framework.py 124.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
70
    'in_dygraph_mode',
71
]
Y
Yu Yang 已提交
72

Q
qiaolongfei 已提交
73 74 75 76
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
77 78
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
79 80
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
81 82


L
lujun 已提交
83
def in_dygraph_mode():
L
lujun 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
97
    return _dygraph_tracer_ is not None
98 99


L
lujun 已提交
100 101
def _dygraph_tracer():
    return _dygraph_tracer_
102

W
Wu Yi 已提交
103

M
minqiyang 已提交
104
def _current_expected_place():
L
lujun 已提交
105
    return _dygraph_current_expected_place_
M
minqiyang 已提交
106 107


S
sneaxiy 已提交
108 109 110 111 112
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
L
lujun 已提交
113
    """
S
add doc  
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
133 134 135 136 137 138 139

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
154
    """
S
add doc  
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
167 168 169 170 171 172 173

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
174 175 176 177 178 179
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
180
    """
S
add doc  
sneaxiy 已提交
181 182 183 184 185 186 187 188 189 190 191 192
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
193 194 195 196 197 198 199 200 201

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
202 203 204 205 206 207 208
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
235
@signature_safe_contextmanager
236 237 238 239 240 241 242 243 244 245 246 247
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
248

249 250 251 252 253 254 255 256 257 258 259
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
279 280 281
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
282 283 284 285


def grad_var_name(var_name):
    """
286 287
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
288 289 290
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
291

292
def convert_np_dtype_to_dtype_(np_dtype):
293 294
    """
    Convert the data type in numpy to the data type in Paddle
295

296
    Args:
297
        np_dtype(np.dtype): the data type in numpy.
298

299 300
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
301 302

    """
303 304
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
305
        return core.VarDesc.VarType.FP32
306
    elif dtype == np.float64:
307
        return core.VarDesc.VarType.FP64
308
    elif dtype == np.float16:
309
        return core.VarDesc.VarType.FP16
310
    elif dtype == np.int32:
311
        return core.VarDesc.VarType.INT32
312
    elif dtype == np.int16:
313
        return core.VarDesc.VarType.INT16
314
    elif dtype == np.int64:
315
        return core.VarDesc.VarType.INT64
316
    elif dtype == np.bool:
317
        return core.VarDesc.VarType.BOOL
318 319
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
320 321
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
322 323
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
324
    else:
M
minqiyang 已提交
325
        raise ValueError("Not supported numpy dtype %s" % dtype)
326 327 328


def dtype_is_floating(dtype):
329 330 331
    """
    Check the data type is floating or not.
    Args:
332
        dtype(np.dtype|core.VarDesc.VarType): data type.
333 334 335 336 337
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
338
    if not isinstance(dtype, core.VarDesc.VarType):
339 340
        dtype = convert_np_dtype_to_dtype_(dtype)

341 342 343 344
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
345 346


Y
Yang Yang(Tony) 已提交
347
def _debug_string_(proto, throw_on_error=True):
348 349 350 351 352 353 354 355 356 357 358
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
359
    error_fields = list()
Y
Yang Yang(Tony) 已提交
360
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
361 362
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
363 364 365
    return proto.__str__()


X
Xin Pan 已提交
366
class Variable(object):
367
    """
368 369 370
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
371
    two variables in different blocks could have the same name.
372

373 374
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
375

376
    Most of a Variable's member variables can be setted to be None. It mean
377
    it is not available or will be specified later.
378 379

    Args:
380
        block(Block): The block that the variable belongs to.
381 382
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
383 384
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
385
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
386
            Some kinds of variable do not contain shape, just set it to None.
387 388 389
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
390
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
391
            series data.
392
            Default: None
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
415 416
    """

Y
Yu Yang 已提交
417 418
    def __init__(self,
                 block,
Y
Yu Yang 已提交
419
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
420 421 422 423
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
424
                 capacity=None,
Q
QI JUN 已提交
425
                 persistable=None,
F
fengjiayi 已提交
426
                 error_clip=None,
Y
Yu Yang 已提交
427
                 stop_gradient=False,
F
fengjiayi 已提交
428
                 is_data=False,
Y
Yu Yang 已提交
429
                 **kwargs):
Y
Yu Yang 已提交
430 431
        self.block = block
        if name is None:
Y
Yu Yang 已提交
432
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
433

Y
Yu Yang 已提交
434
        if dtype is not None:
435
            if not isinstance(dtype, core.VarDesc.VarType):
436
                dtype = convert_np_dtype_to_dtype_(dtype)
437

L
lujun 已提交
438
        if in_dygraph_mode():
M
minqiyang 已提交
439
            # record vars in tracer rather than blocks
M
minqiyang 已提交
440 441
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
442 443 444
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
445 446
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
447
            if persistable:
L
lujun 已提交
448
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
449
            self.op = None
M
minqiyang 已提交
450
        else:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
523
            self.block.vars[name] = self
524
            self.op = None
525
            self._stop_gradient = stop_gradient
526
            self.is_data = is_data
Y
Yu Yang 已提交
527

528
    def numpy(self):
M
minqiyang 已提交
529
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
530
        return np.array(new_ivar.value().get_tensor())
531

532 533
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
534
        if backward_strategy is None:
535 536
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
537 538 539

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
540

541
    def gradient(self):
542 543
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
544

545
    def clear_gradient(self):
X
Xin Pan 已提交
546
        self._ivar._clear_gradient()
X
Xin Pan 已提交
547

548
    def __str__(self):
Y
Yang Yang(Tony) 已提交
549 550
        return self.to_string(True)

F
update  
fengjiayi 已提交
551
    def to_string(self, throw_on_error, with_details=False):
552 553 554 555
        """
        Get debug string.

