nn.py 325.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
62
    'sequence_unpad',
X
Xin Pan 已提交
63 64 65 66 67 68 69 70
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
71
    'sequence_slice',
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
89
    'group_norm',
X
Xin Pan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
103
    'roi_align',
X
Xin Pan 已提交
104 105 106 107
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
108
    'resize_nearest',
X
Xin Pan 已提交
109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
115
    'selu',
X
Xin Pan 已提交
116 117 118
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
119
    'margin_rank_loss',
X
Xin Pan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
163
    'space_to_depth',
W
whs 已提交
164
    'affine_grid',
S
sneaxiy 已提交
165
    'sequence_reverse',
166
    'affine_channel',
B
barrierye 已提交
167
    'similarity_focus',
M
minqiyang 已提交
168
    'hash',
D
dengkaipeng 已提交
169
    'grid_sampler',
G
gmcather 已提交
170 171
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
172
    'bilinear_tensor_product',
C
chengduo 已提交
173 174
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
175
    'lstm',
Y
Yu Yang 已提交
176 177
]

J
jerrywgz 已提交
178 179
kIgnoreIndex = -100

Y
Yu Yang 已提交
180 181 182 183 184 185 186

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
187
       is_test=False,
188
       name=None):
Y
Yu Yang 已提交
189
    """
190
    **Fully Connected Layer**
Y
Yu Yang 已提交
191

192 193 194 195 196 197 198 199
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
200
    to the output as well.
C
caoying03 已提交
201

C
caoying03 已提交
202
    This process can be formulated as follows:
203 204 205

    .. math::

206
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
207 208 209

    In the above equation:

C
caoying03 已提交
210 211 212 213
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
214
    * :math:`Act`: The activation function.
C
caoying03 已提交
215
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
216 217

    Args:
R
ranqiu 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
233 234
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
235
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
236
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
237
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
238

239
    Returns:
F
fengjiayi 已提交
240
        Variable: The transformation result.
241 242

    Raises:
C
caoying03 已提交
243
        ValueError: If rank of the input tensor is less than 2.
244 245 246 247

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
248
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
249
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
250
    """
C
caoying03 已提交
251

C
caoying03 已提交
252
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
253 254 255 256

    dtype = helper.input_dtype()

    mul_results = []
257 258
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
259 260 261
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
262

Y
Yu Yang 已提交
263
        w = helper.create_parameter(
264
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
265
        tmp = helper.create_variable_for_type_inference(dtype)
266
        helper.append_op(
267 268 269
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
270
            outputs={"Out": tmp},
M
mozga-intel 已提交
271 272
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
273 274 275 276
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
277
    else:
X
Xin Pan 已提交
278
        pre_bias = helper.create_variable_for_type_inference(dtype)
279
        helper.append_op(
280 281 282
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
283
            attrs={"use_mkldnn": False})
284 285 286 287
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
288 289


290 291 292
def embedding(input,
              size,
              is_sparse=False,
293
              is_distributed=False,
294 295 296
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
297
    """
298 299
    **Embedding Layer**

300
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
301 302
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
303 304 305

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
306 307

    Args:
308 309 310 311 312
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
313
        is_distributed(bool): Whether to run lookup table from remote parameter server.
314 315
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
316
            with zeros whenever lookup encounters it in :attr:`input`. If
317
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
318 319
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
320
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
321

322 323 324
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
325

326 327
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
328

C
chengduoZH 已提交
329
          dict_size = len(dataset.ids)
330
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
331
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
332 333 334
    """

    helper = LayerHelper('embedding', **locals())
335 336 337
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
338 339
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
340 341
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
342
    tmp = helper.create_variable_for_type_inference(dtype)
343 344
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
345 346 347 348 349
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
350 351 352
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
353
            'remote_prefetch': remote_prefetch,
354 355
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
356 357 358
    return tmp


W
wopeizl 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
375

W
wopeizl 已提交
376 377 378 379 380 381 382 383 384 385 386
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
387

W
wopeizl 已提交
388 389 390 391
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
392

W
wopeizl 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
479 480


P
phlrain 已提交
481 482 483 484 485 486
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
487
         dropout_prob=0.0,
P
phlrain 已提交
488 489 490 491 492
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
493
    """
P
phlrain 已提交
494
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
495 496 497 498 499

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
539 540
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
541 542 543 544 545 546
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
547
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
548

L
liuhongyu 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
574
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
575 576 577 578 579 580
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
581 582 583
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
643 644 645 646 647 648 649 650 651 652 653
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
654 655
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
656 657 658
    """
    **Dynamic LSTMP Layer**

659 660 661 662 663 664
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
665 666 667 668 669

    The formula is as follows:

    .. math::

670
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
671

672
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
673

674
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
675

676
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
677

678
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
679

680
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
681

682
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
683

Y
Yibing Liu 已提交
684 685 686 687 688 689
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
690
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
691
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
692
          bias vector).
Y
Yibing Liu 已提交
693 694 695
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
696
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
697
    * :math:`h`: The hidden state.
698
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
699 700
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
701
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
702
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
703
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
704 705
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
706 707 708 709

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
710

Y
Yibing Liu 已提交
711 712 713 714 715 716 717 718 719 720 721 722
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
723
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
724 725
                               hidden-hidden weight and projection weight.

726 727
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
728 729
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
730 731
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
732
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
733 734 735 736 737

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
738
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
739 740 741 742 743 744
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
745
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
746 747 748
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
749
                                - The shape is (1 x 7D).
C
chengduo 已提交
750 751 752 753 754

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
755 756 757 758 759 760 761 762 763
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
764
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
765 766
                              default "tanh".
        proj_activation(str): The activation for projection output.
767
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
768 769
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
770 771
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
772 773

    Returns:
774 775 776 777
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
778 779

    Examples:
780

Y
Yibing Liu 已提交
781 782
        .. code-block:: python

783 784 785 786
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
787
            hidden_dim, proj_dim = 512, 256
788
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
789
                                     act=None, bias_attr=None)
790 791 792
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
793 794 795 796
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
797
    """
798

C
chengduo 已提交
799
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
800
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
801
    size = size // 4
Y
Yibing Liu 已提交
802 803 804 805 806 807 808 809 810 811
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
812 813 814 815 816 817
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
846 847 848 849 850 851 852 853 854
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
855
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
856

857
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
858
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
859

G
guosheng 已提交
860 861 862 863 864 865 866 867 868
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
869

G
guosheng 已提交
870
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
871

G
guosheng 已提交
872
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
873 874
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
875 876 877 878
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
879
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
880 881

    Args:
882 883
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
884
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
885
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
886 887
            is the hidden size.
        size(int): The dimension of the gru cell.
888
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
889 890
            hidden-hidden weight matrix. Note:

891
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
892
              :math:`D` is the hidden size.
893
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
894
              The first part are weights of the update gate and reset gate with
895
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
896
              candidate hidden state with shape :math:`(D \\times D)`.
897 898 899 900 901

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
902
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
903
            the bias in the update gate, reset gate and candidate calculations.
904 905 906
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
907 908
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
909
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
910 911 912
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
913
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
914
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
915 916 917 918
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
919 920

    Returns:
G
guosheng 已提交
921
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
922
            and sequence length is the same with the input.
923

G
guosheng 已提交
924
    Examples:
925

G
guosheng 已提交
926 927
        .. code-block:: python

928 929 930 931
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
932
            hidden_dim = 512
933
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
934
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
935 936 937 938 939 940 941 942 943
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
944
    batch_size = input.shape[0]
G
guosheng 已提交
945
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
946
    if h_0:
G
guosheng 已提交
947
        assert h_0.shape == (
Y
Yancey 已提交
948 949 950
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
951

X
Xin Pan 已提交
952 953 954 955
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
974 975 976
def gru_unit(input,
             hidden,
             size,
977 978
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
979
             activation='tanh',
980
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
981
    """
982
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
983

984 985
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
986

987
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
988

989
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
990

991
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
992 993

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
994 995 996
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
997 998
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

999 1000
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1001 1002 1003
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1004 1005 1006

    Args:
        input (Variable): The fc transformed input value of current step.
1007
        hidden (Variable): The hidden value of gru unit from previous step.
1008
        size (integer): The input dimension value.
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1023
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1024
            the bias in the update gate, reset gate and candidate calculations.
1025 1026 1027
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1028 1029
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1030 1031 1032 1033
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1034

1035 1036 1037 1038 1039 1040
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1041

