2740

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2741 2742 2743 2744 2745
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2757
                # TODO already inited, do nothing, should log a warning
2758 2759 2760
                pass
            else:
                initializer(param, self)
2761
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2762
        return param
Y
Yu Yang 已提交
2763

Y
Yu Yang 已提交
2764
    def append_op(self, *args, **kwargs):
2765 2766 2767 2768 2769 2770
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2771
        if in_dygraph_mode():
2772
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2773
            type = kwargs.get("type", None)
2774 2775 2776
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2777
                type=type,
M
minqiyang 已提交
2778 2779
                inputs=None,
                outputs=None,
2780
                attrs=attrs)
2781

M
minqiyang 已提交
2782 2783 2784
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2785
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2786 2787

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2788
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2789 2790
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2791
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2792
        else:
2793 2794 2795 2796 2797 2798 2799 2800 2801
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2802
            self.ops.append(op)
M
minqiyang 已提交
2803

2804 2805
        return op

W
Wu Yi 已提交
2806
    def _insert_op(self, index, *args, **kwargs):
2807 2808 2809 2810 2811 2812 2813 2814 2815
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2816 2817
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2818 2819 2820 2821
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2822
    def _remove_op(self, index):
2823 2824 2825 2826 2827 2828 2829 2830 2831
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2832 2833
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2834 2835
        del self.ops[index]

W
Wu Yi 已提交
2836
    def _slice_ops(self, start, end):
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2847
        return self.ops[start:end]
Y
Yancey1989 已提交
2848

W
Wu Yi 已提交
2849
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2850
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2851 2852
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2853
            op = Operator(
J
Jiabin Yang 已提交
2854
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2855

J
Jiabin Yang 已提交
2856
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2857
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2858 2859
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2860
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2861
        else:
2862 2863 2864 2865 2866 2867 2868 2869
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2870
            self.ops.insert(0, op)
2871

Y
Yu Yang 已提交
2872 2873
        return op

W
Wu Yi 已提交
2874
    def _sync_with_cpp(self):
2875
        """
2876 2877
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2878
        """
Q
Qiao Longfei 已提交
2879 2880 2881 2882 2883
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2884
        # sync variables removed from c++ end
2885
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2886
            if not self.desc.find_var(cpt.to_bytes(var)):
2887 2888
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2889
        # sync operators from cpp
2890 2891 2892 2893
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2910 2911 2912 2913 2914

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2915
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2916 2917 2918 2919 2920 2921 2922

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2936 2937 2938 2939
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2940
    def _copy_param_info_from(self, other):
2941
        """
2942 2943
        Copy the information of parameters from the other block.

2944
        Args:
2945 2946 2947 2948 2949
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2950 2951 2952 2953 2954

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2955 2956
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2957
        for p in other.iter_parameters():
2958 2959 2960
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2961 2962
                # if the Parameter is pruned, v may be None
                continue
2963
            assert isinstance(v, Variable)
2964
            new_p = None
L
Leo Chen 已提交
2965 2966
            if in_dygraph_mode():
                new_p = ParamBase(
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2978 2979
                new_p = Parameter(
                    block=self,
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2990 2991
            self.vars[new_p.name] = new_p

2992
    def _clone_variable(self, var, force_persistable=True):
2993 2994
        """
        Clone a variable into current block.
2995

2996 2997
        Args:
            var: the variable to be cloned.
2998 2999 3000
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3001 3002

        Returns:
3003
            Variable: the new  variable cloned from 'var' in current block.
3004 3005
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3006 3007 3008 3009 3010
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3011 3012
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3013
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3014 3015 3016 3017 3018 3019
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3020
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3021 3022
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3023 3024 3025 3026 3027 3028 3029
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3030
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3031 3032
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3033
        return ret_var
3034

Y
Yu Yang 已提交
3035

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3131
    def remove_input_by_id(self, node_id):
3132 3133 3134 3135 3136 3137
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3138
        self.node.remove_input(node_id)
3139

3140
    def remove_input(self, node):
3141 3142 3143 3144
        """
        Remove a node from inputs.