        Args:
556 557
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
558
            with_details(bool): more details about variables and parameters
559 560
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
561

562 563
        Returns:
            str: The debug string.
564
        """
L
lujun 已提交
565
        if in_dygraph_mode():
L
lujun 已提交
566
            # TODO(panyx0718): add more dygraph debug info.
567 568 569
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
570

F
update  
fengjiayi 已提交
571 572
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
573
        protostr = self.desc.serialize_to_string()
574
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
575 576 577 578
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
579 580
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
581
        return res_str
582 583 584

    __repr__ = __str__

585
    def set_desc(self, input):
586 587 588 589 590 591 592 593 594
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
595 596
        self.desc = input

597
    @property
598
    def stop_gradient(self):
L
lujun 已提交
599
        if in_dygraph_mode():
M
minqiyang 已提交
600 601
            return self._ivar.stop_gradient
        else:
602
            return self._stop_gradient
603

604 605
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
606
        if in_dygraph_mode():
M
minqiyang 已提交
607
            self._ivar.stop_gradient = s
608
        else:
609
            self._stop_gradient = s
610

611 612
    @property
    def persistable(self):
L
lujun 已提交
613
        if in_dygraph_mode():
614 615 616
            return self._ivar.persistable
        else:
            return self.desc.persistable()
617

Y
Yu Yang 已提交
618 619
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
620
        if in_dygraph_mode():
621 622 623
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
624

Y
Yu Yang 已提交
625 626
    @property
    def name(self):
L
lujun 已提交
627
        if in_dygraph_mode():
628 629 630
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
631

T
typhoonzero 已提交
632 633
    @name.setter
    def name(self, new_name):
L
lujun 已提交
634
        if in_dygraph_mode():
635 636 637
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
638

Y
Yu Yang 已提交
639 640 641
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
642
        if in_dygraph_mode():
643 644 645
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
646 647

    @property
F
fengjiayi 已提交
648
    def dtype(self):
L
lujun 已提交
649
        if in_dygraph_mode():
650 651 652
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
653 654 655

    @property
    def lod_level(self):
L
lujun 已提交
656
        # TODO(minqiyang): Support lod_level in dygraph mode
657
        return self.desc.lod_level()
Y
Yu Yang 已提交
658

Y
Yu Yang 已提交
659 660
    @property
    def type(self):
L
lujun 已提交
661
        if in_dygraph_mode():
662 663 664
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
665

W
Wu Yi 已提交
666
    def _set_error_clip(self, error_clip):
667 668 669 670 671 672 673 674 675
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
676 677
        self.error_clip = error_clip

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
765
    def _cloneVar(self, copy=False):
766 767 768 769 770
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
771
                stop_gradient=self.stop_gradient, )
772 773 774 775
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
776
        new_var = self._cloneVar()
777 778 779 780 781 782 783 784 785 786
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
787
        new_var = self._cloneVar()
788 789 790 791 792 793 794 795 796 797
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
798
                return self._cloneVar(True)
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
817
                return self._cloneVar(True)
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
840 841 842 843 844 845
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

846
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
847 848
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
849
                if check:
W
wopeizl 已提交
850 851 852 853 854 855 856 857
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
858 859 860 861 862 863 864 865
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
866

F
fengjiayi 已提交
867 868 869
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
870

871 872
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
873 874 875 876
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
877
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
878 879 880 881 882
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
883 884 885 886
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
887 888 889 890 891 892 893 894 895
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
896
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
897 898 899 900 901 902
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
903 904 905 906 907 908 909 910
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
911 912
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
913 914
        return self.op_proto_map[type]

915 916 917 918
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
919
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
920 921
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
922 923
        }

F
fengjiayi 已提交
924

X
Xin Pan 已提交
925
class Operator(object):
926
    """
927 928 929 930 931 932 933
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
934
        type(str): The type of operator. Default None.
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
955
        Block.append_op or Block._prepend_op instead.
956 957 958 959 960 961 962 963 964 965

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
966
    """
967
    OP_WITHOUT_KERNEL_SET = {
968 969 970
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
971
    }
972

Y
Yu Yang 已提交
973 974
    def __init__(self,
                 block,
Y
Yu Yang 已提交
975
                 desc,
Y
Yu Yang 已提交
976 977 978
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
979
                 attrs=None):
L
lujun 已提交
980
        if in_dygraph_mode():
981 982
            if type is None:
                raise ValueError(
983
                    "`type` to initialized an Operator can not be None.")
984
            self.iop = core.OpBase(type)
M
minqiyang 已提交
985
            self.previous_ops = []
M
minqiyang 已提交
986

M
minqiyang 已提交
987
            self.attrs = attrs if attrs else {}
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1002
                )] = self.block.program._op_role
1003 1004 1005

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1006 1007
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1008 1009 1010 1011 1012 1013 1014 1015

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1016
                    "`type` to initialized an Operator can not be None.")
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1048
                        for index, arg in enumerate(in_args):
1049 1050 1051 1052
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1053
                            elif isinstance(arg, Variable):
1054
                                in_arg_names.append(cpt.to_text(arg.name))
1055 1056 1057 1058
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1085
                        if not in_dygraph_mode():
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1105
    def _has_kernel(self, op_type):
1106 1107
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1108
    def to_string(self, throw_on_error):
1109
        """
1110 1111
        Get debug string.

