nn.py 343.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
55 56
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
57
    'batch_norm',
H
heqiaozhi 已提交
58
    'data_norm',
X
Xin Pan 已提交
59 60 61 62 63 64
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
65
    'sequence_unpad',
X
Xin Pan 已提交
66 67 68 69 70 71 72 73
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
74
    'sequence_slice',
X
Xin Pan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
92
    'group_norm',
X
Xin Pan 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
106
    'roi_align',
X
Xin Pan 已提交
107 108 109 110
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
111
    'resize_nearest',
X
Xin Pan 已提交
112 113 114 115 116 117
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
118
    'selu',
X
Xin Pan 已提交
119 120 121
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
122
    'margin_rank_loss',
X
Xin Pan 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
166
    'space_to_depth',
W
whs 已提交
167
    'affine_grid',
S
sneaxiy 已提交
168
    'sequence_reverse',
169
    'affine_channel',
B
barrierye 已提交
170
    'similarity_focus',
M
minqiyang 已提交
171
    'hash',
D
dengkaipeng 已提交
172
    'grid_sampler',
G
gmcather 已提交
173 174
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
175
    'bilinear_tensor_product',
C
chengduo 已提交
176 177
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
178
    'lstm',
179
    'psroi_pool',
H
heqiaozhi 已提交
180
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
181
    'huber_loss',
Y
Yu Yang 已提交
182 183
]

J
jerrywgz 已提交
184 185
kIgnoreIndex = -100

Y
Yu Yang 已提交
186 187 188 189 190 191 192

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
193
       is_test=False,
194
       name=None):
Y
Yu Yang 已提交
195
    """
196
    **Fully Connected Layer**
Y
Yu Yang 已提交
197

198 199 200 201 202 203 204 205
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
206
    to the output as well.
C
caoying03 已提交
207

C
caoying03 已提交
208
    This process can be formulated as follows:
209 210 211

    .. math::

212
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
213 214 215

    In the above equation:

C
caoying03 已提交
216 217 218 219
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
220
    * :math:`Act`: The activation function.
C
caoying03 已提交
221
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
222 223

    Args:
R
ranqiu 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
239 240
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
241
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
242
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
243
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
244

245
    Returns:
F
fengjiayi 已提交
246
        Variable: The transformation result.
247 248

    Raises:
C
caoying03 已提交
249
        ValueError: If rank of the input tensor is less than 2.
250 251 252 253

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
254
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
255
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
256
    """
C
caoying03 已提交
257

C
caoying03 已提交
258
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
259 260 261 262

    dtype = helper.input_dtype()

    mul_results = []
263 264
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
265 266 267
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
268

Y
Yu Yang 已提交
269
        w = helper.create_parameter(
270
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
271
        tmp = helper.create_variable_for_type_inference(dtype)
272
        helper.append_op(
273 274 275
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
276
            outputs={"Out": tmp},
M
mozga-intel 已提交
277 278
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
279 280 281 282
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
283
    else:
X
Xin Pan 已提交
284
        pre_bias = helper.create_variable_for_type_inference(dtype)
285
        helper.append_op(
286 287 288
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
289
            attrs={"use_mkldnn": False})
290 291 292 293
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
294 295


296 297 298
def embedding(input,
              size,
              is_sparse=False,
299
              is_distributed=False,
300 301 302
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
303
    """
304 305
    **Embedding Layer**

306
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
307 308
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
309 310 311

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
312 313

    Args:
314 315 316 317 318
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
319
        is_distributed(bool): Whether to run lookup table from remote parameter server.
320 321
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
322
            with zeros whenever lookup encounters it in :attr:`input`. If
323
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
324 325
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
326
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
327

328 329 330
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
331

332 333
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
334

C
chengduoZH 已提交
335
          dict_size = len(dataset.ids)
336
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
337
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
338 339 340
    """

    helper = LayerHelper('embedding', **locals())
341 342 343
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
344 345
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
346 347
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
348
    tmp = helper.create_variable_for_type_inference(dtype)
349 350
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
351 352 353 354 355
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
356 357 358
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
359
            'remote_prefetch': remote_prefetch,
360 361
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
362 363 364
    return tmp


W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
381

W
wopeizl 已提交
382 383 384 385 386 387 388 389 390 391 392
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
393

W
wopeizl 已提交
394 395 396 397
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
398

W
wopeizl 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
485 486


P
phlrain 已提交
487 488 489 490 491 492
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
493
         dropout_prob=0.0,
P
phlrain 已提交
494 495 496 497 498
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
499
    """
P
phlrain 已提交
500
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
501 502

    A four-gate Long Short-Term Memory network with no peephole connections.
503
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
504 505
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
529

530
    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
L
liuhongyu 已提交
531 532 533 534 535
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
536
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
537 538 539 540 541
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
542
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
543 544
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
545 546
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
547 548 549 550 551 552
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
553
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
554

L
liuhongyu 已提交
555 556 557 558 559 560

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
561
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
562 563
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
564
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
580
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
581 582 583 584 585 586
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
587 588 589
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
649 650 651 652 653 654 655 656 657 658 659
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
660 661
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
662 663 664
    """
    **Dynamic LSTMP Layer**

665 666 667 668 669 670
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
671 672 673 674 675

    The formula is as follows:

    .. math::

676
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
677

678
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
679

680
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
681

682
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
683

684
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
685

686
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
687

688
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
689

Y
Yibing Liu 已提交
690 691 692 693 694 695
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
696
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
697
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
698
          bias vector).
Y
Yibing Liu 已提交
699 700 701
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
702
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
703
    * :math:`h`: The hidden state.
704
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
705 706
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
707
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
708
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
709
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
710 711
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
712 713 714 715

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
716

Y
Yibing Liu 已提交
717 718 719 720 721 722 723 724 725 726 727 728
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
729
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
730 731
                               hidden-hidden weight and projection weight.

732 733
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
734 735
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
736 737
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
738
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
739 740 741 742 743

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
744
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
745 746 747 748 749 750
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
751
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
752 753 754
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
755
                                - The shape is (1 x 7D).
C
chengduo 已提交
756 757 758 759 760

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
761 762 763 764 765 766 767 768 769
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
770
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
771 772
                              default "tanh".
        proj_activation(str): The activation for projection output.
773
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
774 775
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
776 777
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
778 779

    Returns:
780 781 782 783
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
784 785

    Examples:
786

Y
Yibing Liu 已提交
787 788
        .. code-block:: python

789 790 791 792
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
793
            hidden_dim, proj_dim = 512, 256
794
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
795
                                     act=None, bias_attr=None)
796 797 798
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
799 800 801 802
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
803
    """
804

C
chengduo 已提交
805
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
806
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
807
    size = size // 4
Y
Yibing Liu 已提交
808 809 810 811 812 813 814 815 816 817
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
818 819 820 821 822 823
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
852 853 854 855 856 857 858 859 860
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
861
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
862

863
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
864
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
865

G
guosheng 已提交
866 867 868 869 870 871 872 873 874
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
875

G
guosheng 已提交
876
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
877

G
guosheng 已提交
878
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
879 880
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
881 882 883 884
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
885
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
886 887

    Args:
888 889
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
890
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
891
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
892 893
            is the hidden size.
        size(int): The dimension of the gru cell.
894
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
895 896
            hidden-hidden weight matrix. Note:

897
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
898
              :math:`D` is the hidden size.
899
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
900
              The first part are weights of the update gate and reset gate with
901
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
902
              candidate hidden state with shape :math:`(D \\times D)`.
903 904 905 906 907

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
908
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
909
            the bias in the update gate, reset gate and candidate calculations.
910 911 912
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
913 914
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
915
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
916 917 918
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
919
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
920
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
921 922 923 924
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
925 926

    Returns:
G
guosheng 已提交
927
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
928
            and sequence length is the same with the input.
929

G
guosheng 已提交
930
    Examples:
931

G
guosheng 已提交
932 933
        .. code-block:: python

934 935 936 937
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
938
            hidden_dim = 512
939
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
940
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
941 942 943 944 945 946 947 948 949
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
950
    batch_size = input.shape[0]
G
guosheng 已提交
951
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
952
    if h_0:
G
guosheng 已提交
953
        assert h_0.shape == (
Y
Yancey 已提交
954 955 956
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
957

X
Xin Pan 已提交
958 959 960 961
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
980 981 982
def gru_unit(input,
             hidden,
             size,
983 984
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
985
             activation='tanh',
986
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
987
    """
988
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
989

990 991
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
992

993
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
994

995
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
996

997
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
998 999

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1000 1001 1002
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1003 1004
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1005 1006
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1007 1008 1009
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1010 1011 1012

    Args:
        input (Variable): The fc transformed input value of current step.
1013
        hidden (Variable): The hidden value of gru unit from previous step.
1014
        size (integer): The input dimension value.
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1029
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1030
            the bias in the update gate, reset gate and candidate calculations.
1031 1032 1033
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1034 1035
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1036 1037 1038 1039
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1040

1041 1042 1043 1044 1045 1046
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1047

1048
             # assuming we have x_t_data and prev_hidden of size=10
1049
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1050 1051
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1064
    size = size // 3
Y
Yu Yang 已提交
1065 1066

    # create weight
1067 1068
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1069

X
Xin Pan 已提交
1070 1071 1072
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1073
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1074
    # create bias
1075
    if helper.bias_attr:
Y
Yu Yang 已提交
1076 1077 1078
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1079
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1080 1081 1082

    helper.append_op(
        type='gru_unit',
1083
        inputs=inputs,
Y
Yu Yang 已提交
1084 1085 1086 1087 1088 1089
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1090 1091
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1092 1093 1094 1095 1096
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1097
@templatedoc()
1098
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1099 1100 1101 1102 1103 1104 1105
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1106
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1107 1108 1109 1110
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1111 1112 1113
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1114 1115

    """
Y
Yu Yang 已提交
1116 1117 1118 1119 1120 1121
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1122 1123 1124 1125 1126 1127 1128 1129
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1145 1146 1147 1148
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1149

W
wopeizl 已提交
1150 1151
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1152

W
wopeizl 已提交
1153
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1154

W
wopeizl 已提交
1155
        label(${label_type}): ${label_comment}
1156

W
wopeizl 已提交
1157 1158
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1159

W
wopeizl 已提交
1160 1161
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1162

W
wopeizl 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1173
                "Transition": transition,
W
wopeizl 已提交
1174 1175
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1176

W
wopeizl 已提交
1177
    return viterbi_path
Y
Yu Yang 已提交
1178 1179


Y
yi.wu 已提交
1180
@templatedoc()
F
fengjiayi 已提交
1181
def cos_sim(X, Y):
Y
Yu Yang 已提交
1182
    """
Y
yi.wu 已提交
1183 1184 1185
    ${comment}