        Args:
3145
            node(IrNode): the node being removed.
3146
        """
3147
        self.node.remove_input(node.node)
3148

3149
    def append_input(self, node):
3150 3151 3152 3153
        """
        Append a node in inputs.

        Args:
3154
            node(IrNode): the node being appended.
3155
        """
3156
        self.node.append_input(node.node)
3157 3158 3159 3160 3161 3162 3163 3164

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3165
    def remove_output_by_id(self, node_id):
3166 3167 3168 3169 3170 3171
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3172
        self.node.remove_output(node_id)
3173

3174
    def remove_output(self, node):
3175 3176 3177 3178
        """
        Remove a node from outputs.

        Args:
3179
            node(IrNode): the node being removed.
3180
        """
3181
        self.node.remove_output(node.node)
3182

3183
    def append_output(self, node):
3184 3185 3186 3187
        """
        Append a node in outputs.

        Args:
3188
            node(IrNode): the node being appended.
3189
        """
3190
        self.node.append_output(node.node)
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3238
            "The node variable description can not be None."
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3249
            "The node variable description can not be None."
3250 3251
        return self.node.var().persistable()

3252 3253 3254 3255 3256 3257 3258 3259
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3260
            "The node variable description can not be None."
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3271
            "The node variable description can not be None."
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3282
            "The node variable description can not be None."
3283 3284
        return self.node.var().shape()

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3332
            "The node operator description can not be None."
3333 3334
        self.node.op()._rename_input(old_input_name, new_input_name)

3335 3336 3337 3338 3339 3340 3341 3342 3343
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3344
            "The node operator description can not be None."
3345 3346 3347 3348
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3360
            "The node operator description can not be None."
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3374
            "The node operator description can not be None."
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3385
            "The node operator description can not be None."
3386 3387
        return self.node.op().set_type(new_type)

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3403
            "The node operator description can not be None."
3404 3405 3406 3407
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3408
                all(isinstance(v, Block) for v in val):
3409 3410
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3411
                isinstance(val, core.ProgramDesc):
3412 3413 3414 3415
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3416 3417 3418 3419 3420 3421 3422 3423
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3424
            "The node operator description can not be None."
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3435
            "The node operator description can not be None."
3436 3437
        return self.node.op().output_arg_names()

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3459 3460
class IrGraph(object):
    """
3461
    Python IrGraph. Beneath it is a core.Graph, which is used for
3462
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3463 3464
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3465 3466 3467 3468
    """

    def __init__(self, graph, for_test=False):
        """
3469 3470
        Construct an IrGraph using core.Graph.

3471 3472 3473 3474 3475 3476 3477 3478 3479
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3480 3481 3482 3483
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3484 3485 3486
        Warns:
            The method only clones the graph structure, not its attributes.

3487 3488 3489
        Returns:
            IrGraph: A new and duplicated graph.
        """
3490
        g = self.graph.clone()
3491 3492
        return IrGraph(g, self._for_test)

3493
    def is_test(self):
3494 3495 3496
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3497 3498
        return self._for_test

W
WangZhen 已提交
3499
    def all_nodes(self):
3500 3501 3502
        """
        Return all nodes included in the graph as a set.
        """
3503
        return {IrNode(node) for node in self.graph.nodes()}
3504

3505
    def all_var_nodes(self):
3506 3507 3508
        """
        Return all variable nodes included in the graph as a set.
        """
3509
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3510

3511
    def all_persistable_nodes(self):
3512 3513 3514
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3515 3516 3517 3518 3519
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3520
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3521

3522
    def all_op_nodes(self):
3523 3524 3525
        """
        Return all operator nodes included in the graph as a set.
        """
3526
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3527

3528
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3540
            IrVarNode: the created persistable variable node.
3541
        """
3542 3543 3544 3545 3546
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3547
        return IrVarNode(self.graph.create_var_node(var_desc))
3548 3549

    def create_var_node(self, name, var_type, shape, var_dtype):
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3561
            IrVarNode: the created variable node.
3562 3563
        """