1112
        Args:
1113 1114
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1115

1116 1117
        Returns:
            str: The debug string.
1118 1119

        """
1120
        protostr = self.desc.serialize_to_string()
1121
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1122 1123 1124 1125
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1126 1127 1128

    __repr__ = __str__

F
fengjiayi 已提交
1129 1130
    @property
    def type(self):
L
lujun 已提交
1131
        if in_dygraph_mode():
1132 1133 1134
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1135 1136

    def input(self, name):
1137
        """
1138
        Get the input arguments according to the input parameter name.
1139

1140 1141
        Args:
            name(str): The input parameter name.
1142

1143 1144 1145
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1146
        """
F
fengjiayi 已提交
1147 1148
        return self.desc.input(name)

W
Wu Yi 已提交
1149
    def _rename_input(self, old_name, new_name):
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1160
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1161

W
Wu Yi 已提交
1162
    def _rename_output(self, old_name, new_name):
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1173
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1174

F
fengjiayi 已提交
1175 1176 1177 1178
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1179 1180 1181 1182 1183 1184 1185 1186
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1187
    def output(self, name):
1188
        """
1189
        Get output arguments by the output parameter name.
1190

1191 1192
        Args:
            name(str): The output parameter name.
1193

1194 1195 1196
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1197
        """
F
fengjiayi 已提交
1198 1199 1200 1201 1202 1203
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1204 1205 1206 1207 1208 1209 1210 1211
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1212
    def has_attr(self, name):
1213
        """
1214 1215
        Whether this Operator has the attribute with name or not.

1216
        Args:
1217
            name(str): the attribute name.
1218

1219 1220
        Returns:
            bool: True if has this attribute.
1221 1222

        """
F
fengjiayi 已提交
1223 1224 1225
        return self.desc.has_attr(name)

    def attr_type(self, name):
1226
        """
1227
        Get the type of attribute by attribute's name.
1228

1229 1230
        Args:
            name(str): the attribute name.
1231

1232 1233
        Returns:
            core.AttrType: the attribute type.
1234
        """
F
fengjiayi 已提交
1235 1236
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1237
    def _set_attr(self, name, val):
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1248 1249
        self._update_desc_attr(name, val)

1250 1251 1252
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1264 1265
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1266 1267
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1268
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1269 1270 1271 1272
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1273
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1274

F
fengjiayi 已提交
1275 1276 1277 1278 1279
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1280
        """
1281 1282
        Get the attribute by name.

1283
        Args:
1284
            name(str): the attribute name.
1285

1286 1287
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1288 1289
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1290
        return self.desc.attr(name)
Y
Yu Yang 已提交
1291

W
Wu Yi 已提交
1292
    def _block_attr_id(self, name):
1293
        """
G
gongweibao 已提交
1294
        Get the block attribute's id by name.
1295

1296 1297
        Args:
            name(str): the attribute name.
1298

1299 1300
        Returns:
            int: the block index.
1301
        """
W
Wu Yi 已提交
1302
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1303

W
Wu Yi 已提交
1304
    def _block_attr(self, name):
G
gongweibao 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1315
        id = self._block_attr_id(name)
G
gongweibao 已提交
1316 1317 1318
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1319
    def _blocks_attr(self, name):
G
gongweibao 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1330
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1331 1332 1333 1334 1335
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1336
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1347
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1348

J
JiayiFeng 已提交
1349
    def all_attrs(self):
F
fengjiayi 已提交
1350
        """
1351 1352 1353
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1354
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1355 1356 1357 1358
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1359 1360
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1361
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1362 1363 1364
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1365
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1366 1367 1368 1369
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1370 1371
        return attr_map

Y
Yu Yang 已提交
1372

Y
Yu Yang 已提交
1373
class Block(object):
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1388
        use `Program._create_block()` to create a block.
1389 1390 1391 1392

    Examples:
        .. code-block:: python

1393 1394 1395
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1396 1397 1398 1399 1400 1401 1402 1403 1404
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1405
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1406
        self.desc = program.desc.block(idx)
1407
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1408
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1409
        self.program = program
1410
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1411

1412
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1413 1414
        return self.to_string(True)

F
fengjiayi 已提交
1415 1416
    def to_string(self, throw_on_error, with_details=False):
        """
1417 1418
        Get debug string.