1042
             # assuming we have x_t_data and prev_hidden of size=10
1043
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1044 1045
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1058
    size = size // 3
Y
Yu Yang 已提交
1059 1060

    # create weight
1061 1062
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1063

X
Xin Pan 已提交
1064 1065 1066
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1067
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1068
    # create bias
1069
    if helper.bias_attr:
Y
Yu Yang 已提交
1070 1071 1072
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1073
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1074 1075 1076

    helper.append_op(
        type='gru_unit',
1077
        inputs=inputs,
Y
Yu Yang 已提交
1078 1079 1080 1081 1082 1083
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1084 1085
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1086 1087 1088 1089 1090
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1091
@templatedoc()
1092
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1093 1094 1095 1096 1097 1098 1099
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1100
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1101 1102 1103 1104
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1105 1106 1107
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1108 1109

    """
Y
Yu Yang 已提交
1110 1111 1112 1113 1114 1115
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1116 1117 1118 1119 1120 1121 1122 1123
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1139 1140 1141 1142
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1143

W
wopeizl 已提交
1144 1145
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1146

W
wopeizl 已提交
1147
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1148

W
wopeizl 已提交
1149
        label(${label_type}): ${label_comment}
1150

W
wopeizl 已提交
1151 1152
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1153

W
wopeizl 已提交
1154 1155
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1156

W
wopeizl 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1167
                "Transition": transition,
W
wopeizl 已提交
1168 1169
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1170

W
wopeizl 已提交
1171
    return viterbi_path
Y
Yu Yang 已提交
1172 1173


Y
yi.wu 已提交
1174
@templatedoc()
F
fengjiayi 已提交
1175
def cos_sim(X, Y):
Y
Yu Yang 已提交
1176
    """
Y
yi.wu 已提交
1177 1178 1179
    ${comment}

    Args:
1180 1181
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1182

Y
yi.wu 已提交
1183
    Returns:
1184
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1185
    """
F
fengjiayi 已提交
1186
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1187 1188 1189
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1200 1201 1202 1203 1204
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1205
            dropout_implementation="downgrade_in_infer"):
1206 1207 1208 1209 1210
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1211
    training. The dropout operator randomly sets (according to the given dropout
1212 1213 1214 1215
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1216 1217
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1218 1219 1220 1221 1222 1223 1224
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1236
                                           dropout op can be removed from the program.
P
phlrain 已提交
1237
                                           the program will be efficient
1238

P
phlrain 已提交
1239

1240 1241

    Returns:
1242
        Variable: A tensor variable is the shape with `x`.
1243 1244

    Examples:
1245

1246 1247
        .. code-block:: python

1248 1249
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1250 1251
    """

F
fengjiayi 已提交
1252
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1253 1254 1255
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1256 1257 1258 1259

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1260 1261 1262 1263 1264
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1265 1266 1267 1268
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1269 1270
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1271
        })
1272 1273 1274
    return out


J
jerrywgz 已提交
1275
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1276
    """
Y
Yibing Liu 已提交
1277 1278
    **Cross Entropy Layer**

1279 1280 1281
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1282 1283

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1284
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1285

Y
Yibing Liu 已提交
1286
        .. math::
Y
yangyaming 已提交
1287

Y
Yibing Liu 已提交
1288 1289 1290
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1291 1292
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1293 1294 1295 1296 1297

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1298
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1299 1300 1301
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1302 1303
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1304
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1305

Y
Yibing Liu 已提交
1306
    Args:
Y
yangyaming 已提交
1307
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1308 1309 1310 1311
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1312
        label (Variable|list): the ground truth which is a 2-D tensor. When
1313 1314 1315 1316
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1317
        soft_label (bool): a flag indicating whether to
1318
                                           interpretate the given labels as soft
1319
                                           labels. Default: `False`.
M
minqiyang 已提交
1320 1321
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1322
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1323 1324 1325 1326 1327

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1328 1329 1330 1331 1332
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1333 1334 1335 1336 1337 1338

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1339
    """
F
fengjiayi 已提交
1340
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1341
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1342 1343 1344 1345 1346
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1347 1348
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1349 1350 1351
    return out


1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
def bpr_loss(input, label_pos):

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
                'Label_Pos': [label_pos]},
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1364
def square_error_cost(input, label):
Y
Yu Yang 已提交
1365
    """
1366 1367
    **Square error cost layer**

1368 1369
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1384 1385
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1386 1387

    Returns:
G
guosheng 已提交
1388
        Variable: The tensor variable storing the element-wise squared error \
1389
                  difference of input and label.
1390 1391 1392 1393 1394 1395 1396 1397

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1398
    """
F
fengjiayi 已提交
1399
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1400
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1407
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1408
    helper.append_op(
F
fengjiayi 已提交
1409 1410
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1411 1412 1413
    return square_out


Y
yi.wu 已提交
1414
@templatedoc()
Y
Yu Yang 已提交
1415 1416 1417 1418
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1419
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1420
    """
Y
yi.wu 已提交
1421
    **Chunk Evaluator**
Y
yi.wu 已提交
1422

Y
yangyaming 已提交
1423
    This function computes and outputs the precision, recall and
1424
    F1-score of chunk detection.
Y
yi.wu 已提交
1425

Y
yi.wu 已提交
1426 1427 1428 1429 1430 1431 1432 1433
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1434

Y
yi.wu 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1460

Y
yi.wu 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1485
    Args:
1486 1487 1488 1489 1490
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1491

Y
yi.wu 已提交
1492
    Returns:
Y
update  
yi.wu 已提交
1493 1494 1495
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1496

Y
yi.wu 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1509
    """
F
fengjiayi 已提交
1510
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1511 1512

    # prepare output
X
Xin Pan 已提交
1513 1514 1515 1516 1517 1518 1519
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1520 1521 1522 1523 1524 1525 1526 1527

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1528 1529 1530 1531
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1532 1533 1534
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1535 1536
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1537
        })
1538 1539
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1540 1541


1542
@templatedoc()
Y
Yu Yang 已提交
1543 1544 1545 1546 1547 1548 1549
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1550 1551
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1552 1553 1554 1555
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1556 1557 1558 1559 1560 1561 1562

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1576

1577 1578
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1579 1580 1581 1582 1583 1584 1585
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1586
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1597
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1598 1599 1600 1601 1602 1603
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1604
def sequence_softmax(input, use_cudnn=False, name=None):
1605 1606 1607
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1608
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1625 1626 1627
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1640 1641
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1642
    softmax_out = helper.create_variable_for_type_inference(dtype)
1643 1644 1645 1646 1647 1648 1649 1650
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1651
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1652
    """
1653
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1654
    has the same shape as the input.
Q
qiaolongfei 已提交
1655

1656 1657 1658 1659 1660 1661
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1662
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1663 1664 1665 1666 1667 1668 1669

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1670
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1671 1672 1673 1674 1675 1676 1677 1678

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1679 1680 1681
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1694 1695
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1696
    softmax_out = helper.create_variable_for_type_inference(dtype)
1697 1698 1699 1700 1701 1702 1703 1704
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1705 1706 1707
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1708 1709
           stride=1,
           padding=0,
1710
           dilation=1,
Y
Yu Yang 已提交
1711 1712 1713
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1714
           use_cudnn=True,
1715 1716
           act=None,
           name=None):
Y
Yu Yang 已提交
1717
    """
C
chengduoZH 已提交
1718
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1719 1720
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1721
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1722 1723 1724 1725 1726 1727 1728
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1729 1730 1731
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1732

1733
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1734

C
chengduoZH 已提交
1735 1736
    .. math::

C
refine  
chengduoZH 已提交
1737
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1738

T
tensor-tang 已提交
1739
    Where:
C
chengduoZH 已提交
1740

1741 1742 1743 1744 1745
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1746
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1747 1748 1749

    Example:

1750 1751
        - Input:

W
weixing02 已提交
1752
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1753

W
weixing02 已提交
1754
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1755

1756
        - Output:
T
tensor-tang 已提交
1757

W
weixing02 已提交
1758
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1759

C
chengduoZH 已提交
1760
        Where
1761 1762

        .. math::
C
chengduoZH 已提交
1763

W
weixing02 已提交
1764 1765
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1766 1767

    Args:
1768
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1769
        num_filters(int): The number of filter. It is as same as the output
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1798 1799
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1800 1801
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1802
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1803
            will be named automatically. Default: None
C
chengduoZH 已提交
1804 1805