3564 3565 3566 3567
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3568
        return IrVarNode(self.graph.create_var_node(var_desc))
3569 3570

    def create_var_node_from_desc(self, var_desc):
3571 3572 3573 3574 3575 3576 3577 3578
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3579
            IrVarNode: the created variable node.
3580
        """
3581
        return IrVarNode(self.graph.create_var_node(var_desc))
3582 3583

    def create_op_node(self, op_type, attrs, inputs, outputs):
3584 3585 3586 3587 3588 3589 3590
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3591
            outputs(dict): the outputs of the operator node.
3592 3593

        Returns:
3594
            IrOpNode: the created operator node.
3595
        """
3596 3597
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3598
        for attr, value in six.iteritems(attrs):
3599
            self._update_desc_attr(op_desc, attr, value)
3600
        for input_name, var_nodes in six.iteritems(inputs):
3601 3602 3603 3604
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3605
        for output_name, var_nodes in six.iteritems(outputs):
3606 3607 3608 3609
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3610
        return IrOpNode(self.graph.create_op_node(op_desc))
3611 3612

    def create_op_node_from_desc(self, op_desc):
3613 3614 3615 3616 3617 3618 3619
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3620
            IrOpNode: the created operator node.
3621
        """
3622
        return IrOpNode(self.graph.create_op_node(op_desc))
3623 3624

    def update_input_link(self, old_input_node, new_input_node, op_node):
3625 3626 3627 3628
        """
        Update the input's link of a operator node.

        Args:
3629 3630 3631
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3632
        """
3633
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3634 3635
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3636 3637 3638 3639
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3640
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3641

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3652 3653
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3654 3655 3656 3657 3658 3659
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3660
    def link_to(self, node_in, node_out):
3661 3662 3663 3664
        """
        Connect two nodes.

        Args:
3665 3666
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3667
        """
3668
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3669
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3670 3671
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3672 3673

    def safe_remove_nodes(self, remove_nodes):
3674 3675 3676 3677 3678 3679 3680
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3681
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3682 3683 3684 3685
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3686 3687
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3688

Z
Zhen Wang 已提交
3689 3690 3691 3692 3693 3694 3695 3696
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3697
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3698 3699 3700 3701
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3702
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3703 3704 3705
                        ]
                    else:
                        var_nodes[each_var_name].append(
3706 3707
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3708 3709
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3710
    def has_circle(self):
3711 3712 3713 3714 3715 3716
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3717 3718 3719
        return core.has_circle(self.graph)

    def graph_num(self):
3720 3721 3722 3723 3724 3725
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3726 3727 3728
        return core.graph_num(self.graph)

    def topology_sort(self):
3729 3730 3731
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3732
        Notes: the `graph` can not contain a circle.
3733 3734

        Returns:
Z
Zhen Wang 已提交
3735
            list(IrNode): nodes in topology order.
3736
        """
3737
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3738
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3739 3740

    def build_adjacency_list(self):
3741 3742 3743 3744
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3745
            dict{IrNode: set(IrNode)}: the adjacency list.
3746
        """
3747 3748 3749 3750 3751
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3752

3753 3754 3755 3756 3757 3758 3759 3760
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3761
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3762 3763 3764 3765 3766
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3767 3768 3769
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3770
                                          + ' -o ' + pdf_save_path, shell=True)
3771 3772 3773 3774 3775
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3776
        remove_ctr_vars = set()
3777
        if remove_ctr_var:
3778
            for node in self.all_var_nodes():
3779 3780 3781
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3782 3783
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3784 3785
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3786 3787 3788 3789 3790 3791
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3792 3793 3794 3795
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3796 3797
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3798 3799 3800 3801 3802 3803 3804
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3805 3806 3807
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3808
        WARN: When the graph includes backward operator nodes, the
3809 3810 3811 3812 3813 3814
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3815
        convert_pass = core.get_pass('graph_to_program_pass')
3816 3817
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3818 3819 3820 3821
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3849
class Program(object):
D
dzhwinter 已提交
3850
    """
3851 3852
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3853
    it will contain nested block.
3854