    Args:
1186 1187
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1188

Y
yi.wu 已提交
1189
    Returns:
1190
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1191
    """
F
fengjiayi 已提交
1192
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1193 1194 1195
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1206 1207 1208 1209 1210
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1211
            dropout_implementation="downgrade_in_infer"):
1212 1213 1214 1215 1216
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1217
    training. The dropout operator randomly sets (according to the given dropout
1218 1219 1220 1221
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1222 1223
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1224 1225 1226 1227 1228 1229 1230
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1242
                                           dropout op can be removed from the program.
P
phlrain 已提交
1243
                                           the program will be efficient
1244

P
phlrain 已提交
1245

1246 1247

    Returns:
1248
        Variable: A tensor variable is the shape with `x`.
1249 1250

    Examples:
1251

1252 1253
        .. code-block:: python

1254 1255
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1256 1257
    """

F
fengjiayi 已提交
1258
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1259 1260 1261
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1262 1263 1264 1265

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1266 1267 1268 1269 1270
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1271 1272 1273 1274
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1275 1276
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1277
        })
1278 1279 1280
    return out


J
jerrywgz 已提交
1281
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1282
    """
Y
Yibing Liu 已提交
1283 1284
    **Cross Entropy Layer**

1285 1286 1287
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1288 1289

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1290
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1291

Y
Yibing Liu 已提交
1292
        .. math::
Y
yangyaming 已提交
1293

Y
Yibing Liu 已提交
1294 1295 1296
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1297 1298
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1299 1300 1301 1302 1303

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1304
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1305 1306 1307
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1308 1309
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1310
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1311

Y
Yibing Liu 已提交
1312
    Args:
Y
yangyaming 已提交
1313
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1314 1315 1316 1317
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1318
        label (Variable|list): the ground truth which is a 2-D tensor. When
1319 1320 1321 1322
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1323
        soft_label (bool): a flag indicating whether to
1324
                                           interpretate the given labels as soft
1325
                                           labels. Default: `False`.
M
minqiyang 已提交
1326 1327
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1328
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1329 1330 1331 1332 1333

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1334 1335 1336 1337 1338
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1339 1340 1341 1342 1343 1344

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1345
    """
F
fengjiayi 已提交
1346
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1347
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1348 1349 1350 1351 1352
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1353 1354
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1355 1356 1357
    return out


F
frankwhzhang 已提交
1358
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1359 1360 1361
    """
    Bayesian Personalized Ranking Loss Operator.

1362
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1363 1364 1365 1366 1367 1368
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1369 1370 1371 1372 1373 1374
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1375 1376
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1377 1378 1379
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1380 1381 1382
    Examples:
        .. code-block:: python

1383
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1384
    """
1385 1386 1387 1388 1389 1390

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1391
                'Label': [label]},
1392 1393 1394 1395
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1396
def square_error_cost(input, label):
Y
Yu Yang 已提交
1397
    """
1398 1399
    **Square error cost layer**

1400 1401
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1416 1417
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1418 1419

    Returns:
G
guosheng 已提交
1420
        Variable: The tensor variable storing the element-wise squared error \
1421
                  difference of input and label.
1422 1423 1424 1425 1426 1427 1428 1429

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1430
    """
F
fengjiayi 已提交
1431
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1432
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1433 1434 1435 1436 1437 1438
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1439
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1440
    helper.append_op(
F
fengjiayi 已提交
1441 1442
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1443 1444 1445
    return square_out


Y
yi.wu 已提交
1446
@templatedoc()
Y
Yu Yang 已提交
1447 1448 1449 1450
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1451
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1452
    """
Y
yi.wu 已提交
1453
    **Chunk Evaluator**
Y
yi.wu 已提交
1454

Y
yangyaming 已提交
1455
    This function computes and outputs the precision, recall and
1456
    F1-score of chunk detection.
Y
yi.wu 已提交
1457

Y
yi.wu 已提交
1458 1459 1460 1461 1462 1463 1464 1465
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1466

Y
yi.wu 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1492

Y
yi.wu 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1517
    Args:
1518 1519 1520 1521 1522
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1523

Y
yi.wu 已提交
1524
    Returns:
Y
update  
yi.wu 已提交
1525 1526 1527
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1528

Y
yi.wu 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1541
    """
F
fengjiayi 已提交
1542
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1543 1544

    # prepare output
X
Xin Pan 已提交
1545 1546 1547 1548 1549 1550 1551
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1552 1553 1554 1555 1556 1557 1558 1559

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1560 1561 1562 1563
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1564 1565 1566
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1567 1568
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1569
        })
1570 1571
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1572 1573


1574
@templatedoc()
Y
Yu Yang 已提交
1575 1576 1577 1578 1579 1580 1581
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1582 1583
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1584 1585 1586 1587
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1588 1589 1590 1591 1592 1593 1594

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1608

1609 1610
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1611 1612 1613 1614 1615 1616 1617
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1618
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1629
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1630 1631 1632 1633 1634 1635
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1636
def sequence_softmax(input, use_cudnn=False, name=None):
1637 1638 1639
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1640
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1657 1658 1659
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1672 1673
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1674
    softmax_out = helper.create_variable_for_type_inference(dtype)
1675 1676 1677 1678 1679 1680 1681 1682
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1683
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1684
    """
1685
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1686
    has the same shape as the input.
Q
qiaolongfei 已提交
1687

1688 1689 1690 1691 1692 1693
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1694
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1695 1696 1697 1698 1699 1700 1701

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1702
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1703 1704 1705 1706 1707 1708 1709 1710

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1711 1712 1713
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1726 1727
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1728
    softmax_out = helper.create_variable_for_type_inference(dtype)
1729 1730 1731 1732 1733 1734 1735 1736
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1737 1738 1739
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1740 1741
           stride=1,
           padding=0,
1742
           dilation=1,
Y
Yu Yang 已提交
1743 1744 1745
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1746
           use_cudnn=True,
1747 1748
           act=None,
           name=None):
Y
Yu Yang 已提交
1749
    """
C
chengduoZH 已提交
1750
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1751 1752
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1753
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1754 1755 1756 1757 1758 1759 1760
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1761 1762 1763
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1764

1765
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1766

C
chengduoZH 已提交
1767 1768
    .. math::

C
refine  
chengduoZH 已提交
1769
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1770

T
tensor-tang 已提交
1771
    Where:
C
chengduoZH 已提交
1772

1773 1774 1775 1776 1777
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1778
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1779 1780 1781

    Example:

1782 1783
        - Input:

W
weixing02 已提交
1784
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1785

W
weixing02 已提交
1786
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1787

1788
        - Output:
T
tensor-tang 已提交
1789

W
weixing02 已提交
1790
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1791

C
chengduoZH 已提交
1792
        Where
1793 1794

        .. math::
C
chengduoZH 已提交
1795

W
weixing02 已提交
1796 1797
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1798 1799

    Args:
1800
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1801
        num_filters(int): The number of filter. It is as same as the output
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1830 1831
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1832 1833
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1834
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1835
            will be named automatically. Default: None
C
chengduoZH 已提交
1836 1837

    Returns:
G
guosheng 已提交
1838
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1839 1840
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1841
    Raises:
1842 1843
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1844

C
chengduoZH 已提交
1845 1846 1847
    Examples:
        .. code-block:: python

1848 1849
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1850 1851 1852
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1853
    assert param_attr is not False, "param_attr should not be False here."
1854
    l_type = 'conv2d'
X
xzl 已提交
1855 1856
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1857
        l_type = 'depthwise_conv2d'
1858 1859 1860 1861

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1862 1863 1864 1865 1866
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1867
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1868

C
chengduoZH 已提交
1869 1870 1871
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1872
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1873

C
chengduoZH 已提交
1874 1875
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1876 1877

    input_shape = input.shape
M
minqiyang 已提交
1878
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1879 1880

    def _get_default_param_initializer():
C
chengduo 已提交
1881 1882
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1883 1884 1885 1886 1887 1888 1889 1890
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1891
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1907
    helper.append_op(
1908
        type=l_type,
Y
Yu Yang 已提交
1909 1910 1911 1912 1913
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1914 1915 1916
        attrs={
            'strides': stride,
            'paddings': padding,
1917
            'dilations': dilation,
C
chengduoZH 已提交
1918
            'groups': groups,
1919
            'use_cudnn': use_cudnn,
1920
            'use_mkldnn': False,
C
chengduoZH 已提交
1921
        })
Y
Yu Yang 已提交
1922 1923 1924 1925 1926 1927

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1945 1946 1947 1948 1949 1950
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1960 1961
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1962 1963 1964
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1965
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1991
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1992 1993
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1994
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1995 1996
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1997
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1998 1999
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2000
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2001 2002 2003 2004 2005 2006
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2017 2018
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2019 2020
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2021
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2022
            will be named automatically. Default: None.
C
chengduoZH 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2035 2036
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2037 2038 2039
    """

    l_type = 'conv3d'
C
chengduo 已提交
2040
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2051
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2065 2066 2067
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2068 2069 2070 2071 2072 2073 2074 2075
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2076
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2091
            'use_mkldnn': False
C
chengduoZH 已提交
2092 2093
        })

2094
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2095 2096 2097 2098

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2099
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2100
    """
Y
yangyaming 已提交
2101 2102 2103
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2115
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2116 2117 2118 2119 2120
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2121
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2122 2123 2124 2125 2126 2127 2128

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2129 2130
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2131

L
Luo Tao 已提交
2132 2133
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2134
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2135
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2136
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2137 2138 2139 2140 2141 2142 2143

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2144

Y
yangyaming 已提交
2145
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2146 2147 2148 2149 2150
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2151 2152
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2153
    """
F
fengjiayi 已提交
2154
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2155
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2156 2157
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2158 2159 2160 2161 2162 2163

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2164 2165
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2166

Y
yangyaming 已提交
2167 2168 2169 2170 2171
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2172 2173 2174
    return pool_out


C
add doc  
chengduoZH 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2194
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2195 2196 2197 2198 2199
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2200
def sequence_first_step(input):
L
Luo Tao 已提交
2201
    """
L
Luo Tao 已提交
2202
    This function gets the first step of sequence.
L
Luo Tao 已提交
2203 2204 2205 2206

    .. code-block:: text

       x is a 1-level LoDTensor:
2207
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2208 2209 2210 2211 2212
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2213
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2214
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2215

L
Luo Tao 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2225

Y
yangyaming 已提交
2226
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2227 2228 2229
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2230 2231 2232
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2233
def sequence_last_step(input):
L
Luo Tao 已提交
2234
    """
L
Luo Tao 已提交
2235
    This function gets the last step of sequence.
L
Luo Tao 已提交
2236 2237 2238 2239

    .. code-block:: text

       x is a 1-level LoDTensor:
2240
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2241 2242 2243 2244 2245
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2246
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2247
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2248

L
Luo Tao 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2258

Y
yangyaming 已提交
2259
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2260 2261 2262
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2263 2264 2265
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2266 2267 2268 2269
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2270
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2271 2272 2273 2274 2275
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2276