    Returns:
G
guosheng 已提交
1806
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1807 1808
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1809
    Raises:
1810 1811
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1812

C
chengduoZH 已提交
1813 1814 1815
    Examples:
        .. code-block:: python

1816 1817
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1818 1819 1820
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1821
    assert param_attr is not False, "param_attr should not be False here."
1822
    l_type = 'conv2d'
X
xzl 已提交
1823 1824
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1825
        l_type = 'depthwise_conv2d'
1826 1827 1828 1829

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1830 1831 1832 1833 1834
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1835
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1836

C
chengduoZH 已提交
1837 1838 1839
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1840
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1841

C
chengduoZH 已提交
1842 1843
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1844 1845

    input_shape = input.shape
M
minqiyang 已提交
1846
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1847 1848

    def _get_default_param_initializer():
C
chengduo 已提交
1849 1850
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1851 1852 1853 1854 1855 1856 1857 1858
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1859
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1875
    helper.append_op(
1876
        type=l_type,
Y
Yu Yang 已提交
1877 1878 1879 1880 1881
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1882 1883 1884
        attrs={
            'strides': stride,
            'paddings': padding,
1885
            'dilations': dilation,
C
chengduoZH 已提交
1886
            'groups': groups,
1887
            'use_cudnn': use_cudnn,
1888
            'use_mkldnn': False,
C
chengduoZH 已提交
1889
        })
Y
Yu Yang 已提交
1890 1891 1892 1893 1894 1895

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1913 1914 1915 1916 1917 1918
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1928 1929
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1930 1931 1932
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1933
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1959
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1960 1961
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1962
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1963 1964
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1965
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1966 1967
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1968
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1969 1970 1971 1972 1973 1974
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1985 1986
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1987 1988
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1989
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1990
            will be named automatically. Default: None.
C
chengduoZH 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2003 2004
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2005 2006 2007
    """

    l_type = 'conv3d'
C
chengduo 已提交
2008
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2019
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2033 2034 2035
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2036 2037 2038 2039 2040 2041 2042 2043
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2044
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2059
            'use_mkldnn': False
C
chengduoZH 已提交
2060 2061
        })

2062
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2063 2064 2065 2066

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2067
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2068
    """
Y
yangyaming 已提交
2069 2070 2071
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2083
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2084 2085 2086 2087 2088
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2089
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2090 2091 2092 2093 2094 2095 2096

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2097 2098
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2099

L
Luo Tao 已提交
2100 2101
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2102
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2103
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2104
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2105 2106 2107 2108 2109 2110 2111

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2112

Y
yangyaming 已提交
2113
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2114 2115 2116 2117 2118
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2119 2120
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2121
    """
F
fengjiayi 已提交
2122
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2123
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2124 2125
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2126 2127 2128 2129 2130 2131

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2132 2133
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2134

Y
yangyaming 已提交
2135 2136 2137 2138 2139
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2140 2141 2142
    return pool_out


C
add doc  
chengduoZH 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2162
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2163 2164 2165 2166 2167
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2168
def sequence_first_step(input):
L
Luo Tao 已提交
2169
    """
L
Luo Tao 已提交
2170
    This function gets the first step of sequence.
L
Luo Tao 已提交
2171 2172 2173 2174

    .. code-block:: text

       x is a 1-level LoDTensor:
2175
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2176 2177 2178 2179 2180
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2181
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2182
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2183

L
Luo Tao 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2193

Y
yangyaming 已提交
2194
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2195 2196 2197
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2198 2199 2200
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2201
def sequence_last_step(input):
L
Luo Tao 已提交
2202
    """
L
Luo Tao 已提交
2203
    This function gets the last step of sequence.
L
Luo Tao 已提交
2204 2205 2206 2207

    .. code-block:: text

       x is a 1-level LoDTensor:
2208
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2209 2210 2211 2212 2213
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2214
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2215
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2216

L
Luo Tao 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2226

Y
yangyaming 已提交
2227
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2228 2229 2230
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2231 2232 2233
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2234 2235 2236 2237
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2238
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2239 2240 2241 2242 2243
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2244

Y
Yibing Liu 已提交
2245 2246
	- Case:

2247
            Given the input Variable **input**:
2248

2249 2250 2251
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2252

2253
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2254

2255
            the output Variable will be
2256

2257 2258 2259
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2260 2261

    NOTE: The first dimension size of **input**, **offset** and **length**
2262
          should be equal. The **offset** should start from 0.
2263

Y
Yibing Liu 已提交
2264
    Args:
2265
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2266
                         sequences.
Y
Yibing Liu 已提交
2267 2268 2269 2270 2271 2272
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2273
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2284
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2285 2286 2287 2288
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2289
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2304
@templatedoc()
Y
Yu Yang 已提交
2305
def pool2d(input,
C
chengduoZH 已提交
2306 2307
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2308 2309
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2310
           global_pooling=False,
C
chengduoZH 已提交
2311
           use_cudnn=True,
2312
           ceil_mode=False,
2313 2314
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2315
    """
F
fengjiayi 已提交
2316
    ${comment}
2317 2318

    Args:
2319 2320 2321
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2322
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2323
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2324 2325
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2326
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2327 2328 2329 2330 2331 2332
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2333 2334 2335
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2336
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2337
                        layer will be named automatically.
2338
        exclusive (bool): Whether to exclude padding points in average pooling
2339
                          mode, default is true
F
fengjiayi 已提交
2340

2341
    Returns:
F
fengjiayi 已提交
2342
        Variable: The pooling result.
F
fengjiayi 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2356 2357 2358 2359
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2360
                            global_pooling=False)
Y
Yu Yang 已提交
2361 2362 2363 2364 2365
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2366

C
chengduoZH 已提交
2367 2368 2369 2370 2371
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2372 2373 2374 2375
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2376 2377
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2378

C
Add doc  
chengduoZH 已提交
2379
    l_type = 'pool2d'
2380 2381

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2382
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2383
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2384 2385

    helper.append_op(
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2397 2398
            "use_mkldnn": False,
            "exclusive": exclusive,
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2412 2413
           name=None,
           exclusive=True):
2414 2415
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2416
    pooling configurations mentioned in input parameters.
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2429
        exclusive (bool): Whether to exclude padding points in average pooling
2430
                          mode, default is true
2431

2432
    Returns:
2433
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2434 2435 2436 2437 2438
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2439

C
chengduoZH 已提交
2440 2441 2442 2443 2444
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2445 2446 2447
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2448

C
chengduoZH 已提交
2449 2450
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2451

2452 2453
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2454
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2455
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2456 2457

    helper.append_op(
2458
        type=l_type,
Y
Yu Yang 已提交
2459 2460 2461 2462 2463 2464 2465
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2466
            "paddings": pool_padding,
2467
            "use_cudnn": use_cudnn,
2468
            "ceil_mode": ceil_mode,
2469 2470
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2483
               data_layout='NCHW',
Y
Yang Yang 已提交
2484
               in_place=False,
2485 2486
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2487
               moving_variance_name=None,
2488
               do_model_average_for_mean_and_var=False,
2489 2490
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2491
    """
Q
qiaolongfei 已提交
2492 2493 2494 2495
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2496

Q
qiaolongfei 已提交
2497
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2498

Q
qiaolongfei 已提交
2499 2500
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2501 2502 2503
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2530
    Args:
Q
qiaolongfei 已提交
2531
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2532 2533 2534 2535
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2536 2537 2538 2539 2540 2541 2542 2543
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2544
        data_layout(string, default NCHW): NCHW|NHWC
2545
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2546 2547 2548 2549
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2550
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2551
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2552 2553 2554 2555 2556
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2557 2558

    Returns:
Q
qiaolongfei 已提交
2559
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2560 2561 2562 2563 2564 2565 2566

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2567
    """
C
chengduo 已提交
2568
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2589 2590 2591
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2592 2593

    bias = helper.create_parameter(
2594
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2595 2596 2597
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2598

2599 2600
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2601 2602 2603
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2604
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2605
        shape=param_shape,
2606 2607 2608 2609 2610 2611 2612
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2613
            trainable=False,
W
wanghaoshuang 已提交
2614
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2615
        shape=param_shape,
2616 2617
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2618 2619 2620 2621 2622 2623

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2624 2625 2626 2627
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2628

X
Xin Pan 已提交
2629 2630
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2648 2649 2650 2651
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2652
            "use_mkldnn": False,
2653 2654
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2655
        })
Y
Yu Yang 已提交
2656 2657 2658 2659