J
Jiabin Yang 已提交
3855 3856 3857
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3858

J
Jiabin Yang 已提交
3859
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3860
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3861 3862 3863 3864 3865 3866 3867
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3868 3869 3870 3871
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3872 3873

    Returns:
J
Jiabin Yang 已提交
3874
        Program: An empty Program.
D
dzhwinter 已提交
3875 3876

    Examples:
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3890 3891 3892

    """

3893 3894
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3895 3896
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3897 3898
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3899
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3900
        self.__op_role_var = []
T
tangwei12 已提交
3901

3902 3903
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3904
        self._is_distributed = False
3905
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3906
        self._is_chief = False
3907 3908 3909
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3910
        self._endpoints = []
3911 3912 3913
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3914
        self._trainers_endpoints = []
3915
        # the distributed lookup table names
T
tangwei12 已提交
3916
        self._distributed_lookup_table = None
3917 3918 3919

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3920 3921
        self._use_lamb = False

3922 3923 3924
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3925

3926 3927 3928
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3929
        self._program_config = None
3930

H
hutuxian 已提交
3931 3932 3933
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3934 3935 3936
        # appending gradients times
        self._appending_grad_times = 0

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3964
    @property
3965
    def _op_role(self):
Y
yuyang18 已提交
3966 3967 3968 3969 3970 3971 3972 3973
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3974
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3975 3976 3977 3978
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3979 3980
        return self._current_role

3981 3982
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3983 3984 3985
        self._current_role = role

    @property
3986
    def _op_role_var(self):
Y
yuyang18 已提交
3987
        """
3988
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3989

3990
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3991 3992 3993

        Notes: This is a very low-level API. Users should not use it directly.
        """
3994
        return self.__op_role_var
Y
yuyang18 已提交
3995

3996
    @signature_safe_contextmanager
3997 3998 3999 4000 4001
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4002 4003 4004 4005
        try:
            yield
        finally:
            self._current_role = tmp_role
4006

S
rename  
sneaxiy 已提交
4007
    @signature_safe_contextmanager
W
Wu Yi 已提交
4008
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4009 4010 4011 4012 4013 4014 4015
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4016
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4017 4018 4019

        Examples:

4020
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4021
            >>> p, g = backward(...)
W
Wu Yi 已提交
4022
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4023 4024
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4025
        tmp_role = self._current_role
4026
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4027

Y
yuyang18 已提交
4028 4029
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4030
        self.__op_role_var = [
4031 4032 4033
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4034 4035 4036 4037 4038
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4039

S
rename  
sneaxiy 已提交
4040
    @signature_safe_contextmanager
X
Xin Pan 已提交
4041
    def _lr_schedule_guard(self, is_with_opt=False):
4042 4043 4044 4045 4046 4047 4048
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4049 4050 4051 4052
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4053 4054 4055

        Examples:

4056
            >>> import paddle.fluid as fluid
4057 4058 4059 4060
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4061 4062

        tmp_role = self._current_role
4063
        tmp_var = self.__op_role_var
4064

4065 4066
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4067 4068
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4069
        # TODO(typhoonzero): how to set target learning rate var
4070
        self.__op_role_var = []
4071 4072 4073 4074 4075
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4076

4077
    def __str__(self):
Y
yuyang18 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4126
            program_str += '\n'
4127
        return program_str
Y
Yang Yang(Tony) 已提交
4128

F
fengjiayi 已提交
4129 4130 4131
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4132

J
Jiabin Yang 已提交
4133 4134 4135
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4136

J
Jiabin Yang 已提交
4137
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4138

H
haowang101779990 已提交
4139
        Returns:
J
Jiabin Yang 已提交
4140
            str: The debug string describe current Program.
Y
yuyang18 已提交
4141 4142