Y
Yibing Liu 已提交
2277 2278
	- Case:

2279
            Given the input Variable **input**:
2280

2281 2282 2283
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2284

2285
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2286

2287
            the output Variable will be
2288

2289 2290 2291
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2292 2293

    NOTE: The first dimension size of **input**, **offset** and **length**
2294
          should be equal. The **offset** should start from 0.
2295

Y
Yibing Liu 已提交
2296
    Args:
2297
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2298
                         sequences.
Y
Yibing Liu 已提交
2299 2300 2301 2302 2303 2304
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2305
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2316
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2317 2318 2319 2320
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2321
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2336
@templatedoc()
Y
Yu Yang 已提交
2337
def pool2d(input,
C
chengduoZH 已提交
2338 2339
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2340 2341
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2342
           global_pooling=False,
C
chengduoZH 已提交
2343
           use_cudnn=True,
2344
           ceil_mode=False,
2345 2346
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2347
    """
F
fengjiayi 已提交
2348
    ${comment}
2349 2350

    Args:
2351 2352 2353
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2354
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2355
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2356 2357
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2358
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2359 2360 2361 2362 2363 2364
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2365 2366 2367
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2368
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2369
                        layer will be named automatically.
2370
        exclusive (bool): Whether to exclude padding points in average pooling
2371
                          mode, default is true
F
fengjiayi 已提交
2372

2373
    Returns:
F
fengjiayi 已提交
2374
        Variable: The pooling result.
F
fengjiayi 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2388 2389 2390 2391
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2392
                            global_pooling=False)
Y
Yu Yang 已提交
2393 2394 2395 2396 2397
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2398

C
chengduoZH 已提交
2399 2400 2401 2402 2403
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2404 2405 2406 2407
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2408 2409
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2410

C
Add doc  
chengduoZH 已提交
2411
    l_type = 'pool2d'
2412 2413

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2414
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2415
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2416 2417

    helper.append_op(
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2429 2430
            "use_mkldnn": False,
            "exclusive": exclusive,
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2444 2445
           name=None,
           exclusive=True):
2446 2447
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2448
    pooling configurations mentioned in input parameters.
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2461
        exclusive (bool): Whether to exclude padding points in average pooling
2462
                          mode, default is true
2463

2464
    Returns:
2465
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2466 2467 2468 2469 2470
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2471

C
chengduoZH 已提交
2472 2473 2474 2475 2476
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2477 2478 2479
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2480

C
chengduoZH 已提交
2481 2482
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2483

2484 2485
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2486
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2487
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2488 2489

    helper.append_op(
2490
        type=l_type,
Y
Yu Yang 已提交
2491 2492 2493 2494 2495 2496 2497
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2498
            "paddings": pool_padding,
2499
            "use_cudnn": use_cudnn,
2500
            "ceil_mode": ceil_mode,
2501 2502
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2503 2504 2505 2506 2507
        })

    return pool_out


2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2555 2556
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2557
          pool_out = fluid.layers.adaptive_pool2d(
2558 2559
                            input=data,
                            pool_size=[3, 3],
2560
                            pool_type='avg')
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2602
    return (pool_out, mask) if require_index else pool_out
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2656 2657
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2658
          pool_out, mask = fluid.layers.adaptive_pool3d(
2659 2660
                            input=data,
                            pool_size=[3, 3],
2661
                            pool_type='avg')
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2703
    return (pool_out, mask) if require_index else pool_out
2704 2705


Y
Yu Yang 已提交
2706 2707 2708 2709 2710 2711 2712
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2713
               data_layout='NCHW',
Y
Yang Yang 已提交
2714
               in_place=False,
2715 2716
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2717
               moving_variance_name=None,
2718
               do_model_average_for_mean_and_var=False,
2719 2720
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2721
    """
Q
qiaolongfei 已提交
2722 2723 2724 2725
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2726

Q
qiaolongfei 已提交
2727
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2728

Q
qiaolongfei 已提交
2729 2730
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2731 2732 2733
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2760
    Args:
Q
qiaolongfei 已提交
2761
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2762 2763 2764 2765
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2766 2767 2768 2769 2770 2771 2772 2773
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2774
        data_layout(string, default NCHW): NCHW|NHWC
2775
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2776 2777 2778 2779
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2780
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2781
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2782 2783 2784 2785 2786
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2787 2788

    Returns:
Q
qiaolongfei 已提交
2789
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2790 2791 2792 2793 2794 2795 2796

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2797
    """
C
chengduo 已提交
2798
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2819 2820 2821
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2822 2823

    bias = helper.create_parameter(
2824
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2825 2826 2827
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2828

2829 2830
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2831 2832 2833
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2834
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2835
        shape=param_shape,
2836 2837 2838 2839 2840 2841 2842
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2843
            trainable=False,
W
wanghaoshuang 已提交
2844
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2845
        shape=param_shape,
2846 2847
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2848 2849 2850 2851 2852 2853

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2854 2855 2856 2857
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2858

X
Xin Pan 已提交
2859 2860
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2878 2879 2880 2881
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2882
            "use_mkldnn": False,
2883 2884
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2885
        })
Y
Yu Yang 已提交
2886 2887 2888 2889

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3017
@templatedoc()
G
guosheng 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3028
    ${comment}
G
guosheng 已提交
3029 3030 3031

    The formula is as follows:

Y
yuyang18 已提交
3032
    ..  math::
G
guosheng 已提交
3033 3034 3035 3036 3037 3038 3039

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3040 3041 3042 3043 3044 3045 3046 3047
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3048

G
guosheng 已提交
3049 3050
    Args:
        input(Variable): The input tensor variable.
3051
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3052
            normalization. Default True.
3053
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3054 3055
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3056
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3057
            Default 1.
3058
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3059
            division by zero. Default 1e-05.
G
guosheng 已提交
3060
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3061 3062
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3063 3064
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3065
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3066 3067
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3068
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3069
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3070
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3071 3072 3073
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3074 3075

    Returns:
Y
yuyang18 已提交
3076
        ${y_comment}
G
guosheng 已提交
3077 3078 3079

    Examples:

Y
yuyang18 已提交
3080 3081 3082
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3098
    if shift:
G
guosheng 已提交
3099 3100 3101 3102 3103 3104
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3105 3106 3107 3108 3109
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3185 3186 3187
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3203 3204 3205 3206
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3207 3208 3209
                     padding=0,
                     stride=1,
                     dilation=1,
3210
                     groups=None,
C
caoying03 已提交
3211
                     param_attr=None,
3212
                     bias_attr=None,
C
chengduoZH 已提交
3213
                     use_cudnn=True,
3214
                     act=None,
C
caoying03 已提交
3215
                     name=None):
Y
Yu Yang 已提交
3216
    """
3217 3218 3219 3220 3221 3222 3223 3224
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3225 3226
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3227 3228 3229
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3230 3231 3232 3233 3234

    For each input :math:`X`, the equation is:

    .. math::

3235
        Out = \sigma (W \\ast X + b)
3236

3237
    Where:
3238 3239 3240

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3241 3242 3243 3244
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3245

3246 3247 3248 3249
    Example:

        - Input:

3250
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3251

3252
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3253 3254 3255

        - Output:

3256
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3257 3258

        Where
Y
Yu Yang 已提交
3259

3260 3261
        .. math::

3262 3263 3264 3265
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3266 3267

    Args:
3268 3269 3270 3271
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3272 3273 3274 3275
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3304
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3305 3306 3307
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3308
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3309
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3310 3311

    Returns:
3312
        Variable: The tensor variable storing the convolution transpose result.
3313 3314

    Raises:
3315 3316
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3317 3318 3319 3320

    Examples:
       .. code-block:: python

3321 3322
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3323
    """
C
chengduo 已提交
3324
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3325 3326 3327 3328 3329 3330 3331 3332
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3333 3334 3335
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3336 3337 3338
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3339

C
chengduoZH 已提交
3340 3341
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3342

Y
Yu Yang 已提交
3343 3344 3345 3346 3347
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3348

Y
Yu Yang 已提交
3349 3350
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3351

C
chengduoZH 已提交
3352
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3353
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3354
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3355
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3356
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3357 3358 3359
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3360

3361 3362 3363 3364 3365 3366 3367
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3368
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3369
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3370

Y
Yu Yang 已提交
3371 3372 3373
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3374
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3375
    helper.append_op(
3376
        type=op_type,
Y
Yu Yang 已提交
3377 3378
        inputs={'Input': [input],
                'Filter': [img_filter]},
3379
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3380
        attrs={
3381
            'output_size': output_size,
3382 3383 3384 3385 3386
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3387 3388
        })

3389 3390 3391
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3392 3393


3394
def conv3d_transpose(input,
Y
Yu Yang 已提交
3395 3396 3397
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3398 3399 3400
                     padding=0,
                     stride=1,
                     dilation=1,
3401
                     groups=None,
C
caoying03 已提交
3402
                     param_attr=None,
3403
                     bias_attr=None,
C
chengduoZH 已提交
3404
                     use_cudnn=True,
3405
                     act=None,
C
caoying03 已提交
3406
                     name=None):
Y
Yu Yang 已提交
3407
    """
3408
    **Convlution3D transpose layer**
3409

3410
    The convolution3D transpose layer calculates the output based on the input,
3411
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3412 3413 3414 3415 3416 3417
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3418 3419 3420
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3421 3422 3423 3424 3425

    For each input :math:`X`, the equation is:

    .. math::

3426
        Out = \sigma (W \\ast X + b)
3427 3428 3429

    In the above equation:

3430 3431
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3432 3433 3434 3435
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3436

3437 3438 3439 3440
    Example:

        - Input:

3441
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3442

3443
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3444 3445 3446

        - Output:

3447
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3448 3449

        Where
Y
Yu Yang 已提交
3450

3451 3452
        .. math::

3453 3454 3455
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3456 3457

    Args:
3458
        input(Variable): The input image with [N, C, D, H, W] format.
3459 3460 3461
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3462
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3463 3464
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3465
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3466 3467 3468
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3469 3470
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3471
        stride(int|tuple): The stride size. If stride is a tuple, it must
3472 3473
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3474
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3475 3476 3477
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3478 3479 3480 3481 3482
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3492 3493
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3494 3495
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3496 3497
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3498 3499

    Returns:
3500
        Variable: The tensor variable storing the convolution transpose result.
3501 3502

    Raises:
3503 3504
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3505 3506 3507 3508

    Examples:
       .. code-block:: python

3509 3510
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3511
    """
C
chengduo 已提交
3512
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3513 3514
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3515
    if not isinstance(input, Variable):
3516
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3517 3518
    input_channel = input.shape[1]

3519 3520 3521
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3522

C
chengduoZH 已提交
3523 3524 3525
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3526 3527 3528 3529 3530 3531
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3532 3533 3534
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3535