F
fengjiayi 已提交
1419 1420
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1421
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1422
            with_details(bool): more details about variables and parameters
1423 1424
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1425

1426 1427
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1428 1429 1430 1431
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1432
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1433 1434
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1435
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1436
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1437
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1438
            for op in self.ops:
F
fengjiayi 已提交
1439 1440
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1441 1442 1443
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1444 1445
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1446 1447
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1448 1449 1450

    __repr__ = __str__

Y
Yu Yang 已提交
1451 1452
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1453
        return self.desc.parent
Y
Yu Yang 已提交
1454

Y
Yu Yang 已提交
1455 1456 1457 1458
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1459
    def _set_forward_block_idx(self, idx):
1460 1461 1462 1463 1464 1465 1466 1467 1468
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1469
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1470

Y
Yu Yang 已提交
1471 1472
    @property
    def idx(self):
Y
Yu Yang 已提交
1473
        return self.desc.id
Y
Yu Yang 已提交
1474

Q
Qiao Longfei 已提交
1475
    def var(self, name):
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1489
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1490 1491 1492
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1493 1494
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1495
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1496
        return v
Q
Qiao Longfei 已提交
1497

X
Xin Pan 已提交
1498
    def _find_var_recursive(self, name):
1499 1500 1501 1502 1503 1504 1505
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1506
            Variable: the Variable with the giving name. Or None if not found.
1507
        """
Y
Yu Yang 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1532
        return None
Y
Yu Yang 已提交
1533

X
Xin Pan 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1553

Q
Qiao Longfei 已提交
1554
    def all_parameters(self):
1555
        return list(self.iter_parameters())
1556

1557
    def iter_parameters(self):
M
minqiyang 已提交
1558
        return (item[1] for item in six.iteritems(self.vars)
1559
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1560

Y
Yu Yang 已提交
1561
    def create_var(self, *args, **kwargs):
1562
        var = Variable(block=self, *args, **kwargs)
1563 1564
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1565
        return var
Y
Yu Yang 已提交
1566

Q
Qiao Longfei 已提交
1567 1568 1569
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1570
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1571 1572
        """
        Rename variable in vars and ops' inputs and outputs
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1585
        """
M
minqiyang 已提交
1586 1587
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1588

T
typhoonzero 已提交
1589
        if not self.has_var(name):
1590
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1591 1592
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1593
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1594 1595 1596 1597 1598 1599 1600
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1601
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1602 1603 1604 1605
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1606
        orig_var_type = v.type
M
minqiyang 已提交
1607
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1608
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1609
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1610
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1611 1612 1613 1614
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1615
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1616 1617 1618 1619 1620 1621 1622
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1623
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1624 1625
            var = Variable(
                self,
T
typhoonzero 已提交
1626
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1627 1628 1629 1630
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1631
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1632 1633 1634
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1635
        self._sync_with_cpp()
1636
        return var
T
typhoonzero 已提交
1637

W
Wu Yi 已提交
1638 1639
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1640
        self.desc._remove_var(cpt.to_bytes(name))
1641 1642
        del self.vars[name]

Y
Yu Yang 已提交
1643 1644
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1645
        param = Parameter(global_block, *args, **kwargs)
1646
        if 'initializer' in kwargs:
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1667
        return param
Y
Yu Yang 已提交
1668

Y
Yu Yang 已提交
1669
    def append_op(self, *args, **kwargs):
1670 1671 1672 1673 1674 1675
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1676
        if in_dygraph_mode():
1677 1678 1679 1680 1681
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
                attrs['is_test'] = True

1682 1683 1684 1685
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1686 1687
                inputs=None,
                outputs=None,
1688
                attrs=attrs)
1689

M
minqiyang 已提交
1690 1691 1692
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1693
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1694 1695 1696 1697
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1698
        else:
1699 1700 1701 1702 1703 1704 1705 1706 1707
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1708
            self.ops.append(op)
M
minqiyang 已提交
1709

1710 1711
        return op

W
Wu Yi 已提交
1712
    def _insert_op(self, index, *args, **kwargs):
1713 1714 1715 1716 1717 1718 1719 1720 1721
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1722 1723
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1724 1725 1726 1727
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1728
    def _remove_op(self, index):
1729 1730 1731 1732 1733 1734 1735 1736 1737
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1738 1739
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1740 1741
        del self.ops[index]

W
Wu Yi 已提交
1742
    def _slice_ops(self, start, end):
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1753
        return self.ops[start:end]
Y
Yancey1989 已提交
1754

W
Wu Yi 已提交
1755
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1756
        if in_dygraph_mode():
1757 1758 1759 1760
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1761 1762 1763 1764 1765 1766 1767 1768
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1769
        else:
1770 1771 1772 1773 1774 1775 1776 1777
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1778
            self.ops.insert(0, op)
1779

Y
Yu Yang 已提交
1780 1781
        return op

W
Wu Yi 已提交
1782
    def _sync_with_cpp(self):
1783
        """
1784 1785
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1786
        """
Q
Qiao Longfei 已提交
1787 1788 1789 1790 1791
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1792
        # sync variables removed from c++ end
1793
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1794
            if not self.desc.find_var(cpt.to_bytes(var)):
1795 1796
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1797
        # sync operators from cpp
1798 1799 1800 1801
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1818 1819 1820 1821 1822

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1823
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1824 1825 1826 1827 1828 1829 1830

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1844 1845 1846 1847
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1848
    def _copy_param_info_from(self, other):
1849
        """
1850 1851
        Copy the information of parameters from the other block.