        Raises:
J
Jiabin Yang 已提交
4143
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4144

4145 4146 4147 4148 4149 4150
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4151 4152
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4153
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4154
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4155
                print("program string without detail: {}".format(prog_string))
4156
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4157
        """
4158 4159 4160 4161 4162 4163 4164 4165 4166
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4167 4168 4169 4170 4171 4172
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4173 4174
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4175 4176
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4177

W
Wu Yi 已提交
4178
    def _get_desc(self):
Y
yuyang18 已提交
4179 4180 4181 4182 4183 4184 4185
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4186 4187
        return self.desc

X
version  
Xin Pan 已提交
4188 4189 4190
    def _version(self):
        return self.desc._version()

4191
    def clone(self, for_test=False):
Y
yuyang18 已提交
4192
        """
4193
        **Notes**:
J
Jiabin Yang 已提交
4194 4195 4196 4197
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4198
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4199

4200
        Create a new Program with forward content of original one when ``for_test=True``.
4201
        Create a new Program as same as the original one when ``for_test=False``.
4202

J
Jiabin Yang 已提交
4203
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4204 4205 4206
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4207

4208 4209
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4210 4211
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4212
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4213

J
Jiabin Yang 已提交
4214
        For Example:
4215
          ::
L
Luo Tao 已提交
4216

4217 4218 4219 4220 4221 4222 4223 4224
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4225

J
Jiabin Yang 已提交
4226
        Args:
4227

4228 4229
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4230

J
Jiabin Yang 已提交
4231
        Returns:
4232
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4233

Y
yuyang18 已提交
4234 4235 4236

        Examples:

J
Jiabin Yang 已提交
4237
        **Notes: The Program's order maybe different after** :code:`clone` **and
4238
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4239
        example we give you an simple method** :code:`print_prog(program)` **to
4240
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4241
        after** :code:`clone`:
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4278 4279 4280

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4281 4282 4283 4284 4285 4286 4287 4288 4289
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4290
                            test_program = train_program.clone(for_test=True)
4291
                    print_prog(test_program)
J
Jiabin Yang 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4323 4324
                    
                    def network():
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4339 4340 4341
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4342
                    # the test startup program is not used.
4343
                    with fluid.program_guard(test_program_2, startup_program_2):
4344
                        with fluid.unique_name.guard():
4345 4346
                            avg_loss = network()
                    print_prog(test_program_2)
4347 4348

        The two code snippets above will generate and print same programs.
4349
        """
4350 4351 4352 4353 4354

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4355
        pruned_origin_block_id_map = None
4356
        if for_test:
4357 4358 4359 4360 4361 4362 4363 4364 4365
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4366
        else:
4367
            p = Program()
G
gongweibao 已提交
4368 4369
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4370
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4371 4372 4373
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4374 4375

            p._current_role = self._current_role
4376
            p.__op_role_var = self.__op_role_var
4377
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4378

4379 4380
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4381
            p._sync_with_cpp()
4382

W
Wu Yi 已提交
4383
        p._copy_param_info_from(self)
4384
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4385
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4386
        return p
4387

4388
    def _prune(self, targets):
Y
yuyang18 已提交
4389 4390 4391 4392 4393 4394 4395 4396
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4397
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4398 4399 4400 4401
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4402
        """
4403
        return self._prune_with_input([], targets)
4404 4405

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4406
        """
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4417
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4418 4419 4420 4421 4422 4423
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4424 4425 4426 4427
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4428 4429
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4430 4431
        if not isinstance(targets, list):
            targets = [targets]
4432 4433 4434

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4435 4436 4437
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4438

4439 4440 4441 4442
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4443 4444 4445
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4446
                else:
4447 4448 4449
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4450 4451 4452 4453 4454 4455 4456 4457

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4474 4475 4476 4477 4478 4479 4480 4481
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4482

4483
        res = Program()
4484 4485 4486
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4487 4488 4489
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4490
        res._sync_with_cpp()
4491 4492 4493 4494 4495

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4496 4497
        return res