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2660
@templatedoc()
G
guosheng 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2671
    ${comment}
G
guosheng 已提交
2672 2673 2674

    The formula is as follows:

Y
yuyang18 已提交
2675
    ..  math::
G
guosheng 已提交
2676 2677 2678 2679 2680 2681 2682

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2683 2684 2685 2686 2687 2688 2689 2690
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2691

G
guosheng 已提交
2692 2693
    Args:
        input(Variable): The input tensor variable.
2694
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2695
            normalization. Default True.
2696
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2697 2698
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2699
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2700
            Default 1.
2701
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2702
            division by zero. Default 1e-05.
G
guosheng 已提交
2703
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2704 2705
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2706 2707
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2708
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2709 2710
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2711
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2712
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2713
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2714 2715 2716
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2717 2718

    Returns:
Y
yuyang18 已提交
2719
        ${y_comment}
G
guosheng 已提交
2720 2721 2722

    Examples:

Y
yuyang18 已提交
2723 2724 2725
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2741
    if shift:
G
guosheng 已提交
2742 2743 2744 2745 2746 2747
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2748 2749 2750 2751 2752
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2846 2847 2848 2849
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2850 2851 2852
                     padding=0,
                     stride=1,
                     dilation=1,
2853
                     groups=None,
C
caoying03 已提交
2854
                     param_attr=None,
2855
                     bias_attr=None,
C
chengduoZH 已提交
2856
                     use_cudnn=True,
2857
                     act=None,
C
caoying03 已提交
2858
                     name=None):
Y
Yu Yang 已提交
2859
    """
2860 2861 2862 2863 2864 2865 2866 2867
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2868 2869
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2870 2871 2872
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2873 2874 2875 2876 2877

    For each input :math:`X`, the equation is:

    .. math::

2878
        Out = \sigma (W \\ast X + b)
2879

2880
    Where:
2881 2882 2883

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2884 2885 2886 2887
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2888

2889 2890 2891 2892
    Example:

        - Input:

2893
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2894

2895
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2896 2897 2898

        - Output:

2899
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2900 2901

        Where
Y
Yu Yang 已提交
2902

2903 2904
        .. math::

2905 2906 2907 2908
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2909 2910

    Args:
2911 2912 2913 2914
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2915 2916 2917 2918
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2947
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2948 2949 2950
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2951
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2952
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2953 2954

    Returns:
2955
        Variable: The tensor variable storing the convolution transpose result.
2956 2957

    Raises:
2958 2959
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2960 2961 2962 2963

    Examples:
       .. code-block:: python

2964 2965
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2966
    """
C
chengduo 已提交
2967
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2968 2969 2970 2971 2972 2973 2974 2975
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2976 2977 2978
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2979 2980 2981
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2982

C
chengduoZH 已提交
2983 2984
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2985

Y
Yu Yang 已提交
2986 2987 2988 2989 2990
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2991

Y
Yu Yang 已提交
2992 2993
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2994

C
chengduoZH 已提交
2995
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2996
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2997
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2998
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2999
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3000 3001 3002
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3003

3004 3005 3006 3007 3008 3009 3010
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3011
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3012
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3013

Y
Yu Yang 已提交
3014 3015 3016
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3017
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3018
    helper.append_op(
3019
        type=op_type,
Y
Yu Yang 已提交
3020 3021
        inputs={'Input': [input],
                'Filter': [img_filter]},
3022
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3023
        attrs={
3024
            'output_size': output_size,
3025 3026 3027 3028 3029
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3030 3031
        })

3032 3033 3034
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3035 3036


3037
def conv3d_transpose(input,
Y
Yu Yang 已提交
3038 3039 3040
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3041 3042 3043
                     padding=0,
                     stride=1,
                     dilation=1,
3044
                     groups=None,
C
caoying03 已提交
3045
                     param_attr=None,
3046
                     bias_attr=None,
C
chengduoZH 已提交
3047
                     use_cudnn=True,
3048
                     act=None,
C
caoying03 已提交
3049
                     name=None):
Y
Yu Yang 已提交
3050
    """
3051
    **Convlution3D transpose layer**
3052

3053
    The convolution3D transpose layer calculates the output based on the input,
3054
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3055 3056 3057 3058 3059 3060
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3061 3062 3063
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3064 3065 3066 3067 3068

    For each input :math:`X`, the equation is:

    .. math::

3069
        Out = \sigma (W \\ast X + b)
3070 3071 3072

    In the above equation:

3073 3074
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3075 3076 3077 3078
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3079

3080 3081 3082 3083
    Example:

        - Input:

3084
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3085

3086
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3087 3088 3089

        - Output:

3090
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3091 3092

        Where
Y
Yu Yang 已提交
3093

3094 3095
        .. math::

3096 3097 3098
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3099 3100

    Args:
3101
        input(Variable): The input image with [N, C, D, H, W] format.
3102 3103 3104
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3105
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3106 3107
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3108
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3109 3110 3111
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3112 3113
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3114
        stride(int|tuple): The stride size. If stride is a tuple, it must
3115 3116
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3117
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3118 3119 3120
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3121 3122 3123 3124 3125
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3135 3136
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3137 3138
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3139 3140
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3141 3142

    Returns:
3143
        Variable: The tensor variable storing the convolution transpose result.
3144 3145

    Raises:
3146 3147
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3148 3149 3150 3151

    Examples:
       .. code-block:: python

3152 3153
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3154
    """
C
chengduo 已提交
3155
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3156 3157
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3158
    if not isinstance(input, Variable):
3159
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3160 3161
    input_channel = input.shape[1]

3162 3163 3164
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3165

C
chengduoZH 已提交
3166 3167 3168
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3169 3170 3171 3172 3173 3174
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3175 3176 3177
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3178

3179
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3180
                         padding[0] - 1) // dilation[0] + 1
3181
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3182
                         padding[1] - 1) // dilation[1] + 1
3183
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3184
                         padding[2] - 1) // dilation[2] + 1
3185
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3186
    else:
3187 3188
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3189

3190
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3191
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3192 3193 3194
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3195
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3196
    helper.append_op(
3197
        type=l_type,
Y
Yu Yang 已提交
3198 3199
        inputs={'Input': [input],
                'Filter': [img_filter]},
3200
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3201 3202 3203 3204
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3205
            'groups': groups,
C
chengduoZH 已提交
3206 3207
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3208

3209 3210
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3211
    return out
Y
yangyaming 已提交
3212 3213


Y
yangyaming 已提交
3214
def sequence_expand(x, y, ref_level=-1, name=None):
3215
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3216 3217 3218 3219
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3220 3221 3222 3223 3224

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3225
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3226
                x.data = [[a], [b], [c], [d]]
3227 3228 3229
                x.dims = [4, 1]

            y is a LoDTensor:
3230 3231
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3232

Y
yangyaming 已提交
3233
            ref_level: 0
3234

Y
yangyaming 已提交
3235
            then output is a 1-level LoDTensor:
3236
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3237
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3238 3239 3240 3241
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3242
                x.data = [[a], [b], [c]]
3243 3244 3245
                x.dims = [3, 1]

            y is a LoDTensor:
3246
                y.lod = [[2, 0, 3]]
3247

Y
yangyaming 已提交
3248
            ref_level: -1
3249

Y
yangyaming 已提交
3250 3251 3252
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3253 3254 3255
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3256 3257
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3258
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3259
                        will be named automatically.
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3270
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3271
    """
Y
yangyaming 已提交
3272
    helper = LayerHelper('sequence_expand', input=x, **locals())
3273
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3274
    tmp = helper.create_variable_for_type_inference(dtype)
3275
    helper.append_op(
Y
yangyaming 已提交
3276 3277 3278 3279 3280
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3281
    return tmp
3282 3283


C
chengduo 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3340
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3341 3342 3343 3344 3345 3346 3347 3348
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3349
@templatedoc()
3350
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3351 3352 3353 3354 3355
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3356 3357 3358
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3359
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3360 3361 3362 3363
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3364 3365 3366
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3367

F
fengjiayi 已提交
3368
    Returns:
M
minqiyang 已提交
3369
        Variable: The padded sequence batch and the original lengths before
3370
                  padding. All sequences has the same length.
M
minqiyang 已提交
3371

F
fengjiayi 已提交
3372 3373 3374 3375 3376 3377 3378
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3379
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3380
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3381 3382 3383 3384 3385
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3386 3387
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3388 3389 3390 3391