3536
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3537
                         padding[0] - 1) // dilation[0] + 1
3538
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3539
                         padding[1] - 1) // dilation[1] + 1
3540
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3541
                         padding[2] - 1) // dilation[2] + 1
3542
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3543
    else:
3544 3545
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3546

3547
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3548
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3549 3550 3551
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3552
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3553
    helper.append_op(
3554
        type=l_type,
Y
Yu Yang 已提交
3555 3556
        inputs={'Input': [input],
                'Filter': [img_filter]},
3557
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3558 3559 3560 3561
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3562
            'groups': groups,
C
chengduoZH 已提交
3563 3564
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3565

3566 3567
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3568
    return out
Y
yangyaming 已提交
3569 3570


Y
yangyaming 已提交
3571
def sequence_expand(x, y, ref_level=-1, name=None):
3572
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3573 3574 3575 3576
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3577 3578 3579 3580 3581

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3582
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3583
                x.data = [[a], [b], [c], [d]]
3584 3585 3586
                x.dims = [4, 1]

            y is a LoDTensor:
3587 3588
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3589

Y
yangyaming 已提交
3590
            ref_level: 0
3591

Y
yangyaming 已提交
3592
            then output is a 1-level LoDTensor:
3593
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3594
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3595 3596 3597 3598
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3599
                x.data = [[a], [b], [c]]
3600 3601 3602
                x.dims = [3, 1]

            y is a LoDTensor:
3603
                y.lod = [[2, 0, 3]]
3604

Y
yangyaming 已提交
3605
            ref_level: -1
3606

Y
yangyaming 已提交
3607 3608 3609
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3610 3611 3612
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3613 3614
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3615
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3616
                        will be named automatically.
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3627
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3628
    """
Y
yangyaming 已提交
3629
    helper = LayerHelper('sequence_expand', input=x, **locals())
3630
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3631
    tmp = helper.create_variable_for_type_inference(dtype)
3632
    helper.append_op(
Y
yangyaming 已提交
3633 3634 3635 3636 3637
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3638
    return tmp
3639 3640


C
chengduo 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3697
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3698 3699 3700 3701 3702 3703 3704 3705
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3706
@templatedoc()
3707
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3708 3709 3710 3711 3712
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3713 3714 3715
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3716
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3717 3718 3719 3720
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3721 3722 3723
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3724

F
fengjiayi 已提交
3725
    Returns:
M
minqiyang 已提交
3726
        Variable: The padded sequence batch and the original lengths before
3727
                  padding. All sequences has the same length.
M
minqiyang 已提交
3728

F
fengjiayi 已提交
3729 3730 3731 3732 3733 3734 3735
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3736
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3737
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3738 3739 3740 3741 3742
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3743 3744
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3745 3746 3747 3748

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3749 3750 3751 3752 3753 3754
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3755 3756
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3757
        attrs={'padded_length': maxlen})
3758
    return out, length
F
fengjiayi 已提交
3759 3760


3761
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3762
    """
3763
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3764

3765 3766
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3776 3777 3778
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3779
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3780 3781 3782 3783 3784 3785

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3786
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3787 3788 3789 3790 3791 3792

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3793 3794
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3809
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3821 3822 3823 3824 3825 3826 3827 3828 3829
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3830 3831
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3832 3833 3834

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3835 3836

    This layer does the search in beams for one time step. Specifically, it
3837 3838 3839 3840 3841 3842
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3843

3844 3845 3846 3847 3848 3849 3850 3851
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3852

3853
    Args:
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3879

3880
    Returns:
3881 3882
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3883 3884 3885 3886

    Examples:
        .. code-block:: python

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3904 3905 3906 3907
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3908 3909 3910
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3911 3912 3913 3914 3915

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3916
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3934 3935 3936 3937 3938 3939 3940
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3941

3942 3943 3944 3945 3946 3947 3948 3949 3950
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3951

3952 3953 3954 3955 3956 3957
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3958

3959 3960
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3961

3962 3963 3964 3965 3966 3967
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3968 3969
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3985 3986 3987 3988
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3989
              param_attr=None,
C
caoying03 已提交
3990 3991
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3992 3993 3994 3995
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3996
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3997

3998
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3999

4000
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4001

4002
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4003 4004 4005

            h_t & = o_t tanh(c_t)

4006 4007 4008 4009 4010 4011
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4012 4013 4014

        .. math::

4015
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4016 4017 4018 4019 4020 4021 4022 4023

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4024
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4025 4026

    Args:
Y
yangyaming 已提交
4027 4028 4029 4030 4031 4032
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4033
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4046 4047
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4048 4049

    Returns:
Y
yangyaming 已提交
4050
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4051 4052

    Raises:
4053 4054 4055 4056
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4057 4058 4059 4060 4061 4062

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4063
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4064
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4065
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4082
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4083 4084 4085 4086
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4087 4088
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4089 4090 4091
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4092
    size = cell_t_prev.shape[1]
4093
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4094 4095
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4096
                param_attr=param_attr,
4097
                bias_attr=bias_attr)
Y
yangyaming 已提交
4098
    dtype = x_t.dtype
X
Xin Pan 已提交
4099 4100
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4110
    return h, c
G
guosheng 已提交
4111 4112


C
caoying03 已提交
4113
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4114
    """
Y
yangyaming 已提交
4115
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4116 4117 4118

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4119
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4120 4121
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4122 4123
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4124
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4125
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4126
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4127 4128
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4129 4130 4131

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4132

G
guosheng 已提交
4133 4134 4135 4136 4137 4138
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4139
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4140 4141 4142 4143
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4144 4145 4146 4147

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4148
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4149 4150 4151
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4152 4153
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4154
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4155 4156
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4157 4158 4159 4160 4161
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4162
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4163 4164 4165 4166
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4167 4168


C
caoying03 已提交
4169
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4170
    """
Y
Yibing Liu 已提交
4171
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4172 4173 4174

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4175 4176 4177
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4178
            must be in the range :math:`[-rank(input), rank(input))`. If
4179
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4180
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4181 4182
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4183
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4184
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4185
                       will be named automatically.
G
guosheng 已提交
4186 4187

    Returns:
Y
Yibing Liu 已提交
4188
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4189

G
guosheng 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4200 4201
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4202 4203 4204 4205 4206 4207 4208

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4209 4210
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4211
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4212 4213
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4214 4215 4216 4217 4218
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4219
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4220 4221 4222 4223
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4224 4225


C
caoying03 已提交
4226
def reduce_max(input, dim=None, keep_dim=False, name=None):
4227
    """
Y
yangyaming 已提交
4228
    Computes the maximum of tensor elements over the given dimension.
4229 4230 4231

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4232
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4233 4234 4235
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4236
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4237 4238
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4239
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4240 4241
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4242 4243 4244

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4245

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4257 4258 4259 4260 4261 4262 4263

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4264 4265
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4266
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4267 4268
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4269 4270 4271 4272 4273
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4274
            'dim': dim if dim != None else [0],
4275 4276 4277 4278 4279 4280
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4281
def reduce_min(input, dim=None, keep_dim=False, name=None):
4282
    """
Y
yangyaming 已提交
4283
    Computes the minimum of tensor elements over the given dimension.
4284 4285 4286

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4287
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4288 4289 4290
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4291
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4292 4293
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4294
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4295 4296
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4297 4298 4299

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4300

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4312 4313 4314 4315 4316 4317 4318

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4319 4320
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4321
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4322 4323
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4324 4325 4326 4327 4328
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4329
            'dim': dim if dim != None else [0],
4330 4331 4332 4333
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4334 4335


4336 4337 4338 4339 4340 4341
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4342
        dim (list|int|None): The dimensions along which the product is performed. If
4343 4344
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4345 4346
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4347 4348 4349
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4350
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4351
            layer will be named automatically.
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4366
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4367
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4368 4369 4370 4371 4372 4373 4374

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4375 4376
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4377
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4378 4379
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4380 4381 4382 4383 4384
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4385
            'dim': dim if dim != None else [0],
4386 4387 4388 4389 4390 4391
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4392
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4393
    """
C
caoying03 已提交
4394
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4395 4396 4397

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4398 4399 4400 4401 4402
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4403
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4404
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4405
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4406 4407
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4408 4409

    Returns:
D
dzhwinter 已提交
4410
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4420 4421
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4437
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4460
    .. math::
4461 4462

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4463 4464 4465 4466 4467

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4468
        x(Variable|list): The input tensor to l2_normalize layer.
4469
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4470 4471
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4472
        epsilon(float): The epsilon value is used to avoid division by zero, \
4473
            the defalut value is 1e-10.
4474
        name(str|None): A name for this layer(optional). If set None, the layer \
4475
            will be named automatically.
C
caoying03 已提交
4476 4477

    Returns:
4478
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4479 4480

    Examples:
4481

C
caoying03 已提交
4482 4483
        .. code-block:: python

4484 4485 4486 4487
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4488 4489
    """

F
fengjiayi 已提交
4490 4491
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4492 4493
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4494 4495
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4496
    helper.append_op(
4497 4498 4499 4500
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4501
        attrs={
4502 4503
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4504 4505
        })
    return out
4506 4507


S
sneaxiy 已提交
4508
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4509
    """
Y
ying 已提交
4510 4511 4512 4513
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4514

C
chengduoZH 已提交
4515
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4516
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4517

4518 4519 4520 4521 4522
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4523
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4524

C
chengduoZH 已提交
4525
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4526
      performs in the following way.
G
guosheng 已提交
4527

4528
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4529
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4530
        last two dimensions and a batched matrix multiply supporting broadcast
4531
        applies on the two tensors.
G
guosheng 已提交
4532

Y
ying 已提交
4533 4534
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4535
    removed after matrix multiplication.
G
guosheng 已提交
4536 4537 4538

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4539 4540 4541
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4542
        alpha (float): The scale of output. Default 1.0.
4543
        name(str|None): A name for this layer(optional). If set None, the layer
4544
            will be named automatically.
G
guosheng 已提交
4545 4546

    Returns:
4547
        Variable: The product Tensor variable.
G
guosheng 已提交
4548

G
guosheng 已提交
4549 4550 4551
    Examples:
        .. code-block:: python

4552
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4553 4554
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4555

4556 4557
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4558

4559 4560
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4561

4562 4563
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4564 4565 4566 4567

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4568 4569
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4570

Y
ying 已提交
4571
            # x: [M], y: [N]
4572
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4573
    """
Y
ying 已提交
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4586
            y_shape = y_shape + [1]
Y
ying 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4603
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4604
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4605
    helper.append_op(
4606 4607 4608 4609
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4610 4611 4612
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4613
            'alpha': float(alpha),
S
sneaxiy 已提交
4614
        })
4615
    return out
4616 4617