X
Xin Pan 已提交
4498
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4499
        """
F
fengjiayi 已提交
4500 4501 4502 4503 4504
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4505
        3. change the :code:`is_test`
Y
yuyang18 已提交
4506 4507 4508
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4509
        Args:
X
Xin Pan 已提交
4510 4511
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4512

Y
yuyang18 已提交
4513 4514 4515 4516 4517 4518
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4519
        res = Program()
4520
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4521 4522 4523 4524

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4525
        if prune_read_op:
4526 4527 4528 4529 4530 4531 4532 4533 4534
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4535
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4536 4537

        # change all `is_test` attributes to True
M
minqiyang 已提交
4538
        for i in six.moves.range(res.desc.num_blocks()):
4539
            block = res.desc.block(i)
M
minqiyang 已提交
4540
            for j in six.moves.range(block.op_size()):
4541 4542
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4543
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4544 4545 4546
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4547
        res._sync_with_cpp()
4548 4549
        return res

4550 4551
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4552
        """
J
Jiabin Yang 已提交
4553 4554 4555 4556
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4557

4558 4559
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4560

J
Jiabin Yang 已提交
4561
        Args:
Y
yuyang18 已提交
4562

J
Jiabin Yang 已提交
4563
            binary_str_type (str): the binary prootbuf string.
4564

J
Jiabin Yang 已提交
4565 4566
        Returns:
            Program: A deserialized Program.
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4589
        """
4590 4591
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4592
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4593
        p._sync_with_cpp()
4594
        return p
Y
Yu Yang 已提交
4595

4596
    @staticmethod
4597
    def _construct_from_desc(desc):
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4613 4614
    @property
    def random_seed(self):
Y
yuyang18 已提交
4615
        """
J
Jiabin Yang 已提交
4616
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4617 4618
        the random seed from random device.

J
Jiabin Yang 已提交
4619 4620 4621 4622
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4623

4624 4625 4626 4627 4628 4629 4630 4631

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4632
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4633 4634 4635
                print(random_seed)
                ## 0
                ## the default random seed is 0
4636 4637

                # Here we need to set random seed before we use fluid.layers.dropout
4638
                prog.random_seed = 1
4639 4640
                z_var = fluid.layers.dropout(x_var, 0.7)

4641
                print(prog.random_seed)
4642 4643
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4644
        """
D
dzhwinter 已提交
4645 4646
        return self._seed

Q
qiaolongfei 已提交
4647 4648
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4649
        """
4650 4651
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4652 4653 4654 4655
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4656

4657 4658 4659 4660 4661 4662 4663 4664 4665

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4666 4667


Y
yuyang18 已提交
4668
        """
Q
qiaolongfei 已提交
4669 4670
        return self.desc.num_blocks()

D
dzhwinter 已提交
4671 4672 4673
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4674 4675 4676
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4677 4678
        self._seed = seed

Y
Yu Yang 已提交
4679
    def __repr__(self):
4680
        return self.__str__()
4681

Y
Yu Yang 已提交
4682
    def global_block(self):
Y
yuyang18 已提交
4683
        """
J
Jiabin Yang 已提交
4684 4685
        **Notes**:
            **This API has no effect in Dygraph mode**
4686 4687 4688

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4689 4690
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4691

4692 4693 4694 4695 4696 4697 4698 4699 4700

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4701

Y
yuyang18 已提交
4702
        """
Y
Yu Yang 已提交
4703 4704
        return self.blocks[0]

Q
Qiao Longfei 已提交
4705
    def block(self, index):
Y
yuyang18 已提交
4706
        """
J
Jiabin Yang 已提交
4707 4708
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4709

4710 4711
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4712 4713
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4714

J
Jiabin Yang 已提交
4715 4716
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4717 4718 4719 4720 4721 4722 4723 4724 4725

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4726
        """
Q
Qiao Longfei 已提交
4727 4728
        return self.blocks[index]