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3392 3393 3394 3395 3396 3397
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3398 3399
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3400
        attrs={'padded_length': maxlen})
3401
    return out, length
F
fengjiayi 已提交
3402 3403


3404
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3405
    """
3406
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3407

3408 3409
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3419 3420 3421
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3422
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3423 3424 3425 3426 3427 3428

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3429
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3430 3431 3432 3433 3434 3435

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3436 3437
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3452
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3464 3465 3466 3467 3468 3469 3470 3471 3472
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3473 3474
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3475 3476 3477

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3478 3479

    This layer does the search in beams for one time step. Specifically, it
3480 3481 3482 3483 3484 3485
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3486

3487 3488 3489 3490 3491 3492 3493 3494
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3495

3496
    Args:
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3522

3523
    Returns:
3524 3525
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3526 3527 3528 3529

    Examples:
        .. code-block:: python

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3547 3548 3549 3550
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3551 3552 3553
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3554 3555 3556 3557 3558

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3559
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3577 3578 3579 3580 3581 3582 3583
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3594

3595 3596 3597 3598 3599 3600
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3601

3602 3603
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3604

3605 3606 3607 3608 3609 3610
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3611 3612
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3628 3629 3630 3631
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3632
              param_attr=None,
C
caoying03 已提交
3633 3634
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3635 3636 3637 3638
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3639
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3640

3641
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3642

3643
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3644

3645
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3646 3647 3648

            h_t & = o_t tanh(c_t)

3649 3650 3651 3652 3653 3654
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3655 3656 3657

        .. math::

3658
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3659 3660 3661 3662 3663 3664 3665 3666

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3667
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3668 3669

    Args:
Y
yangyaming 已提交
3670 3671 3672 3673 3674 3675
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3676
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3689 3690
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3691 3692

    Returns:
Y
yangyaming 已提交
3693
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3694 3695

    Raises:
3696 3697 3698 3699
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3700 3701 3702 3703 3704 3705

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3706
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3707
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3708
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3725
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3726 3727 3728 3729
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3730 3731
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3732 3733 3734
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3735
    size = cell_t_prev.shape[1]
3736
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3737 3738
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3739
                param_attr=param_attr,
3740
                bias_attr=bias_attr)
Y
yangyaming 已提交
3741
    dtype = x_t.dtype
X
Xin Pan 已提交
3742 3743
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3753
    return h, c
G
guosheng 已提交
3754 3755


C
caoying03 已提交
3756
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3757
    """
Y
yangyaming 已提交
3758
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3759 3760 3761

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3762
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3763 3764
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3765 3766
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3767
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3768
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3769
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3770 3771
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3772 3773 3774

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3775

G
guosheng 已提交
3776 3777 3778 3779 3780 3781
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3782
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3783 3784 3785 3786
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3787 3788 3789 3790

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3791
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3792 3793 3794
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3795 3796
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3797
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3798 3799
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3800 3801 3802 3803 3804
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3805
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3806 3807 3808 3809
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3810 3811


C
caoying03 已提交
3812
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3813
    """
Y
Yibing Liu 已提交
3814
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3815 3816 3817

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3818 3819 3820
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3821
            must be in the range :math:`[-rank(input), rank(input))`. If
3822
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3823
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3824 3825
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3826
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3827
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3828
                       will be named automatically.
G
guosheng 已提交
3829 3830

    Returns:
Y
Yibing Liu 已提交
3831
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3832

G
guosheng 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3843 3844
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3845 3846 3847 3848 3849 3850 3851

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3852 3853
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3854
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3855 3856
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3857 3858 3859 3860 3861
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3862
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3863 3864 3865 3866
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3867 3868


C
caoying03 已提交
3869
def reduce_max(input, dim=None, keep_dim=False, name=None):
3870
    """
Y
yangyaming 已提交
3871
    Computes the maximum of tensor elements over the given dimension.
3872 3873 3874

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3875
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3876 3877 3878
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3879
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3880 3881
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3882
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3883 3884
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3885 3886 3887

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3888

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3900 3901 3902 3903 3904 3905 3906

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3907 3908
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3909
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3910 3911
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3912 3913 3914 3915 3916
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3917
            'dim': dim if dim != None else [0],
3918 3919 3920 3921 3922 3923
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3924
def reduce_min(input, dim=None, keep_dim=False, name=None):
3925
    """
Y
yangyaming 已提交
3926
    Computes the minimum of tensor elements over the given dimension.
3927 3928 3929

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3930
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3931 3932 3933
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3934
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3935 3936
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3937
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3938 3939
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3940 3941 3942

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3955 3956 3957 3958 3959 3960 3961

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3962 3963
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3964
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3965 3966
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3967 3968 3969 3970 3971
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3972
            'dim': dim if dim != None else [0],
3973 3974 3975 3976
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3977 3978


3979 3980 3981 3982 3983 3984
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3985
        dim (list|int|None): The dimensions along which the product is performed. If
3986 3987
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3988 3989
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3990 3991 3992
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3993
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3994
            layer will be named automatically.
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4009
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4010
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4011 4012 4013 4014 4015 4016 4017

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4018 4019
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4020
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4021 4022
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4023 4024 4025 4026 4027
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4028
            'dim': dim if dim != None else [0],
4029 4030 4031 4032 4033 4034
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4035
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4036
    """
C
caoying03 已提交
4037
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4038 4039 4040

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4041 4042 4043 4044 4045
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4046
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4047
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4048
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4049 4050
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4051 4052

    Returns:
D
dzhwinter 已提交
4053
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4063 4064
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4080
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4103
    .. math::
4104 4105

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4106 4107 4108 4109 4110

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4111
        x(Variable|list): The input tensor to l2_normalize layer.
4112
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4113 4114
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4115
        epsilon(float): The epsilon value is used to avoid division by zero, \
4116
            the defalut value is 1e-10.
4117
        name(str|None): A name for this layer(optional). If set None, the layer \
4118
            will be named automatically.
C
caoying03 已提交
4119 4120

    Returns:
4121
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4122 4123

    Examples:
4124

C
caoying03 已提交
4125 4126
        .. code-block:: python

4127 4128 4129 4130
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4131 4132
    """

F
fengjiayi 已提交
4133 4134
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4135 4136
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4137 4138
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4139
    helper.append_op(
4140 4141 4142 4143
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4144
        attrs={
4145 4146
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4147 4148
        })
    return out
4149 4150


S
sneaxiy 已提交
4151
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4152
    """
Y
ying 已提交
4153 4154 4155 4156
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4157

C
chengduoZH 已提交
4158
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4159
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4160

4161 4162 4163 4164 4165
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4166
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4167

C
chengduoZH 已提交
4168
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4169
      performs in the following way.
G
guosheng 已提交
4170

4171
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4172
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4173
        last two dimensions and a batched matrix multiply supporting broadcast
4174
        applies on the two tensors.
G
guosheng 已提交
4175

Y
ying 已提交
4176 4177
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4178
    removed after matrix multiplication.
G
guosheng 已提交
4179 4180 4181

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4182 4183 4184
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4185
        alpha (float): The scale of output. Default 1.0.
4186
        name(str|None): A name for this layer(optional). If set None, the layer
4187
            will be named automatically.
G
guosheng 已提交
4188 4189

    Returns:
4190
        Variable: The product Tensor variable.
G
guosheng 已提交
4191

G
guosheng 已提交
4192 4193 4194
    Examples:
        .. code-block:: python

4195
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4196 4197
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4198

4199 4200
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4201

4202 4203
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4204

4205 4206
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4207 4208 4209 4210

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4211 4212
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4213

Y
ying 已提交
4214
            # x: [M], y: [N]
4215
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4216
    """
Y
ying 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4229
            y_shape = y_shape + [1]
Y
ying 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4246
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4247
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4248
    helper.append_op(
4249 4250 4251 4252
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4253 4254 4255
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4256
            'alpha': float(alpha),
S
sneaxiy 已提交
4257
        })
4258
    return out
4259 4260


4261
def topk(input, k, name=None):
Q
qingqing01 已提交
4262 4263 4264 4265
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4266
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4267 4268 4269 4270 4271 4272
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4294 4295 4296
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4297
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4298
                 of input.
4299
        name(str|None): A name for this layer(optional). If set None, the layer
4300
                       will be named automatically.
F
fengjiayi 已提交
4301
                       Default: None
Q
qingqing01 已提交
4302 4303