4618
def topk(input, k, name=None):
Q
qingqing01 已提交
4619 4620 4621 4622
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4623
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4624 4625 4626 4627 4628 4629
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4651 4652 4653
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4654
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4655
                 of input.
4656
        name(str|None): A name for this layer(optional). If set None, the layer
4657
                       will be named automatically.
F
fengjiayi 已提交
4658
                       Default: None
Q
qingqing01 已提交
4659 4660

    Returns:
4661 4662 4663
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4664
        within the last dimension of input.
Q
qingqing01 已提交
4665

F
fengjiayi 已提交
4666 4667
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4668 4669 4670 4671 4672 4673 4674

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4675 4676
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4688
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4689
    """
Y
ying 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4699

Y
ying 已提交
4700
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4701

4702
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4703 4704
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4705
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4706

4707
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4708 4709
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4710

4711 4712 4713
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4714
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4715
                          the length of reference string.
4716
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4717
                                     calculating edit distance.
4718
        name (str): The name of this layer. It is optional.
4719

W
wanghaoshuang 已提交
4720
    Returns:
W
wanghaoshuang 已提交
4721
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4722 4723 4724 4725

    Examples:
        .. code-block:: python

T
tink2123 已提交
4726 4727
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4728
            cost = fluid.layers.edit_distance(input=x,label=y)
4729
    """
4730
    helper = LayerHelper("edit_distance", **locals())
4731

4732
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4733
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4734 4735
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4736 4737 4738 4739 4740

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4741
            attrs={"tokens": ignored_tokens})
4742 4743 4744 4745 4746
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4747
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4748
            attrs={"tokens": ignored_tokens})
4749 4750
        label = erased_label

4751
    # edit distance op
X
Xin Pan 已提交
4752 4753
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4754 4755 4756 4757
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4758 4759
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4760 4761
        attrs={"normalized": normalized})

4762
    return edit_distance_out, sequence_num
4763 4764 4765 4766 4767


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4768

Y
ying 已提交
4769 4770 4771 4772
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4790
        input.lod = [[4, 4]]
4791

W
whs 已提交
4792
        Computation:
4793

W
whs 已提交
4794 4795 4796 4797 4798 4799
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4800 4801 4802 4803 4804

        output.data = [[2],
                       [1],
                       [3]]

4805
        output.lod = [[2, 1]]
4806

W
whs 已提交
4807

4808 4809
    Args:

Y
ying 已提交
4810 4811 4812 4813 4814 4815 4816 4817 4818
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4819
        name (str): The name of this layer. It is optional.
4820 4821

    Returns:
W
whs 已提交
4822 4823
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
4824
                  in result were empty, the result LoDTensor will be [-1] with
W
whs 已提交
4825
                  LoD [[]] and dims [1, 1].
4826 4827 4828 4829 4830

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4831

4832
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4833
    """
4834
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4835
    _, topk_indices = topk(input, k=1)
4836 4837

    # ctc align op
X
Xin Pan 已提交
4838
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4839 4840 4841
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4842
        outputs={"Output": [ctc_out]},
4843 4844
        attrs={"merge_repeated": True,
               "blank": blank})
4845
    return ctc_out
4846 4847


W
Wu Yi 已提交
4848
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4849
    """
4850 4851
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4852
    to compute Connectionist Temporal Classification (CTC) loss.
4853 4854
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4855 4856 4857
    input tensor.

    Args:
4858
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4859 4860 4861 4862
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4863
       label (Variable): The ground truth of variable-length sequence,
4864 4865 4866
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4867 4868
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4869 4870 4871
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4872
         follewed by a mean_op.
W
Wu Yi 已提交
4873
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4874 4875

    Returns:
4876 4877
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4878 4879

    Examples:
4880

W
wanghaoshuang 已提交
4881
        .. code-block:: python
4882

4883 4884 4885
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4886 4887

    """
F
fengjiayi 已提交
4888
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4889 4890
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4891 4892 4893 4894 4895 4896
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4897 4898 4899 4900 4901
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4902
    return loss_out
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4918 4919 4920
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4921 4922 4923 4924 4925
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4926

4927
            out.lod  = [[0, 1, 3]]
4928 4929 4930 4931

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4932 4933 4934 4935 4936 4937 4938
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4939 4940 4941

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4942 4943

    Returns:
4944

4945 4946 4947 4948 4949
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4950
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4951
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4952 4953
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4954
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4955 4956 4957 4958 4959 4960
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4961 4962


4963 4964 4965 4966
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4967 4968 4969 4970 4971 4972
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4973
        num_neg_samples=None,
4974 4975 4976
        name=None,
        sampler="uniform",
        custom_dist=None,
4977 4978
        seed=0,
        is_sparse=False):
4979 4980 4981 4982 4983 4984 4985
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4986 4987
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4988
            sample is 1.0.
C
chengduo 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4998
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4999 5000
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5001 5002 5003
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5004
        custom_dist (float[]): A float[] with size=num_total_classes.
5005 5006 5007 5008
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5009
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5010

5011
    Returns:
Y
Yibing Liu 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5039 5040 5041 5042 5043 5044 5045 5046 5047

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5048

5049
    """
Y
Yang Yu 已提交
5050 5051 5052
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5053 5054

    dim = input.shape[1]
Y
Yang Yu 已提交
5055 5056 5057 5058 5059 5060
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5061
    inputs = {}
C
chengduo 已提交
5062 5063 5064 5065 5066 5067 5068
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5069 5070 5071
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5072

5073 5074 5075 5076
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5077 5078 5079 5080 5081 5082 5083

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5136 5137 5138 5139
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5140 5141 5142 5143 5144
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5145 5146
    attrs = {
        'num_total_classes': int(num_total_classes),
5147 5148
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5149 5150
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5151
    }
Y
Yang Yu 已提交
5152 5153 5154

    helper.append_op(
        type='nce',
C
chengduo 已提交
5155
        inputs=inputs,
Y
Yang Yu 已提交
5156 5157 5158 5159 5160 5161
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5162
    return cost / (num_neg_samples + 1)
5163 5164


C
chengduo 已提交
5165 5166
def hsigmoid(input,
             label,
5167
             num_classes,
C
chengduo 已提交
5168 5169
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5170
             name=None,
5171 5172 5173
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5174
             is_sparse=False):
W
weixing02 已提交
5175 5176
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5177
    process of language model. This operator organizes the classes into a
5178
    complete binary tree, or you can use is_custom to pass your own tree to
5179
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5180 5181 5182 5183 5184 5185
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5186
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5187
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5188

5189 5190 5191 5192 5193
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
5194
        4. now, each word should has its path and code along the path, you can pass a batch of path and code
5195 5196 5197
        related to the same batch of inputs.


W
weixing02 已提交
5198
    Args:
M
minqiyang 已提交
5199
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5200 5201 5202 5203
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5204 5205
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5206
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5218
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5219
            it should be in leaf -> root order
5220 5221 5222
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5223
            each code consist with every code of parent nodes. it should be in leaf -> root order
5224
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5225
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5226
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5227
             of W and input will be sparse.
W
weixing02 已提交
5228 5229

    Returns:
J
JiabinYang 已提交
5230
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5231 5232 5233 5234 5235

    Examples:

        .. code-block:: python

G
guosheng 已提交
5236 5237 5238
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5239 5240 5241 5242
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5243 5244
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5245
    dim = input.shape[1]
5246
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5247 5248 5249
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5250 5251 5252 5253
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5254 5255
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5256 5257 5258
    else:
        pass

J
JiabinYang 已提交
5259 5260
    weights = None

5261
    if not is_custom:
J
JiabinYang 已提交
5262 5263 5264 5265 5266 5267 5268 5269
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5270
            shape=[num_classes, dim],
J
JiabinYang 已提交
5271 5272
            is_bias=False,
            dtype=input.dtype)
5273 5274 5275
    inputs = {
        "X": input,
        "W": weights,
5276 5277
        "PTable": path_table,
        "PathCode": path_code,
5278 5279
        "Label": label
    }
W
weixing02 已提交
5280
    if helper.bias_attr:
5281
        if not is_custom:
J
JiabinYang 已提交
5282 5283
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5284
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5285 5286 5287 5288 5289 5290
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5291
                shape=[num_classes, 1],
J
JiabinYang 已提交
5292 5293 5294
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5295 5296
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5297
        inputs=inputs,
W
weixing02 已提交
5298 5299
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5300 5301
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5302 5303 5304
    return out


Y
fix ci.  
ying 已提交
5305
def transpose(x, perm, name=None):
Y
ying 已提交
5306 5307 5308 5309 5310 5311 5312
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5313 5314 5315
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5316 5317 5318 5319 5320 5321 5322

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5323
            # use append_batch_size=False to avoid prepending extra
5324
            # batch size in shape
5325
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5326
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5327
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5328 5329
    """

Y
fix ci.  
ying 已提交
5330
    if len(perm) != len(x.shape):
Y
ying 已提交
5331 5332 5333
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5334 5335 5336 5337 5338 5339
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5340 5341

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5342 5343
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5344
    helper.append_op(
5345
        type='transpose2',
Y
fix ci.  
ying 已提交
5346
        inputs={'X': [x]},
5347 5348
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5349 5350
        attrs={'axis': perm})
    return out
5351 5352


5353 5354 5355 5356 5357 5358 5359
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5360
    """
5361 5362 5363 5364 5365 5366 5367
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5396 5397 5398 5399 5400 5401 5402 5403 5404
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5405 5406 5407
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5408 5409 5410 5411 5412
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5440 5441 5442
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5455
            output.dims = {8, 8}
5456

5457
            output.lod = [[4, 4]]
5458

T
Tink_Y 已提交
5459
    Examples:
5460 5461 5462

        .. code-block:: python

5463 5464
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5465 5466

    """
W
wanghaoshuang 已提交
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5477 5478 5479 5480 5481 5482 5483
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5484
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5485
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5486
    helper.append_op(
5487
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5488
    return out
5489 5490


Y
yuyang18 已提交
5491
@templatedoc()
5492
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5493 5494
    """
    ${comment}
5495 5496

    Args:
Y
yuyang18 已提交
5497
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5498 5499
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5500 5501 5502 5503 5504
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5505
        ${out_comment}.
5506 5507

    Examples:
Y
yuyang18 已提交
5508 5509 5510 5511
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5512 5513 5514 5515 5516 5517
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5518
    out = helper.create_variable_for_type_inference(dtype)
5519 5520 5521 5522 5523
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5524
    return helper.append_activation(out)
5525 5526


Y
yuyang18 已提交
5527
@templatedoc()
5528 5529
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5530 5531 5532 5533 5534 5535 5536
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5537 5538

    Args:
Y
yuyang18 已提交
5539 5540
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5541 5542

    Returns:
Y
yuyang18 已提交
5543
        ${out_comment}.
5544 5545
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5546 5547 5548 5549 5550

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5551
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5552 5553 5554 5555 5556 5557
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5558 5559