Y
Yu Yang 已提交
4729
    def current_block(self):
Y
yuyang18 已提交
4730
        """
J
Jiabin Yang 已提交
4731 4732
        **Notes**:
            **This API has no effect in Dygraph mode**
4733

J
Jiabin Yang 已提交
4734 4735
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4736

J
Jiabin Yang 已提交
4737 4738
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4739

4740 4741 4742 4743 4744 4745 4746 4747
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4748
        """
Y
Yu Yang 已提交
4749 4750
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4751
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4752 4753 4754 4755 4756
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4757

Y
yuyang18 已提交
4758 4759 4760 4761 4762
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4763
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4764 4765 4766
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4767 4768 4769 4770
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4771
    def _rollback(self):
Y
yuyang18 已提交
4772 4773 4774 4775 4776
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4777 4778
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4779
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4790 4791 4792
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4793
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4794

W
Wu Yi 已提交
4795
    def _copy_param_info_from(self, other):
4796
        """
4797
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4798

Y
yuyang18 已提交
4799 4800 4801
        Notes: This is a very low level API. Users should not invoke it
        directly.

4802 4803 4804 4805 4806 4807 4808
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4809 4810 4811
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4812

W
Wu Yi 已提交
4813
        self.global_block()._copy_param_info_from(other.global_block())
4814

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4826 4827 4828
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4829 4830
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4831
        self._parameters_on_pservers = other._parameters_on_pservers
4832
        self._endpoints = other._endpoints
4833
        self._ps_endpoint = other._ps_endpoint
4834 4835
        self._distributed_lookup_table = other._distributed_lookup_table

4836
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4837 4838
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4839

Y
yuyang18 已提交
4840 4841 4842
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4843 4844
        Args:
            other(Program): Other program
4845 4846 4847 4848
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4849 4850 4851 4852 4853

        Returns:
            None
        """
        if not isinstance(other, Program):
4854 4855 4856
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4857

4858 4859 4860 4861 4862
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4863 4864 4865

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4866 4867
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4868
            for var in list(block.vars.values()):
4869 4870 4871 4872 4873 4874 4875
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4876

4877
    def list_vars(self):
Y
yuyang18 已提交
4878
        """
J
Jiabin Yang 已提交
4879
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4880

J
Jiabin Yang 已提交
4881 4882
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4894
        """
4895
        for each_block in self.blocks:
4896
            for each_var in list(each_block.vars.values()):
4897 4898
                yield each_var

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4957

4958
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4959
class Parameter(Variable):
4960
    """
4961
    Parameter is derived from Variable. A parameter is a persistable
4962
    Variable, and will be updated by optimizers after each iteration.
4963
    The training of a neural network is essentially the updating of
4964 4965
    its parameters.

4966
    Relative to a general Variable, a Parameter has several its own
4967 4968
    member variables:

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4979 4980
    """

4981 4982 4983 4984 4985 4986
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4987 4988 4989 4990 4991
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4992
        if len(shape) == 0:
4993 4994
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4995 4996 4997

        for each in shape:
            if each < 0:
4998 4999 5000
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5001 5002

        Variable.__init__(
5003 5004 5005 5006 5007 5008 5009
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5010 5011 5012 5013
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5014 5015
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5016
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5017

5018 5019
        self.is_distributed = False

F
fengjiayi 已提交
5020
    def __str__(self):
5021
        return self._to_readable_code()
F
fengjiayi 已提交
5022

F
update  
fengjiayi 已提交
5023 5024 5025
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5026

F
update  
fengjiayi 已提交
5027 5028 5029 5030 5031 5032 5033 5034
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5035 5036 5037 5038 5039 5040 5041 5042 5043
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5044 5045 5046 5047 5048 5049
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5050
                               "do_model_average")
F
update  
fengjiayi 已提交
5051
            for attr_name in additional_attr:
5052 5053
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5054 5055
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5056 5057 5058 5059
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5060

5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

5121
        # self.block = default_main_program().global_block()
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
5152
            return 'Parameter: %s\n%s' % (self.name, str(tensor))
5153
        else:
5154
            return 'Parameter: %s, not initialized' % (self.name)
5155 5156 5157 5158

    __repr__ = __str__


Y
Yu Yang 已提交
5159
# program is a global instance.
Y
Yu Yang 已提交
5160 5161
_main_program_ = Program()
_startup_program_ = Program()
5162

5163

5164
def default_startup_program():
Y
Yu Yang 已提交
5165
    """
Y
yuyang18 已提交
5166 5167
    Get default/global startup program.