1852
        Args:
1853 1854 1855 1856 1857
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1858 1859 1860 1861 1862

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1863 1864
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1865
        for p in other.iter_parameters():
1866 1867 1868
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1869
                raise ValueError("_copy_param_info_from should be invoked with "
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1882
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1883
                error_clip=p.error_clip,
1884 1885 1886
                name=v.name)
            self.vars[new_p.name] = new_p

1887
    def _clone_variable(self, var, force_persistable=True):
1888 1889
        """
        Clone a variable into current block.
1890

1891 1892
        Args:
            var: the variable to be cloned.
1893 1894 1895
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1896 1897

        Returns:
1898
            Variable: the new  variable cloned from 'var' in current block.
1899 1900
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1901 1902 1903 1904 1905
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1906 1907
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1908
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1909 1910 1911 1912 1913 1914
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1915
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1916
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1917 1918 1919 1920 1921 1922 1923
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1924
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1925
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1926
        return ret_var
1927

Y
Yu Yang 已提交
1928

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2024
    def remove_input_by_id(self, node_id):
2025 2026 2027 2028 2029 2030
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2031
        self.node.remove_input(node_id)
2032

2033
    def remove_input(self, node):
2034 2035 2036 2037
        """
        Remove a node from inputs.

        Args:
2038
            node(IrNode): the node being removed.
2039
        """
2040
        self.node.remove_input(node.node)
2041

2042
    def append_input(self, node):
2043 2044 2045 2046
        """
        Append a node in inputs.

        Args:
2047
            node(IrNode): the node being appended.
2048
        """
2049
        self.node.append_input(node.node)
2050 2051 2052 2053 2054 2055 2056 2057

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2058
    def remove_output_by_id(self, node_id):
2059 2060 2061 2062 2063 2064
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2065
        self.node.remove_output(node_id)
2066

2067
    def remove_output(self, node):
2068 2069 2070 2071
        """
        Remove a node from outputs.

        Args:
2072
            node(IrNode): the node being removed.
2073
        """
2074
        self.node.remove_output(node.node)
2075

2076
    def append_output(self, node):
2077 2078 2079 2080
        """
        Append a node in outputs.

        Args:
2081
            node(IrNode): the node being appended.
2082
        """
2083
        self.node.append_output(node.node)
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2338 2339
class IrGraph(object):
    """
2340
    Python IrGraph. Beneath it is a core.Graph, which is used for
2341
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2342 2343
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2344 2345 2346 2347
    """

    def __init__(self, graph, for_test=False):
        """
2348 2349
        Construct an IrGraph using core.Graph.

2350 2351 2352 2353 2354 2355 2356 2357 2358
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2359 2360 2361 2362
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2363 2364 2365
        Warns:
            The method only clones the graph structure, not its attributes.

2366 2367 2368
        Returns:
            IrGraph: A new and duplicated graph.
        """
2369
        g = self.graph.clone()
2370 2371
        return IrGraph(g, self._for_test)

2372
    def is_test(self):
2373 2374 2375
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2376 2377
        return self._for_test

W
WangZhen 已提交
2378
    def all_nodes(self):
2379 2380 2381
        """
        Return all nodes included in the graph as a set.
        """
2382
        return {IrNode(node) for node in self.graph.nodes()}
2383

2384
    def all_var_nodes(self):
2385 2386 2387
        """
        Return all variable nodes included in the graph as a set.
        """
2388
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2389

2390
    def all_persistable_nodes(self):
2391 2392 2393
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2394 2395 2396 2397 2398
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2399
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2400

2401
    def all_op_nodes(self):
2402 2403 2404
        """
        Return all operator nodes included in the graph as a set.
        """
2405
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2406

2407
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2419
            IrVarNode: the created persistable variable node.
2420
        """
2421 2422 2423 2424 2425
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2426
        return IrVarNode(self.graph.create_var_node(var_desc))
2427 2428

    def create_var_node(self, name, var_type, shape, var_dtype):
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2440
            IrVarNode: the created variable node.
2441 2442
        """

2443 2444 2445 2446
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2447
        return IrVarNode(self.graph.create_var_node(var_desc))
2448 2449

    def create_var_node_from_desc(self, var_desc):
2450 2451 2452 2453 2454 2455 2456 2457
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2458
            IrVarNode: the created variable node.
2459
        """
2460
        return IrVarNode(self.graph.create_var_node(var_desc))
2461 2462

    def create_op_node(self, op_type, attrs, inputs, outputs):
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2473
            IrOpNode: the created operator node.
2474
        """
2475 2476
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2477
        for attr, value in six.iteritems(attrs):
2478
            self._update_desc_attr(op_desc, attr, value)
2479
        for input_name, var_nodes in six.iteritems(inputs):
2480 2481 2482 2483
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2484
        for output_name, var_nodes in six.iteritems(outputs):
2485 2486 2487 2488
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2489
        return IrOpNode(self.graph.create_op_node(op_desc))
2490 2491

    def create_op_node_from_desc(self, op_desc):
2492 2493 2494 2495 2496 2497 2498
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2499
            IrOpNode: the created operator node.
2500
        """
2501
        return IrOpNode(self.graph.create_op_node(op_desc))
2502 2503

    def update_input_link(self, old_input_node, new_input_node, op_node):
2504 2505 2506 2507
        """
        Update the input's link of a operator node.

        Args:
2508 2509 2510
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2511
        """
2512 2513
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2514
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2515 2516 2517 2518
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2519
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2520 2521

    def link_to(self, node_in, node_out):
2522 2523 2524 2525
        """
        Connect two nodes.