5560 5561 5562
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5563
                               ignore_index=kIgnoreIndex,
5564 5565
                               numeric_stable_mode=False,
                               return_softmax=False):
5566 5567
    """
    **Softmax With Cross Entropy Operator.**
5568

5569 5570 5571 5572
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5573

5574 5575 5576
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5577

5578 5579 5580
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5581

5582
    The equation is as follows:
5583

5584
    1) Hard label (one-hot label, so every sample has exactly one class)
5585

5586 5587 5588 5589
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5590

5591 5592 5593
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5594

5595 5596 5597 5598
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5599 5600 5601
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5602

S
sneaxiy 已提交
5603 5604 5605 5606 5607 5608 5609 5610
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5611 5612 5613 5614 5615 5616 5617 5618
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5619 5620
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5621
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5622 5623 5624
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5625 5626 5627
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5628
                                    stable algorithm. Default: False
5629
        return_softmax (bool): A flag indicating whether to return the softmax
5630
                               along with the cross entropy loss. Default: False
5631

5632
    Returns:
5633 5634 5635 5636
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5637
                              2-D tensor with shape [N x K].
5638 5639 5640 5641 5642 5643 5644

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5645 5646
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5647 5648
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5649 5650
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5651 5652 5653 5654 5655 5656
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5657 5658 5659 5660 5661
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5662 5663 5664 5665

    if return_softmax:
        return loss, softmax

5666 5667 5668 5669 5670
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5671 5672
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5673
    For each instance, it computes the smooth L1 loss element by element first
5674
    and then sums all the losses. So the shape of ouput Variable is
5675
    [batch_size, 1].
5676

5677 5678
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5679
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5680
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5681
            L1 loss op with same shape as :attr:`x`.
5682
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5683 5684
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5685
            by this tensor element by element.
5686
        outside_weight (Variable|None): A tensor with rank at least 2. This
5687 5688
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5689
            element by element.
5690
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5691 5692
           scalar with default value 1.0.

5693
    Returns:
5694
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5695 5696 5697 5698 5699

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5700 5701
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5702
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5703
            out = fluid.layers.smooth_l1(x=fc, y=label)
5704
    """
5705

5706
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5707 5708
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5721 5722 5723 5724


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5725
    This layer creates the one-hot representations for input indices.
5726 5727

    Args:
Y
Yibing Liu 已提交
5728 5729
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5730 5731

    Returns:
Y
Yibing Liu 已提交
5732
        Variable: The one-hot representations of input.
5733 5734

    Examples:
C
caoying03 已提交
5735
        .. code-block:: python
5736

Y
Yibing Liu 已提交
5737 5738
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5739 5740
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5741
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5742 5743 5744 5745 5746 5747
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5748 5749


Y
Yu Yang 已提交
5750
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5751
    """
Y
yi.wu 已提交
5752 5753 5754
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5755 5756 5757 5758 5759 5760

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5761 5762
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5763 5764 5765 5766 5767 5768

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5769 5770
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5771 5772
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5773 5774 5775 5776 5777
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5778
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5779
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5780 5781
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5782 5783
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5784 5785 5786
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5787 5788


5789
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5790
    """
C
caoying03 已提交
5791 5792
    Gives a new shape to the input Tensor without changing its data.

5793 5794 5795 5796 5797
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5798

5799
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5800

5801 5802 5803 5804
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5805
    2. 0 means the actual dimension value is going to be copied from the
5806 5807 5808 5809
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5810 5811

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5812
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5813
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5814

5815
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5816 5817
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5818 5819
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5820
    dimensions.
C
caoying03 已提交
5821

5822
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5823 5824 5825 5826
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5827 5828

    Args:
5829
        x(variable): The input tensor.
C
caoying03 已提交
5830 5831
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5832 5833 5834 5835 5836
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5837 5838
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5839 5840 5841 5842 5843 5844 5845
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5846
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5847

5848
    Returns:
G
guosheng 已提交
5849 5850 5851 5852
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5853

X
Xin Pan 已提交
5854 5855 5856
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5857 5858
    Examples:
        .. code-block:: python
G
guosheng 已提交
5859

5860
            data = fluid.layers.data(
5861
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5862
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5863
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5864 5865 5866
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5867
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5868 5869 5870 5871 5872
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5873

5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5889
    helper = LayerHelper("reshape2", **locals())
5890 5891
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5892
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5893
    helper.append_op(
5894
        type="reshape2",
X
Xin Pan 已提交
5895
        inputs=inputs,
D
dzhwinter 已提交
5896
        attrs={"shape": shape},
5897 5898
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5899

D
dzhwinter 已提交
5900
    return helper.append_activation(out)
5901

5902

5903
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5904
    """
M
minqiyang 已提交
5905 5906 5907
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5908
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5909

Y
Yibing Liu 已提交
5910 5911
    Examples:
    Case 1:
M
minqiyang 已提交
5912
      Given
Y
Yibing Liu 已提交
5913 5914 5915 5916 5917 5918 5919 5920
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5921
        and
Y
Yibing Liu 已提交
5922 5923 5924
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5925

Y
Yibing Liu 已提交
5926
    Args:
5927
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5928
        axes (list): List of integers, indicating the dimensions to be squeezed.
5929
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5930 5931 5932 5933 5934 5935 5936 5937

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5938
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5939 5940
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5941 5942
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5943
    helper.append_op(
5944
        type="squeeze2",
5945
        inputs={"X": input},
Y
Yibing Liu 已提交
5946
        attrs={"axes": axes},
5947 5948
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5949

5950 5951 5952
    return out


5953
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5954
    """
M
minqiyang 已提交
5955 5956 5957
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5958

M
minqiyang 已提交
5959 5960
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5961
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5962

Y
Yibing Liu 已提交
5963
    Args:
5964
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5965
        axes (list): List of integers, indicating the dimensions to be inserted.
5966
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5967 5968 5969 5970 5971 5972 5973 5974

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5975
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5976 5977
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5978 5979
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5980
    helper.append_op(
5981
        type="unsqueeze2",
5982
        inputs={"X": input},
Y
Yibing Liu 已提交
5983
        attrs={"axes": axes},
5984 5985
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5986

5987 5988
    return out

5989

Y
yangyaming 已提交
5990
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5991
    """
Y
Yibing Liu 已提交
5992
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5993 5994 5995 5996
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5997
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5998 5999 6000 6001 6002 6003

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6004
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6005 6006 6007
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6008
            target_lod: [4, 2]
Y
yangyaming 已提交
6009 6010

            then we get a 1-level LoDTensor:
6011
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6012 6013 6014 6015 6016 6017
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6018
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6019 6020 6021 6022
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6023
                y.data = [[2, 4]]
Y
yangyaming 已提交
6024 6025 6026
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6027
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6028 6029 6030 6031 6032 6033
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6034
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6035 6036 6037 6038
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6039
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6040 6041 6042 6043
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6044
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6045 6046 6047 6048 6049
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6050
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6051
                           from :attr:`y`.
Y
yangyaming 已提交
6052
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6053
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6054 6055

    Returns:
Y
Yibing Liu 已提交
6056
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6057 6058

    Raises:
Y
Yibing Liu 已提交
6059
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6069
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6095
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6124 6125
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6138 6139 6140
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6154 6155 6156 6157


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6158
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6159
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6160

G
guosheng 已提交
6161 6162 6163 6164
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6187
                         The length of :attr:paddings must be
G
guosheng 已提交
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6198

G
guosheng 已提交
6199 6200 6201 6202 6203 6204
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6205
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6206 6207 6208 6209 6210 6211 6212
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6213 6214


C
chengduo 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6246 6247
		And
            pad_value = -1,
C
chengduo 已提交
6248

T
Tink_Y 已提交
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6284
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6294 6295 6296 6297 6298 6299 6300
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6301 6302
    called label-smoothing regularization (LSR).

6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6326
                              be :math:`(1, class\_num)`.
6327 6328
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6329
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6349
    smooth_label = helper.create_variable_for_type_inference(dtype)
6350 6351 6352 6353 6354 6355 6356
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6357 6358


W
wopeizl 已提交
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6395 6396


J
jerrywgz 已提交
6397 6398 6399 6400 6401 6402
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6403 6404
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6421 6422 6423
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6424 6425 6426 6427 6428 6429
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6430
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6471 6472
        .. code-block:: python

W
whs 已提交
6473 6474 6475 6476
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6477
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6478 6479 6480 6481 6482 6483
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6484 6485


6486 6487 6488 6489
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6490 6491
                 resample='BILINEAR',
                 actual_shape=None):
6492
    """
Q
qiaolongfei 已提交
6493
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6494

6495
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6496 6497 6498
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6499

6500
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6501

6502
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6503

6504
    Args:
6505
        input (Variable): The input tensor of image resize layer,
6506 6507
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6508
        out_shape(list|tuple|Variable|None): Output shape of image resize
6509 6510
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6511
        scale(float|None): The multiplier for the input height or width.
6512 6513 6514
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6515 6516
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6517
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6518
                       currently.
6519
                       Default: 'BILINEAR'
6520 6521 6522
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6523
                                :attr:`out_shape` and :attr:`scale` specifying
6524 6525 6526 6527 6528 6529 6530
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6531 6532
                                constructing stage.
                                Default: None
6533 6534

    Returns:
Q
update  
qiaolongfei 已提交
6535 6536
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6537

6538 6539 6540
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6541
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6542 6543 6544 6545
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6546 6547 6548
    Examples:
        .. code-block:: python

6549
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6550
    """
6551 6552 6553 6554
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6555 6556
    if resample not in resample_methods:
        raise ValueError(
6557
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6558
        )
6559
    resample_type = resample_methods[resample]
6560
    if out_shape is None and scale is None:
6561
        raise ValueError("One of out_shape and scale must not be None.")
6562
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6563
    dtype = helper.input_dtype()
6564 6565 6566 6567

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6568 6569 6570
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6571
    if out_shape is not None:
6572 6573 6574 6575
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6576
            inputs['OutSize'] = out_shape
6577 6578 6579 6580 6581 6582 6583 6584
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6585 6586 6587 6588
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6589 6590 6591 6592 6593
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6594
    out = helper.create_variable_for_type_inference(dtype)
6595
    helper.append_op(
6596
        type='{}_interp'.format(resample_type),
6597
        inputs=inputs,
6598
        outputs={"Out": out},
6599 6600 6601
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6602
    return out
F
stash  
fengjiayi 已提交
6603 6604


6605
@templatedoc(op_type="bilinear_interp")
6606 6607 6608 6609 6610
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6611
    """
6612 6613
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6614 6615
    in priority order.

6616 6617 6618 6619
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6620 6621
    again in the other direction.