    Returns:
4304 4305 4306
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4307
        within the last dimension of input.
Q
qingqing01 已提交
4308

F
fengjiayi 已提交
4309 4310
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4311 4312 4313 4314 4315 4316 4317

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4318 4319
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4331
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4332
    """
Y
ying 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4342

Y
ying 已提交
4343
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4344

4345
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4346 4347
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4348
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4349

4350
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4351 4352
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4353

4354 4355 4356
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4357
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4358
                          the length of reference string.
4359
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4360
                                     calculating edit distance.
4361
        name (str): The name of this layer. It is optional.
4362

W
wanghaoshuang 已提交
4363
    Returns:
W
wanghaoshuang 已提交
4364
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4365 4366 4367 4368

    Examples:
        .. code-block:: python

T
tink2123 已提交
4369 4370
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4371
            cost = fluid.layers.edit_distance(input=x,label=y)
4372
    """
4373
    helper = LayerHelper("edit_distance", **locals())
4374

4375
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4376
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4377 4378
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4379 4380 4381 4382 4383

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4384
            attrs={"tokens": ignored_tokens})
4385 4386 4387 4388 4389
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4390
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4391
            attrs={"tokens": ignored_tokens})
4392 4393
        label = erased_label

4394
    # edit distance op
X
Xin Pan 已提交
4395 4396
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4397 4398 4399 4400
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4401 4402
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4403 4404
        attrs={"normalized": normalized})

4405
    return edit_distance_out, sequence_num
4406 4407 4408 4409 4410


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4411

Y
ying 已提交
4412 4413 4414 4415
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4433
        input.lod = [[4, 4]]
W
whs 已提交
4434 4435
      
        Computation:
4436

W
whs 已提交
4437 4438 4439 4440 4441 4442
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4443 4444 4445 4446 4447

        output.data = [[2],
                       [1],
                       [3]]

4448
        output.lod = [[2, 1]]
4449

W
whs 已提交
4450

4451 4452
    Args:

Y
ying 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4462
        name (str): The name of this layer. It is optional.
4463 4464

    Returns:
W
whs 已提交
4465 4466 4467 4468
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4469 4470 4471 4472 4473

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4474

4475
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4476
    """
4477
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4478
    _, topk_indices = topk(input, k=1)
4479 4480

    # ctc align op
X
Xin Pan 已提交
4481
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4482 4483 4484
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4485
        outputs={"Output": [ctc_out]},
4486 4487
        attrs={"merge_repeated": True,
               "blank": blank})
4488
    return ctc_out
4489 4490


W
Wu Yi 已提交
4491
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4492
    """
4493 4494
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4495
    to compute Connectionist Temporal Classification (CTC) loss.
4496 4497
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4498 4499 4500
    input tensor.

    Args:
4501
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4502 4503 4504 4505
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4506
       label (Variable): The ground truth of variable-length sequence,
4507 4508 4509
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4510 4511
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4512 4513 4514
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4515
         follewed by a mean_op.
W
Wu Yi 已提交
4516
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4517 4518

    Returns:
4519 4520
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4521 4522

    Examples:
4523

W
wanghaoshuang 已提交
4524
        .. code-block:: python
4525

4526 4527 4528
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4529 4530

    """
F
fengjiayi 已提交
4531
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4532 4533
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4534 4535 4536 4537 4538 4539
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4540 4541 4542 4543 4544
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4545
    return loss_out
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4561 4562 4563
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4564 4565 4566 4567 4568
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4569

4570
            out.lod  = [[0, 1, 3]]
4571 4572 4573 4574

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4575 4576 4577 4578 4579 4580 4581
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4582 4583 4584

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4585 4586

    Returns:
4587

4588 4589 4590 4591 4592
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4593
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4594
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4595 4596
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4597
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4598 4599 4600 4601 4602 4603
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4604 4605


4606 4607 4608 4609
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4610 4611 4612 4613 4614 4615
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4616
        num_neg_samples=None,
4617 4618 4619
        name=None,
        sampler="uniform",
        custom_dist=None,
4620 4621
        seed=0,
        is_sparse=False):
4622 4623 4624 4625 4626 4627 4628
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4629 4630
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4631
            sample is 1.0.
C
chengduo 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4641
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4642 4643
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4644 4645 4646
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4647
        custom_dist (float[]): A float[] with size=num_total_classes.
4648 4649 4650 4651
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4652
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4653

4654
    Returns:
Y
Yibing Liu 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4682 4683 4684 4685 4686 4687 4688 4689 4690

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4691

4692
    """
Y
Yang Yu 已提交
4693 4694 4695
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4696 4697

    dim = input.shape[1]
Y
Yang Yu 已提交
4698 4699 4700 4701 4702 4703
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4704
    inputs = {}
C
chengduo 已提交
4705 4706 4707 4708 4709 4710 4711
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4712 4713 4714
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4715

4716 4717 4718 4719
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4720 4721 4722 4723 4724 4725 4726

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4779 4780 4781 4782
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4783 4784 4785 4786 4787
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4788 4789
    attrs = {
        'num_total_classes': int(num_total_classes),
4790 4791
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4792 4793
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4794
    }
Y
Yang Yu 已提交
4795 4796 4797

    helper.append_op(
        type='nce',
C
chengduo 已提交
4798
        inputs=inputs,
Y
Yang Yu 已提交
4799 4800 4801 4802 4803 4804
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4805
    return cost / (num_neg_samples + 1)
4806 4807


C
chengduo 已提交
4808 4809
def hsigmoid(input,
             label,
4810
             num_classes,
C
chengduo 已提交
4811 4812
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4813
             name=None,
4814 4815 4816
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4817
             is_sparse=False):
W
weixing02 已提交
4818 4819
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4820
    process of language model. This operator organizes the classes into a
4821 4822
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4823 4824 4825 4826 4827 4828
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4829
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4830
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4831

4832 4833 4834 4835 4836 4837 4838 4839 4840
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4841
    Args:
M
minqiyang 已提交
4842
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4843 4844 4845 4846
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4847 4848 4849
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4861 4862 4863 4864 4865 4866 4867
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4868
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4869 4870
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4871 4872

    Returns:
J
JiabinYang 已提交
4873
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4874 4875 4876 4877 4878

    Examples:

        .. code-block:: python

G
guosheng 已提交
4879 4880 4881
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4882 4883 4884 4885
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4886 4887
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4888
    dim = input.shape[1]
4889
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4890 4891 4892
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4893 4894 4895 4896
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4897 4898
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4899 4900 4901
    else:
        pass

J
JiabinYang 已提交
4902 4903
    weights = None

4904
    if not is_custom:
J
JiabinYang 已提交
4905 4906 4907 4908 4909 4910 4911 4912
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4913
            shape=[num_classes, dim],
J
JiabinYang 已提交
4914 4915
            is_bias=False,
            dtype=input.dtype)
4916 4917 4918
    inputs = {
        "X": input,
        "W": weights,
4919 4920
        "PTable": path_table,
        "PathCode": path_code,
4921 4922
        "Label": label
    }
W
weixing02 已提交
4923
    if helper.bias_attr:
4924
        if not is_custom:
J
JiabinYang 已提交
4925 4926
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4927
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4928 4929 4930 4931 4932 4933
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4934
                shape=[num_classes, 1],
J
JiabinYang 已提交
4935 4936 4937
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4938 4939
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4940
        inputs=inputs,
W
weixing02 已提交
4941 4942
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4943 4944
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4945 4946 4947
    return out


Y
fix ci.  
ying 已提交
4948
def transpose(x, perm, name=None):
Y
ying 已提交
4949 4950 4951 4952 4953 4954 4955
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4956 4957 4958
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4959 4960 4961 4962 4963 4964 4965

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4966
            # use append_batch_size=False to avoid prepending extra
4967
            # batch size in shape
4968
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4969
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4970
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4971 4972
    """

Y
fix ci.  
ying 已提交
4973
    if len(perm) != len(x.shape):
Y
ying 已提交
4974 4975 4976
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4977 4978 4979 4980 4981 4982
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4983 4984

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4985 4986
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4987
    helper.append_op(
4988
        type='transpose2',
Y
fix ci.  
ying 已提交
4989
        inputs={'X': [x]},
4990 4991
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4992 4993
        attrs={'axis': perm})
    return out
4994 4995