        Args:
2526 2527
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2528
        """
2529
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2530
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2531 2532
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2533 2534

    def safe_remove_nodes(self, remove_nodes):
2535 2536 2537 2538 2539 2540 2541
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2542
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2543 2544 2545 2546
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2547 2548
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2549

Z
Zhen Wang 已提交
2550 2551 2552 2553 2554 2555 2556 2557
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2558
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2559 2560 2561 2562
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2563
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2564 2565 2566
                        ]
                    else:
                        var_nodes[each_var_name].append(
2567 2568
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2569 2570
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2571
    def has_circle(self):
2572 2573 2574 2575 2576 2577
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2578 2579 2580
        return core.has_circle(self.graph)

    def graph_num(self):
2581 2582 2583 2584 2585 2586
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2587 2588 2589
        return core.graph_num(self.graph)

    def topology_sort(self):
2590 2591 2592 2593 2594 2595
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2596
            list(IrNode): nodes in topology order.
2597
        """
2598
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2599
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2600 2601

    def build_adjacency_list(self):
2602 2603 2604 2605
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2606
            dict{IrNode: set(IrNode)}: the adjacency list.
2607
        """
2608 2609 2610 2611 2612
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2613

2614 2615 2616 2617 2618 2619 2620 2621
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2622
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2623 2624 2625 2626 2627
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2628 2629 2630 2631 2632 2633 2634 2635 2636
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2637
        remove_ctr_vars = set()
2638
        if remove_ctr_var:
2639
            for node in self.all_var_nodes():
2640 2641 2642
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2643 2644
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2645 2646
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2647 2648 2649 2650 2651 2652
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2664 2665 2666
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2667
        WARN: When the graph includes backward operator nodes, the
2668 2669 2670 2671 2672 2673
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2674
        convert_pass = core.get_pass('graph_to_program_pass')
2675 2676
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2677 2678 2679 2680
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2708
class Program(object):
D
dzhwinter 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2720
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2721 2722

    Returns:
Y
yuyang18 已提交
2723
        A empty program.
D
dzhwinter 已提交
2724 2725

    Examples:
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2739 2740 2741

    """

2742 2743
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2744 2745
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2746
        self._seed = 0
Y
yuyang18 已提交
2747
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2748
        self.__op_role_var = []
T
tangwei12 已提交
2749

2750 2751
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2752
        self._is_distributed = False
2753
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2754
        self._is_chief = False
2755 2756 2757
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2758
        self._endpoints = []
2759 2760 2761
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2762
        self._trainers_endpoints = []
2763
        # the distributed lookup table names
T
tangwei12 已提交
2764
        self._distributed_lookup_table = None
2765 2766 2767

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2768 2769 2770 2771
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2772

D
dzhwinter 已提交
2773
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2774
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2775
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2776

2777 2778 2779
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2780
        self._program_config = None
2781

D
dzhwinter 已提交
2782
    @property
D
dzhwinter 已提交
2783
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2784 2785
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2786
        return self.__is_mem_optimized
D
dzhwinter 已提交
2787

D
dzhwinter 已提交
2788 2789 2790
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2791 2792

    @property
2793
    def _op_role(self):
Y
yuyang18 已提交
2794 2795 2796 2797 2798 2799 2800 2801
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2802
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2803 2804 2805 2806
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2807 2808
        return self._current_role

2809 2810
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2811 2812 2813
        self._current_role = role

    @property
2814
    def _op_role_var(self):
Y
yuyang18 已提交
2815
        """
2816
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2817

2818
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2819 2820 2821

        Notes: This is a very low-level API. Users should not use it directly.
        """
2822
        return self.__op_role_var
Y
yuyang18 已提交
2823

2824 2825 2826 2827 2828 2829 2830 2831 2832
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2833
    @signature_safe_contextmanager
W
Wu Yi 已提交
2834
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2835 2836 2837 2838 2839 2840 2841
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2842
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2843 2844 2845 2846

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2847
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2848 2849
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2850
        tmp_role = self._current_role
2851
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2852

Y
yuyang18 已提交
2853 2854
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2855
        self.__op_role_var = [
2856 2857 2858
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2859
        yield
2860
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2861
        self._current_role = tmp_role
Y
Yu Yang 已提交
2862

S
rename  
sneaxiy 已提交
2863
    @signature_safe_contextmanager
X
Xin Pan 已提交
2864
    def _lr_schedule_guard(self, is_with_opt=False):
2865 2866 2867 2868 2869 2870 2871
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2872 2873 2874 2875
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2876 2877 2878 2879 2880 2881 2882

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2883 2884

        tmp_role = self._current_role
2885
        tmp_var = self.__op_role_var
2886

2887 2888
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2889 2890
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2891
        # TODO(typhoonzero): how to set target learning rate var
2892
        self.__op_role_var = []
2893
        yield
2894
        self.__op_role_var = tmp_var
2895
        self._current_role = tmp_role
2896

2897
    def __str__(self):
Y
yuyang18 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2907 2908
        return self.to_string(True)

F
fengjiayi 已提交
2909 2910 2911
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2912

F
fengjiayi 已提交
2913
        Args:
Y
yuyang18 已提交
2914 2915
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2916

Y
yuyang18 已提交
2917 2918 2919 2920
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2921 2922
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2923 2924 2925 2926

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2946 2947
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2948 2949
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2950

W
Wu Yi 已提交
2951
    def _get_desc(self):
Y
yuyang18 已提交
2952 2953 2954 2955 2956 2957 2958
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2959 2960
        return self.desc

X
version  
Xin Pan 已提交
2961 2962 2963
    def _version(self):
        return self.desc._version()

2964
    def clone(self, for_test=False):
Y
yuyang18 已提交
2965 2966 2967
        """
        Create a new, duplicated program.