6622
    For details of bilinear interpolation, please refer to Wikipedia:
6623
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6624 6625 6626 6627 6628

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6629

Y
yuyang18 已提交
6630 6631 6632 6633 6634
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6635 6636 6637
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6638
                                :attr:`out_shape` and :attr:`scale` specifying
6639 6640 6641 6642 6643 6644 6645
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6646 6647
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6648 6649 6650

    Returns:
        ${out_comment}.
6651 6652 6653 6654 6655

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6656 6657
    """

6658
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6659 6660


6661
@templatedoc(op_type="nearest_interp")
6662 6663 6664 6665 6666
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6667
    """
6668
    Resize input by performing nearest neighbor interpolation in both the
6669 6670
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6671 6672
    out_shape and scale in priority order.

6673
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6674
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6675 6676 6677 6678 6679

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6680

Y
yuyang18 已提交
6681 6682 6683 6684 6685
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6686 6687 6688
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6689
                                :attr:`out_shape` and :attr:`scale` specifying
6690 6691 6692 6693 6694 6695 6696
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6697 6698
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6699 6700 6701

    Returns:
        ${out_comment}.
6702 6703 6704 6705 6706

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6707 6708
    """

6709
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6710 6711 6712 6713


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6714 6715 6716
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6717 6718 6719 6720 6721 6722 6723
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6724
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6725

6726
    Returns:
Q
update  
qiaolongfei 已提交
6727
        Variable: The output is a 4-D tensor of the shape
6728
        (num_batches, channls, out_h, out_w).
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6739 6740 6741
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6742 6743 6744
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6745 6746
def gather(input, index):
    """
Q
qiaolongfei 已提交
6747 6748
    **Gather Layer**

6749
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6750 6751 6752 6753
    of X indexed by `index` and concatenate them together.

    .. math::

6754
        Out = X[Index]
W
whs 已提交
6755 6756 6757 6758 6759 6760 6761


    .. code-block:: text


                Given:

6762 6763
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6774
        input (Variable): The source input with rank>=1.
W
whs 已提交
6775 6776 6777 6778 6779 6780
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6781

W
whs 已提交
6782 6783 6784 6785 6786 6787
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6788
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6789 6790 6791 6792 6793 6794 6795 6796
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6828
    out = helper.create_variable_for_type_inference(dtype)
6829 6830 6831 6832 6833 6834 6835 6836 6837
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6888
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6889 6890 6891 6892 6893 6894 6895 6896 6897
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6911

6912 6913 6914
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6915
    """
F
stash  
fengjiayi 已提交
6916
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6917
    dtype = x.dtype
X
Xin Pan 已提交
6918
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6919
    if seed is None:
6920
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6921
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6922
    if isinstance(seed, int):
F
fengjiayi 已提交
6923 6924 6925 6926 6927
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6928 6929 6930 6931
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6932
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6933 6934
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6935 6936
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6937
    return out
W
whs 已提交
6938 6939


6940
def log(x, name=None):
W
wanghaoshuang 已提交
6941 6942 6943 6944 6945
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6946
        Out = \\ln(x)
W
wanghaoshuang 已提交
6947 6948

    Args:
6949
        x (Variable): Input tensor.
6950 6951
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6952 6953 6954 6955 6956 6957 6958 6959

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6960
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6961 6962
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6963
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6964
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6965
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6966 6967 6968
    return out


6969
def relu(x, name=None):
W
wanghaoshuang 已提交
6970 6971
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6972
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6973 6974 6975 6976
    the tensor elementwise.

    .. math::

6977
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6978 6979

    Args:
6980
        x (Variable): The input tensor.
6981 6982
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6983 6984 6985 6986 6987 6988 6989 6990

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6991
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6992 6993
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6994
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6995
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6996 6997
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6998
    return out
6999 7000


C
chengduo 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7042 7043 7044
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7045 7046 7047 7048
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7049
    .. math::
7050 7051

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7052

7053
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7054 7055 7056 7057 7058
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7059
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7060
                           Its shape should be the same as input.
7061
        num_classes (int): The possible number of labels.
W
whs 已提交
7062 7063 7064 7065

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
7066
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7067 7068 7069 7070

    Examples:

        .. code-block:: python
7071

W
whs 已提交
7072 7073 7074 7075
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7076 7077 7078
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7079 7080
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7081 7082
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7083
        outputs={
W
whs 已提交
7084 7085 7086
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7087 7088 7089
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7158
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7159 7160 7161 7162 7163

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7164
            isinstance(shape, Variable)):
7165 7166 7167 7168 7169
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7170
    out = helper.create_variable_for_type_inference(x.dtype)
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7188 7189


W
whs 已提交
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7207

W
whs 已提交
7208
              out_shape = [2, 3, 5, 5]
7209

W
whs 已提交
7210
          Step 1:
7211

W
whs 已提交
7212 7213 7214
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7215

W
whs 已提交
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7286
            isinstance(out_shape, Variable)):
W
whs 已提交
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7308 7309 7310 7311 7312 7313 7314 7315
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7316

7317 7318
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7319

7320 7321 7322 7323
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7324

7325 7326 7327 7328 7329
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7330 7331 7332

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7368
    out = helper.create_variable_for_type_inference("float32")
7369 7370 7371 7372 7373 7374 7375 7376

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7377 7378


M
minqiyang 已提交
7379 7380
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7381
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7382
    which compares left score and right score passed in.
M
minqiyang 已提交
7383
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7384 7385 7386 7387 7388 7389

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7390
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7391 7392
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7393
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7394 7395 7396
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7397
       Variable: The ranking loss.
M
minqiyang 已提交
7398
    Raises:
M
minqiyang 已提交
7399
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7400 7401 7402 7403 7404 7405 7406
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7407
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7408 7409 7410 7411 7412 7413
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7414 7415
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7439
        .. code-block:: text
W
whs 已提交
7440

T
Tink_Y 已提交
7441
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7442

T
Tink_Y 已提交
7443 7444
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7445

T
Tink_Y 已提交
7446
	      Case 0:
M
minqiyang 已提交
7447

T
Tink_Y 已提交
7448 7449 7450
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7451

T
Tink_Y 已提交
7452 7453 7454
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7455

T
Tink_Y 已提交
7456
	      Case 1:
M
minqiyang 已提交
7457

T
Tink_Y 已提交
7458 7459
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7460

T
Tink_Y 已提交
7461 7462 7463
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7464

T
Tink_Y 已提交
7465
	      Case 2:
M
minqiyang 已提交
7466

T
Tink_Y 已提交
7467 7468
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7469

T
Tink_Y 已提交
7470 7471 7472
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7473 7474


W
whs 已提交
7475 7476
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7477
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7501
    out = helper.create_variable_for_type_inference(dtype)
7502 7503 7504 7505 7506 7507 7508 7509 7510
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7511
    helper.append_op(
7512
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7513 7514 7515 7516

    return out


7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7529 7530 7531 7532 7533

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7534 7535
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7536 7537
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7538
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7559 7560 7561 7562 7563

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7564 7565
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7566 7567
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7568
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7589 7590 7591 7592 7593

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7594 7595
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7596 7597
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7598
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7620 7621 7622 7623 7624

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7625
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7626
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7627 7628
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7629
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7652 7653 7654 7655 7656

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7657 7658
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7659 7660
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7661
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7683 7684 7685 7686 7687

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7688 7689
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7690 7691
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7692
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7693 7694 7695 7696 7697 7698 7699 7700
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7701 7702 7703 7704
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7705
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7706 7707 7708

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7709
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7710
          weight (alpha).
J
jerrywgz 已提交
7711
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7712 7713 7714
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7715
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7716
          will be named automatically.
J
jerrywgz 已提交
7717 7718 7719 7720 7721 7722 7723 7724

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7725
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7739
        attr=helper.param_attr,
J
jerrywgz 已提交
7740 7741 7742 7743
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7744
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7745 7746 7747 7748 7749 7750 7751 7752 7753
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7764
    Returns:
7765
        output(${out_type}): ${out_comment}
7766 7767 7768 7769 7770 7771 7772

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7773 7774
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7775
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7794
    Returns:
7795
        output(${out_type}): ${out_comment}
7796 7797 7798 7799 7800 7801 7802

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7803 7804
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7805
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7823
    Returns:
7824
        output(${out_type}): ${out_comment}
7825 7826 7827 7828 7829 7830 7831

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7832 7833
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7834
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7835 7836 7837 7838 7839 7840 7841 7842
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7856

7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7867 7868
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7884
        ValueError: If axis is not in range [0, rank(x)].
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7901 7902
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7903
    helper.append_op(
7904
        type='flatten2',
7905
        inputs={"X": x},
7906 7907
        outputs={'Out': out,
                 'XShape': x_shape},
7908 7909
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7910 7911


C
chenweihang 已提交
7912
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7913
    """
C
chenweihang 已提交
7914
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7915
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7916 7917
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7918

C
chenweihang 已提交
7919 7920 7921 7922
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7923
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7924 7925 7926 7927 7928 7929
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7930
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7931 7932 7933
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7934 7935 7936
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7948 7949
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7950 7951 7952 7953 7954 7955
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7956
    return out
7957

7958

S
sneaxiy 已提交
7959 7960 7961 7962 7963 7964 7965 7966 7967
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7968

S
sneaxiy 已提交
7969
    .. math::
7970

S
sneaxiy 已提交
7971 7972 7973
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7974
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7975 7976 7977 7978
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7979 7980 7981
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7982 7983
    Returns:
        Variable: The output sequence mask.
7984

S
sneaxiy 已提交
7985 7986
    """

Q
qingqing01 已提交
7987
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7988
    if name is None:
X
Xin Pan 已提交
7989
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7990
    else:
X
Xin Pan 已提交
7991
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7992

Q
qingqing01 已提交
7993 7994 7995
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7996 7997
        outputs={'Y': out},
        attrs={
7998
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7999 8000 8001
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8002 8003


X
Xin Pan 已提交
8004
def stack(x, axis=0):
S
sneaxiy 已提交
8005 8006 8007 8008
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8009 8010 8011 8012 8013 8014 8015

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8016
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8017
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8018 8019

    Args:
8020
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8021
        axis (int|None): The axis along which all inputs are stacked.
8022

S
sneaxiy 已提交
8023 8024
    Returns:
        Variable: The stacked variable.
8025

S
sneaxiy 已提交
8026 8027
    """

X
Xin Pan 已提交
8028 8029 8030 8031 8032 8033
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8034
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8035
    helper.append_op(
S
sneaxiy 已提交
8036 8037
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8038

X
Xin Pan 已提交
8039
    return out
D
dzhwinter 已提交
8040 8041 8042 8043 8044 8045 8046


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8047

D
dzhwinter 已提交
8048 8049 8050
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8051
    raised.
D
dzhwinter 已提交
8052 8053

    Args:
M
minqiyang 已提交
8054
        x (Variable): Input variable.
D
dzhwinter 已提交
8055 8056
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8057

D
dzhwinter 已提交
8058 8059
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8060

D
dzhwinter 已提交
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
8072
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8073 8074 8075 8076 8077 8078 8079 8080

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8093

W
whs 已提交
8094 8095 8096 8097
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8098