J
Jiabin Yang 已提交
5168 5169 5170
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5171 5172 5173
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5174
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5175

J
Jiabin Yang 已提交
5176
    Returns: current default startup :ref:`api_fluid_Program`
5177

J
Jiabin Yang 已提交
5178
    Returns type: :ref:`api_fluid_Program`
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5194
    """
Y
Yu Yang 已提交
5195
    return _startup_program_
5196

5197

5198
def default_main_program():
Y
Yu Yang 已提交
5199
    """
5200 5201 5202 5203 5204
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5205

5206 5207
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5208
    :code:`default_main_program` when the program is not specified.
5209

5210 5211
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5212
    Returns:
5213
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5214 5215 5216 5217 5218

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5219

5220
            # Sample Network:
5221 5222
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5242
            #print the number of blocks in the program, 1 in this case
5243
            print(fluid.default_main_program().num_blocks)
5244 5245

            #print the description of variable 'image'
5246
            print(fluid.default_main_program().blocks[0].var('image'))
5247

Y
Yu Yang 已提交
5248
    """
Y
Yu Yang 已提交
5249
    return _main_program_
Y
Yu Yang 已提交
5250 5251 5252 5253 5254


def switch_main_program(program):
    """
    Switch the main program to a new program.
5255

Y
Yu Yang 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5270
    Switch the startup program to a new program
Y
Yu Yang 已提交
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5283
@signature_safe_contextmanager
Y
Yu Yang 已提交
5284 5285
def program_guard(main_program, startup_program=None):
    """
5286 5287
    :api_attr: Static Graph

5288 5289
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5290
    variables to the new main programs.
5291

G
guofei 已提交
5292 5293 5294 5295 5296 5297 5298
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5299
    Examples:
5300 5301 5302
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5303

5304 5305 5306
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5307
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5308
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5309 5310 5311

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5312

Y
Yu Yang 已提交
5313
    Examples:
5314
       .. code-block:: python
Y
yuyang18 已提交
5315

5316 5317 5318 5319 5320
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5321 5322
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5323
    """
5324 5325
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5326 5327
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5328 5329
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5330
        startup_program = switch_startup_program(startup_program)
5331 5332 5333 5334 5335 5336
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5337 5338


W
Wu Yi 已提交
5339
def _get_var(name, program=None):
X
xuwei06 已提交
5340
    """
Y
yuyang18 已提交
5341
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5342

X
xuwei06 已提交
5343 5344 5345
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5346
        If None, default_global_program() will be used.
X
xuwei06 已提交
5347 5348 5349 5350 5351 5352 5353

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5354
    assert isinstance(program, Program)
X
xuwei06 已提交
5355 5356

    return program.global_block().var(name)
5357 5358


S
rename  
sneaxiy 已提交
5359
@signature_safe_contextmanager
L
lujun 已提交
5360 5361 5362 5363
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5364
    core._switch_tracer(tracer)
M
minqiyang 已提交
5365

5366 5367 5368 5369 5370
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5371 5372


S
rename  
sneaxiy 已提交
5373
@signature_safe_contextmanager
L
lujun 已提交
5374 5375 5376 5377
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5378

5379 5380 5381 5382
    try:
        yield
    finally:
        _dygraph_current_expected_place_ = tmp_place
5383 5384 5385 5386


def load_op_library(lib_filename):
    """
5387 5388
    :api_attr: Static Graph
    
5389 5390 5391
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5392
    Please note, the type of custom operators can't have the same type
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
5464 5465 5466 5467
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value