2968

Y
yuyang18 已提交
2969 2970 2971 2972
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2973

Y
yuyang18 已提交
2974
        * Set for_test to False when we want to clone the program for training.
2975 2976 2977 2978
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
2979

2980 2981 2982 2983
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
2984

2985 2986 2987 2988 2989
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
2990 2991

        Args:
Y
yuyang18 已提交
2992 2993
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2994

D
dzhwinter 已提交
2995
        Returns:
Y
yuyang18 已提交
2996 2997 2998 2999
            Program: The new, duplicated Program object.

        Examples:

3000 3001 3002 3003 3004 3005
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3101 3102
        """
        if for_test:
X
Xin Pan 已提交
3103
            p = self._inference_optimize(prune_read_op=False)
3104
        else:
3105
            p = Program()
G
gongweibao 已提交
3106 3107
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3108
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3109 3110 3111
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3112 3113

            p._current_role = self._current_role
3114
            p.__op_role_var = self.__op_role_var
G
gongweibao 已提交
3115

W
Wu Yi 已提交
3116
            p._sync_with_cpp()
3117

W
Wu Yi 已提交
3118
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3119
        p._copy_data_info_from(self)
3120
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3121
        return p
3122

W
Wu Yi 已提交
3123
    def _prune(self, targets):
Y
yuyang18 已提交
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3139 3140 3141 3142 3143 3144
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3145 3146
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3147
                    # and we need to find the current op that generate this
3148 3149 3150 3151 3152 3153 3154 3155
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3156
                    t = t.op
3157 3158 3159 3160
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3161
                else:
3162 3163
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3164 3165 3166 3167

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3168 3169 3170
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3171
        res._sync_with_cpp()
3172 3173
        return res

X
Xin Pan 已提交
3174
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3175
        """
F
fengjiayi 已提交
3176 3177 3178 3179 3180
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3181
        3. change the :code:`is_test`
Y
yuyang18 已提交
3182 3183 3184
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3185
        Args:
X
Xin Pan 已提交
3186 3187
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3188

Y
yuyang18 已提交
3189 3190 3191 3192 3193 3194
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3195
        res = Program()
3196
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3197 3198 3199 3200

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3201
        if prune_read_op:
3202 3203 3204 3205 3206 3207 3208 3209 3210
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3211
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3212 3213

        # change all `is_test` attributes to True
M
minqiyang 已提交
3214
        for i in six.moves.range(res.desc.num_blocks()):
3215
            block = res.desc.block(i)
M
minqiyang 已提交
3216
            for j in six.moves.range(block.op_size()):
3217 3218
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3219
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3220 3221 3222
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3223
        res._sync_with_cpp()
3224 3225
        return res

3226 3227
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3228 3229 3230 3231 3232 3233 3234
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3235
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3236 3237 3238 3239

        Returns:
            Program: A deserialized program desc.
        """
3240 3241
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3242
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3243
        p._sync_with_cpp()
3244
        return p
Y
Yu Yang 已提交
3245

3246
    @staticmethod
3247
    def _construct_from_desc(desc):
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3263 3264
    @property
    def random_seed(self):
Y
yuyang18 已提交
3265 3266 3267 3268 3269
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3281
        """
D
dzhwinter 已提交
3282 3283
        return self._seed

Q
qiaolongfei 已提交
3284 3285
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3286 3287
        """
        The number of blocks in this program.
3288 3289 3290 3291 3292 3293 3294 3295 3296

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3297
        """
Q
qiaolongfei 已提交
3298 3299
        return self.desc.num_blocks()

D
dzhwinter 已提交
3300 3301 3302 3303 3304 3305
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3306
    def __repr__(self):
3307
        return self.__str__()
3308

Y
Yu Yang 已提交
3309
    def global_block(self):
Y
yuyang18 已提交
3310 3311
        """
        Get the first block of this program.
3312 3313 3314 3315 3316 3317 3318 3319 3320

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3321
        """
Y
Yu Yang 已提交
3322 3323
        return self.blocks[0]

Q
Qiao Longfei 已提交
3324
    def block(self, index):
Y
yuyang18 已提交
3325 3326 3327 3328 3329 3330 3331
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3332 3333 3334 3335 3336 3337 3338 3339 3340

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3341
        """
Q
Qiao Longfei 已提交
3342 3343
        return self.blocks[index]

Y
Yu Yang 已提交
3344
    def current_block(self):
Y
yuyang18 已提交
3345 3346 3347
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3348 3349 3350 3351 3352 3353 3354 3355 3356

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3357
        """
Y
Yu Yang 已提交
3358 3359
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3360
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3371
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3372 3373 3374
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3375 3376 3377 3378
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3379
    def _rollback(self):
Y
yuyang18 已提交
3380 3381 3382 3383 3384
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3385 3386
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3387
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3398 3399 3400
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3401
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3402

W
Wu Yi 已提交
3403
    def _copy_param_info_from(self, other):
3404
        """
3405
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3406

Y
yuyang18 已提交
3407 3408 3409
        Notes: This is a very low level API. Users should not invoke it
        directly.