4996 4997 4998 4999 5000 5001 5002
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5003
    """
5004 5005 5006 5007 5008 5009 5010
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5039 5040 5041 5042 5043 5044 5045 5046 5047
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5048 5049 5050
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5051 5052 5053 5054 5055
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5083 5084 5085
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5098
            output.dims = {8, 8}
5099

5100
            output.lod = [[4, 4]]
5101

T
Tink_Y 已提交
5102
    Examples:
5103 5104 5105

        .. code-block:: python

5106 5107
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5108 5109

    """
W
wanghaoshuang 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5120 5121 5122 5123 5124 5125 5126
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5127
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5128
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5129
    helper.append_op(
5130
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5131
    return out
5132 5133


Y
yuyang18 已提交
5134
@templatedoc()
5135
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5136 5137
    """
    ${comment}
5138 5139

    Args:
Y
yuyang18 已提交
5140
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5141 5142
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5143 5144 5145 5146 5147
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5148
        ${out_comment}.
5149 5150

    Examples:
Y
yuyang18 已提交
5151 5152 5153 5154
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5155 5156 5157 5158 5159 5160
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5161
    out = helper.create_variable_for_type_inference(dtype)
5162 5163 5164 5165 5166
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5167
    return helper.append_activation(out)
5168 5169


Y
yuyang18 已提交
5170
@templatedoc()
5171 5172
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5173 5174 5175 5176 5177 5178 5179
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5180 5181

    Args:
Y
yuyang18 已提交
5182 5183
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5184 5185

    Returns:
Y
yuyang18 已提交
5186
        ${out_comment}.
5187 5188
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5189 5190 5191 5192 5193

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5194
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5195 5196 5197 5198 5199 5200
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5201 5202


5203 5204 5205
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5206
                               ignore_index=kIgnoreIndex,
5207 5208
                               numeric_stable_mode=False,
                               return_softmax=False):
5209 5210
    """
    **Softmax With Cross Entropy Operator.**
5211

5212 5213 5214 5215
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5216

5217 5218 5219
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5220

5221 5222 5223
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5224

5225
    The equation is as follows:
5226

5227
    1) Hard label (one-hot label, so every sample has exactly one class)
5228

5229 5230 5231 5232
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5233

5234 5235 5236
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5237

5238 5239 5240 5241
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5242 5243 5244
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5245

S
sneaxiy 已提交
5246 5247 5248 5249 5250 5251 5252 5253
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5254 5255 5256 5257 5258 5259 5260 5261
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5262 5263
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5264
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5265 5266 5267
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5268 5269 5270
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5271
                                    stable algorithm. Default: False
5272
        return_softmax (bool): A flag indicating whether to return the softmax
5273
                               along with the cross entropy loss. Default: False
5274

5275
    Returns:
5276 5277 5278 5279
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5280
                              2-D tensor with shape [N x K].
5281 5282 5283 5284 5285 5286 5287

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5288 5289
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5290 5291
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5292 5293
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5294 5295 5296 5297 5298 5299
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5300 5301 5302 5303 5304
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5305 5306 5307 5308

    if return_softmax:
        return loss, softmax

5309 5310 5311 5312 5313
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5314 5315
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5316
    For each instance, it computes the smooth L1 loss element by element first
5317
    and then sums all the losses. So the shape of ouput Variable is
5318
    [batch_size, 1].
5319

5320 5321
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5322
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5323
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5324
            L1 loss op with same shape as :attr:`x`.
5325
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5326 5327
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5328
            by this tensor element by element.
5329
        outside_weight (Variable|None): A tensor with rank at least 2. This
5330 5331
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5332
            element by element.
5333
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5334 5335
           scalar with default value 1.0.

5336
    Returns:
5337
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5338 5339 5340 5341 5342

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5343 5344
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5345
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5346
            out = fluid.layers.smooth_l1(x=fc, y=label)
5347
    """
5348

5349
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5350 5351
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5364 5365 5366 5367


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5368
    This layer creates the one-hot representations for input indices.
5369 5370

    Args:
Y
Yibing Liu 已提交
5371 5372
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5373 5374

    Returns:
Y
Yibing Liu 已提交
5375
        Variable: The one-hot representations of input.
5376 5377

    Examples:
C
caoying03 已提交
5378
        .. code-block:: python
5379

Y
Yibing Liu 已提交
5380 5381
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5382 5383
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5384
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5385 5386 5387 5388 5389 5390
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5391 5392


Y
Yu Yang 已提交
5393
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5394
    """
Y
yi.wu 已提交
5395 5396 5397
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5398 5399 5400 5401 5402 5403

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5404 5405
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5406 5407 5408 5409 5410 5411

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5412 5413
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5414 5415
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5416 5417 5418 5419 5420
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5421
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5422
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5423 5424
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5425 5426
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5427 5428 5429
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5430 5431


5432
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5433
    """
C
caoying03 已提交
5434 5435
    Gives a new shape to the input Tensor without changing its data.

5436 5437 5438 5439 5440
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5441

5442
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5443

5444 5445 5446 5447
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5448
    2. 0 means the actual dimension value is going to be copied from the
5449 5450 5451 5452
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5453 5454

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5455
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5456
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5457

5458
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5459 5460
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5461 5462
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5463
    dimensions.
C
caoying03 已提交
5464

5465
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5466 5467 5468 5469
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5470 5471

    Args:
5472
        x(variable): The input tensor.
C
caoying03 已提交
5473 5474
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5475 5476 5477 5478 5479
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5480 5481
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5482 5483 5484 5485 5486 5487 5488
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5489
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5490

5491
    Returns:
G
guosheng 已提交
5492 5493 5494 5495
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5496

X
Xin Pan 已提交
5497 5498 5499
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5500 5501
    Examples:
        .. code-block:: python
G
guosheng 已提交
5502

5503
            data = fluid.layers.data(
5504
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5505
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5506
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5507 5508 5509
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5510
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5511 5512 5513 5514 5515
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5516

5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5532
    helper = LayerHelper("reshape2", **locals())
5533 5534
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5535
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5536
    helper.append_op(
5537
        type="reshape2",
X
Xin Pan 已提交
5538
        inputs=inputs,
D
dzhwinter 已提交
5539
        attrs={"shape": shape},
5540 5541
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5542

D
dzhwinter 已提交
5543
    return helper.append_activation(out)
5544

5545

5546
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5547
    """
M
minqiyang 已提交
5548 5549 5550
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5551
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5552

Y
Yibing Liu 已提交
5553 5554
    Examples:
    Case 1:
M
minqiyang 已提交
5555
      Given
Y
Yibing Liu 已提交
5556 5557 5558 5559 5560 5561 5562 5563
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5564
        and
Y
Yibing Liu 已提交
5565 5566 5567
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5568

Y
Yibing Liu 已提交
5569
    Args:
5570
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5571
        axes (list): List of integers, indicating the dimensions to be squeezed.
5572
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5573 5574 5575 5576 5577 5578 5579 5580

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5581
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5582 5583
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5584 5585
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5586
    helper.append_op(
5587
        type="squeeze2",
5588
        inputs={"X": input},
Y
Yibing Liu 已提交
5589
        attrs={"axes": axes},
5590 5591
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5592

5593 5594 5595
    return out


5596
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5597
    """
M
minqiyang 已提交
5598 5599 5600
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5601

M
minqiyang 已提交
5602 5603
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5604
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5605

Y
Yibing Liu 已提交
5606
    Args:
5607
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5608
        axes (list): List of integers, indicating the dimensions to be inserted.
5609
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5610 5611 5612 5613 5614 5615 5616 5617

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5618
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5619 5620
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5621 5622
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5623
    helper.append_op(
5624
        type="unsqueeze2",
5625
        inputs={"X": input},
Y
Yibing Liu 已提交
5626
        attrs={"axes": axes},
5627 5628
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5629

5630 5631
    return out

5632

Y
yangyaming 已提交
5633
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5634
    """
Y
Yibing Liu 已提交
5635
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5636 5637 5638 5639
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5640
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5641 5642 5643 5644 5645 5646

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5647
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5648 5649 5650
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5651
            target_lod: [4, 2]
Y
yangyaming 已提交
5652 5653

            then we get a 1-level LoDTensor:
5654
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5655 5656 5657 5658 5659 5660
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5661
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5662 5663 5664 5665
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5666
                y.data = [[2, 4]]
Y
yangyaming 已提交
5667 5668 5669
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5670
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5671 5672 5673 5674 5675 5676
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5677
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5678 5679 5680 5681
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5682
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5683 5684 5685 5686
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5687
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5688 5689 5690 5691 5692
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5693
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5694
                           from :attr:`y`.
Y
yangyaming 已提交
5695
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5696
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5697 5698

    Returns:
Y
Yibing Liu 已提交
5699
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5700 5701

    Raises:
Y
Yibing Liu 已提交
5702
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5712
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5738
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5767 5768
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5781 5782 5783
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5797 5798 5799 5800


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5801
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5802
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5803

G
guosheng 已提交
5804 5805 5806 5807
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5830
                         The length of :attr:paddings must be
G
guosheng 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5841

G
guosheng 已提交
5842 5843 5844 5845 5846 5847
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5848
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5849 5850 5851 5852 5853 5854 5855
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5856 5857


C
chengduo 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5889 5890
		And
            pad_value = -1,
C
chengduo 已提交
5891

T
Tink_Y 已提交
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5927
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5928 5929 5930 5931 5932 5933 5934 5935 5936
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5937 5938 5939 5940 5941 5942 5943
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5944 5945
    called label-smoothing regularization (LSR).