W
whs 已提交
8099
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8100

W
whs 已提交
8101
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8102

W
whs 已提交
8103 8104 8105 8106
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8107

W
whs 已提交
8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8124
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8125 8126 8127 8128 8129 8130
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8131 8132


G
fix  
gongweibao 已提交
8133 8134 8135
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8136
@templatedoc()
G
fix  
gongweibao 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8146
    ${comment}
G
fix  
gongweibao 已提交
8147 8148

    Args:
G
gongweibao 已提交
8149 8150 8151
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8152
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8153 8154 8155
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8156 8157
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8158
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8159

8160 8161 8162 8163 8164
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8165 8166 8167
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8168
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8185 8186


G
gongweibao 已提交
8187
@templatedoc()
X
Xin Pan 已提交
8188
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8189
    """
G
gongweibao 已提交
8190
    ${comment}
G
fix  
gongweibao 已提交
8191 8192

    Args:
G
gongweibao 已提交
8193 8194 8195 8196
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8197 8198 8199
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8200
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8201

8202 8203 8204 8205
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8206 8207 8208
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8209
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8220
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8221 8222 8223 8224 8225
        })

    return out


G
gongweibao 已提交
8226
@templatedoc()
G
fix  
gongweibao 已提交
8227
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8228
    """
G
gongweibao 已提交
8229
    ${comment}
G
fix  
gongweibao 已提交
8230 8231

    Args:
G
gongweibao 已提交
8232 8233 8234 8235
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8236
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8237 8238

    Returns:
G
gongweibao 已提交
8239
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8240

8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8251 8252 8253
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8254
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8266
@templatedoc()
G
fix  
gongweibao 已提交
8267 8268 8269 8270 8271 8272 8273 8274 8275
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8276
    ${comment}
G
fix  
gongweibao 已提交
8277 8278

    Args:
G
gongweibao 已提交
8279 8280
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8281
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8282 8283 8284 8285
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8286
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8287 8288

    Returns:
G
gongweibao 已提交
8289
        out (Variable): ${out_comment}
8290 8291 8292 8293 8294 8295 8296 8297

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8298 8299 8300
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8301
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8320
@templatedoc()
X
Xin Pan 已提交
8321
def sum(x):
G
fix  
gongweibao 已提交
8322
    """
G
gongweibao 已提交
8323
    ${comment}
G
fix  
gongweibao 已提交
8324 8325

    Args:
G
gongweibao 已提交
8326
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8327 8328

    Returns:
G
gongweibao 已提交
8329
        out (Variable): ${out_comment}
8330 8331 8332 8333 8334 8335

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8336 8337 8338
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8339 8340
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8341 8342 8343 8344
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8345
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8346 8347 8348 8349

    return out


G
gongweibao 已提交
8350
@templatedoc()
G
fix  
gongweibao 已提交
8351 8352
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8353
    ${comment}
G
fix  
gongweibao 已提交
8354 8355

    Args:
G
gongweibao 已提交
8356 8357 8358 8359
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8360 8361

    Returns:
G
gongweibao 已提交
8362
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8363

8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8375 8376 8377
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8378 8379
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8391
@templatedoc()
G
fix  
gongweibao 已提交
8392 8393
def shape(input):
    """
G
gongweibao 已提交
8394
    ${comment}
G
fix  
gongweibao 已提交
8395 8396

    Args:
G
gongweibao 已提交
8397
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8398 8399

    Returns:
G
gongweibao 已提交
8400
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8401

8402 8403 8404 8405 8406 8407
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8408 8409 8410
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8411 8412
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8413
    helper.append_op(
G
fix  
gongweibao 已提交
8414
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8415 8416

    return out
G
merge  
gongweibao 已提交
8417 8418


S
sneaxiy 已提交
8419 8420 8421 8422 8423 8424 8425 8426
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8427 8428
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8429
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8430 8431 8432
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8433

S
sneaxiy 已提交
8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8445
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8446 8447 8448 8449 8450 8451 8452 8453
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8454
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8455
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8456 8457 8458 8459 8460 8461

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8462
    if name is None:
X
Xin Pan 已提交
8463
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8464 8465 8466
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8477
    return helper.append_activation(out)
S
sneaxiy 已提交
8478 8479


X
Xin Pan 已提交
8480
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8481 8482 8483
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8484
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8485 8486 8487
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8488
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8489 8490 8491
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8492
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8493 8494 8495
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8496
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8497 8498 8499
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8500
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8501 8502 8503
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8504
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8516 8517
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8518
        ])
M
minqiyang 已提交
8519 8520


8521
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8522 8523
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8524 8525
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8526 8527 8528

    if out is None:
        if name is None:
X
Xin Pan 已提交
8529
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8545
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8557 8558 8559 8560 8561 8562 8563 8564 8565

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8566 8567 8568 8569 8570 8571 8572
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8573
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8585 8586 8587 8588 8589 8590 8591 8592 8593

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8594 8595 8596 8597 8598 8599 8600
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8601
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8613 8614 8615 8616 8617 8618 8619 8620 8621

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8622 8623 8624 8625 8626 8627 8628
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8629
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8630 8631 8632 8633 8634 8635 8636 8637 8638 8639
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8640 8641 8642 8643 8644 8645 8646

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8647 8648 8649 8650
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8666 8667 8668 8669 8670 8671 8672

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8673 8674 8675 8676 8677
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8678 8679 8680 8681
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8705 8706 8707 8708 8709 8710 8711

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8712 8713 8714 8715 8716
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8717 8718 8719 8720
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8721 8722 8723 8724 8725 8726 8727 8728

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8747
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8800
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8801 8802 8803 8804 8805 8806 8807 8808 8809
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8810 8811
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8812 8813 8814 8815 8816 8817
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8818 8819 8820 8821
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8822 8823 8824 8825 8826 8827
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8828
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8829 8830 8831 8832 8833 8834 8835 8836 8837
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8838
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8839 8840 8841 8842 8843 8844 8845 8846
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8847
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8868
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8879 8880


J
JiabinYang 已提交
8881
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8882
    """
J
JiabinYang 已提交
8883
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8884 8885 8886

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8887
    The attr blocksize indicates the input block size.
8888 8889

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8890
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8891 8892

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8893
    (but keeping all data)
J
JiabinYang 已提交
8894

J
JiabinYang 已提交
8895
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8896
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8897 8898 8899 8900 8901
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8902
    Args:
J
JiabinYang 已提交
8903
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8904
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8905 8906

    Returns:
J
JiabinYang 已提交
8907
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8908 8909

    Raises:
J
JiabinYang 已提交
8910
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8911 8912 8913 8914 8915 8916

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8917
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8918
                x=data, blocksize=2)
J
JiabinYang 已提交
8919 8920
    """

J
JiabinYang 已提交
8921
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8922

J
JiabinYang 已提交
8923 8924
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8925 8926

    if name is None:
J
JiabinYang 已提交
8927 8928
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8929 8930 8931 8932 8933
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8934
        type="space_to_depth",
J
JiabinYang 已提交
8935
        inputs={"X": x},
J
JiabinYang 已提交
8936
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8937
        outputs={"Out": out})
J
JiabinYang 已提交
8938 8939
    return out

J
JiabinYang 已提交
8940

S
sneaxiy 已提交
8941 8942
@templatedoc()
def sequence_reverse(x, name=None):
8943
    """
S
sneaxiy 已提交
8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8955
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8956 8957 8958 8959 8960 8961 8962 8963 8964 8965
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8966 8967


8968 8969 8970 8971 8972 8973
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8974

8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8994
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9007 9008


B
barrierye 已提交
9009
def similarity_focus(input, axis, indexes, name=None):
9010
    """
B
barrierye 已提交
9011
    SimilarityFocus Operator
B
barrierye 已提交
9012 9013

    Generate a similarity focus mask with the same shape of input using the following method:
9014 9015 9016
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9017
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9018 9019 9020 9021 9022 9023 9024
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9025
       each index.
B
barrierye 已提交
9026 9027 9028 9029
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9079
    Args:
9080
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9081
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9082
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9083
            1, 2 or 3.
B
barrierye 已提交
9084
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9085 9086

    Returns:
9087
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
9088
            as the input.
9089

B
barrierye 已提交
9090 9091 9092
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
9093 9094
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9107 9108 9109 9110 9111
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9112 9113 9114 9115 9116 9117 9118
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9119 9120


M
minqiyang 已提交
9121 9122
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9123 9124
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9125 9126
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9165
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9166
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9167 9168 9169 9170 9171 9172 9173 9174 9175

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9176 9177
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9178 9179
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9180 9181 9182 9183 9184 9185 9186
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9187 9188


D
dengkaipeng 已提交
9189
@templatedoc()
9190 9191
def grid_sampler(x, grid, name=None):
    """
9192
    This operation samples input X by using bilinear interpolation based on
9193
    flow field grid, which is usually gennerated by affine_grid. The grid of
9194 9195 9196 9197
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9198
    interpolation value of 4 nearest corner points.
9199 9200 9201 9202 9203 9204 9205 9206

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9207
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9237 9238

    Args:
9239 9240 9241
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9242 9243

    Returns:
9244
        out(Variable): Output of shape [N, C, H, W] data samples input X
9245 9246 9247 9248 9249 9250 9251 9252 9253
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9254 9255 9256 9257 9258 9259 9260 9261 9262
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9263
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9264 9265
    ipts = {'X': x, 'Grid': grid}

9266
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9267 9268 9269
    return out


G
gmcather 已提交
9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
H
heqiaozhi 已提交
9336
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound 
H
heqiaozhi 已提交
9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9405 9406 9407 9408 9409 9410 9411 9412 9413 9414


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9415
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9416

Q
Qiao Longfei 已提交
9417
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9418 9419 9420
    For example:

    .. math::
9421
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9422

Q
Qiao Longfei 已提交
9423
    In this formula:
9424 9425
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9426
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9427
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9428 9429 9430
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9431 9432
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9433 9434 9435
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9436
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9437
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9438
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9439 9440 9441 9442
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9443
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9444 9445 9446 9447

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9448
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9449 9450
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9451
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9452 9453 9454 9455

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9456
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550


@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9551

M
minqiyang 已提交
9552

M
minqiyang 已提交
9553
def huber_loss(input, label, delta):
9554
    """
M
minqiyang 已提交
9555 9556 9557
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9558 9559 9560 9561

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9562
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9563 9564 9565 9566

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9567
        huber\_loss = 0.5 * (label - input) * (label - input)
9568 9569 9570 9571 9572 9573 9574


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9575
        delta (float): The parameter of huber loss, which controls
9576 9577 9578
                       the range of outliers

    Returns:
M
minqiyang 已提交
9579
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9580 9581 9582 9583 9584

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9585
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9586
    """
M
minqiyang 已提交
9587
    helper = LayerHelper('huber_loss', **locals())
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out