3410 3411 3412 3413 3414 3415 3416
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3417
            raise TypeError("_copy_param_info_from should be invoked with "
3418 3419 3420
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3421
            raise ValueError("_copy_param_info_from should be invoked with two "
3422
                             "program, with represent the same topology")
W
Wu Yi 已提交
3423
        self.global_block()._copy_param_info_from(other.global_block())
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3440
        self._parameters_on_pservers = other._parameters_on_pservers
3441
        self._endpoints = other._endpoints
3442
        self._ps_endpoint = other._ps_endpoint
3443 3444
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3445
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3446 3447
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3448

Y
yuyang18 已提交
3449 3450 3451
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3452 3453 3454 3455 3456 3457 3458
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3459
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3460 3461 3462
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3463
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3464
                             "program, with represent the same topology")
3465
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3466 3467 3468
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3469
    def list_vars(self):
Y
yuyang18 已提交
3470 3471 3472 3473 3474
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3486
        """
3487
        for each_block in self.blocks:
3488
            for each_var in list(each_block.vars.values()):
3489 3490
                yield each_var

Y
Yu Yang 已提交
3491

Y
Yu Yang 已提交
3492
class Parameter(Variable):
3493
    """
3494
    Parameter is derived from Variable. A parameter is a persistable
3495
    Variable, and will be updated by optimizers after each iteration.
3496
    The training of a neural network is essentially the updating of
3497 3498
    its parameters.

3499
    Relative to a general Variable, a Parameter has several its own
3500 3501
    member variables:

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3514 3515
    """

Y
Yu Yang 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3526 3527 3528

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3529 3530 3531 3532
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3533 3534
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3535
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3536

W
wanghaoshuang 已提交
3537
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3538

F
fengjiayi 已提交
3539 3540 3541
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3542 3543 3544
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3545

F
update  
fengjiayi 已提交
3546 3547 3548 3549 3550 3551 3552 3553
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3554 3555 3556 3557 3558 3559 3560 3561 3562
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3563 3564 3565 3566 3567 3568
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3569
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3570
            for attr_name in additional_attr:
3571 3572
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3573 3574
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3575 3576 3577 3578
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3579

Y
Yu Yang 已提交
3580
# program is a global instance.
Y
Yu Yang 已提交
3581 3582
_main_program_ = Program()
_startup_program_ = Program()
3583

3584

3585
def default_startup_program():
Y
Yu Yang 已提交
3586
    """
Y
yuyang18 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3596

Y
Yu Yang 已提交
3597 3598
    Returns:
        Program: startup program
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3614
    """
Y
Yu Yang 已提交
3615
    return _startup_program_
3616

3617

3618
def default_main_program():
Y
Yu Yang 已提交
3619
    """
Y
yuyang18 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3629

Y
Yu Yang 已提交
3630 3631
    Returns:
        Program: main program
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3661
    """
Y
Yu Yang 已提交
3662
    return _main_program_
Y
Yu Yang 已提交
3663 3664 3665 3666 3667


def switch_main_program(program):
    """
    Switch the main program to a new program.
3668

Y
Yu Yang 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3683
    Switch the startup program to a new program
Y
Yu Yang 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3696
@signature_safe_contextmanager
Y
Yu Yang 已提交
3697 3698
def program_guard(main_program, startup_program=None):
    """
3699 3700
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3701
    variables to the new main programs.
3702

Y
Yu Yang 已提交
3703
    Examples:
3704 3705 3706
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3707

3708 3709 3710 3711 3712
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3713 3714 3715

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3716

Y
Yu Yang 已提交
3717
    Examples:
3718
       .. code-block:: python
Y
yuyang18 已提交
3719

3720 3721 3722 3723 3724 3725
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3726

Y
Yu Yang 已提交
3727
    Args:
3728 3729 3730
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3743 3744


W
Wu Yi 已提交
3745
def _get_var(name, program=None):
X
xuwei06 已提交
3746
    """
Y
yuyang18 已提交
3747
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3748

X
xuwei06 已提交
3749 3750 3751
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3752
        If None, default_global_program() will be used.
X
xuwei06 已提交
3753 3754 3755 3756 3757 3758 3759

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3760
    assert isinstance(program, Program)
X
xuwei06 已提交
3761 3762

    return program.global_block().var(name)
3763 3764


S
rename  
sneaxiy 已提交
3765
@signature_safe_contextmanager
L
lujun 已提交
3766 3767 3768 3769
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3770

3771
    yield
P
Paddle CI 已提交
3772

L
lujun 已提交
3773
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3774 3775


S
rename  
sneaxiy 已提交
3776
@signature_safe_contextmanager
L
lujun 已提交
3777 3778 3779 3780
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3781

3782
    yield
M
minqiyang 已提交
3783

L
lujun 已提交
3784
    _dygraph_current_expected_place_ = tmp_place