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5969
                              be :math:`(1, class\_num)`.
5970 5971
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5972
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5992
    smooth_label = helper.create_variable_for_type_inference(dtype)
5993 5994 5995 5996 5997 5998 5999
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6000 6001


W
wopeizl 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6038 6039


J
jerrywgz 已提交
6040 6041 6042 6043 6044 6045
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6046 6047
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6064 6065 6066
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6067 6068 6069 6070 6071 6072
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6073
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6114 6115
        .. code-block:: python

W
whs 已提交
6116 6117 6118 6119
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6120
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6121 6122 6123 6124 6125 6126
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6127 6128


6129 6130 6131 6132
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6133 6134
                 resample='BILINEAR',
                 actual_shape=None):
6135
    """
Q
qiaolongfei 已提交
6136
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6137

6138
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6139 6140 6141
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6142

6143
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6144

6145
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6146

6147
    Args:
6148
        input (Variable): The input tensor of image resize layer,
6149 6150
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6151
        out_shape(list|tuple|Variable|None): Output shape of image resize
6152 6153
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6154
        scale(float|None): The multiplier for the input height or width.
6155 6156 6157
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6158 6159
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6160
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6161
                       currently.
6162
                       Default: 'BILINEAR'
6163 6164 6165
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6166
                                :attr:`out_shape` and :attr:`scale` specifying
6167 6168 6169 6170 6171 6172 6173
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6174 6175
                                constructing stage.
                                Default: None
6176 6177

    Returns:
Q
update  
qiaolongfei 已提交
6178 6179
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6180

6181 6182 6183
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6184
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6185 6186 6187 6188
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6189 6190 6191
    Examples:
        .. code-block:: python

6192
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6193
    """
6194 6195 6196 6197
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6198 6199
    if resample not in resample_methods:
        raise ValueError(
6200
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6201
        )
6202
    resample_type = resample_methods[resample]
6203
    if out_shape is None and scale is None:
6204
        raise ValueError("One of out_shape and scale must not be None.")
6205
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6206
    dtype = helper.input_dtype()
6207 6208 6209 6210

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6211 6212 6213
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6214
    if out_shape is not None:
6215 6216 6217 6218
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6219
            inputs['OutSize'] = out_shape
6220 6221 6222 6223 6224 6225 6226 6227
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6228 6229 6230 6231
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6232 6233 6234 6235 6236
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6237
    out = helper.create_variable_for_type_inference(dtype)
6238
    helper.append_op(
6239
        type='{}_interp'.format(resample_type),
6240
        inputs=inputs,
6241
        outputs={"Out": out},
6242 6243 6244
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6245
    return out
F
stash  
fengjiayi 已提交
6246 6247


6248
@templatedoc(op_type="bilinear_interp")
6249 6250 6251 6252 6253
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6254
    """
6255 6256
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6257 6258
    in priority order.

6259 6260 6261 6262
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6263 6264
    again in the other direction.

6265
    For details of bilinear interpolation, please refer to Wikipedia:
6266
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6267 6268 6269 6270 6271

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6272

Y
yuyang18 已提交
6273 6274 6275 6276 6277
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6278 6279 6280
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6281
                                :attr:`out_shape` and :attr:`scale` specifying
6282 6283 6284 6285 6286 6287 6288
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6289 6290
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6291 6292 6293

    Returns:
        ${out_comment}.
6294 6295 6296 6297 6298

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6299 6300
    """

6301
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6302 6303


6304
@templatedoc(op_type="nearest_interp")
6305 6306 6307 6308 6309
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6310
    """
6311
    Resize input by performing nearest neighbor interpolation in both the
6312 6313
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6314 6315
    out_shape and scale in priority order.

6316
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6317
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6318 6319 6320 6321 6322

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6323

Y
yuyang18 已提交
6324 6325 6326 6327 6328
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6329 6330 6331
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6332
                                :attr:`out_shape` and :attr:`scale` specifying
6333 6334 6335 6336 6337 6338 6339
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6340 6341
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6342 6343 6344

    Returns:
        ${out_comment}.
6345 6346 6347 6348 6349

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6350 6351
    """

6352
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6353 6354 6355 6356


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6357 6358 6359
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6360 6361 6362 6363 6364 6365 6366
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6367
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6368

6369
    Returns:
Q
update  
qiaolongfei 已提交
6370
        Variable: The output is a 4-D tensor of the shape
6371
        (num_batches, channls, out_h, out_w).
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6382 6383 6384
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6385 6386 6387
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6388 6389
def gather(input, index):
    """
Q
qiaolongfei 已提交
6390 6391
    **Gather Layer**

6392
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6393 6394 6395 6396
    of X indexed by `index` and concatenate them together.

    .. math::

6397
        Out = X[Index]
W
whs 已提交
6398 6399 6400 6401 6402 6403 6404


    .. code-block:: text


                Given:

6405 6406
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6417
        input (Variable): The source input with rank>=1.
W
whs 已提交
6418 6419 6420 6421 6422 6423
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6424

W
whs 已提交
6425 6426 6427 6428 6429 6430
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6431
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6432 6433 6434 6435 6436 6437 6438 6439
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6471
    out = helper.create_variable_for_type_inference(dtype)
6472 6473 6474 6475 6476 6477 6478 6479 6480
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6531
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6554

6555 6556 6557
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6558
    """
F
stash  
fengjiayi 已提交
6559
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6560
    dtype = x.dtype
X
Xin Pan 已提交
6561
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6562
    if seed is None:
6563
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6564
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6565
    if isinstance(seed, int):
F
fengjiayi 已提交
6566 6567 6568 6569 6570
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6571 6572 6573 6574
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6575
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6576 6577
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6578 6579
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6580
    return out
W
whs 已提交
6581 6582


6583
def log(x, name=None):
W
wanghaoshuang 已提交
6584 6585 6586 6587 6588
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6589
        Out = \\ln(x)
W
wanghaoshuang 已提交
6590 6591

    Args:
6592
        x (Variable): Input tensor.
6593 6594
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6595 6596 6597 6598 6599 6600 6601 6602

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6603
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6604 6605
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6606
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6607
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6608
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6609 6610 6611
    return out


6612
def relu(x, name=None):
W
wanghaoshuang 已提交
6613 6614
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6615
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6616 6617 6618 6619
    the tensor elementwise.

    .. math::

6620
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6621 6622

    Args:
6623
        x (Variable): The input tensor.
6624 6625
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6626 6627 6628 6629 6630 6631 6632 6633

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6634
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6635 6636
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6637
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6638
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6639
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6640
    return out
6641 6642


C
chengduo 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6684 6685 6686
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6687 6688 6689 6690
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6691
    .. math::
6692 6693

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6694

6695
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6696 6697 6698 6699 6700
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6701
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6702
                           Its shape should be the same as input.
6703
        num_classes (int): The possible number of labels.
W
whs 已提交
6704 6705 6706 6707

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6708
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6709 6710 6711 6712

    Examples:

        .. code-block:: python
6713

W
whs 已提交
6714 6715 6716 6717
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6718 6719 6720
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6721 6722
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6723 6724
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6725
        outputs={
W
whs 已提交
6726 6727 6728
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6729 6730 6731
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6800
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6801 6802 6803 6804 6805

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6806
            isinstance(shape, Variable)):
6807 6808 6809 6810 6811
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6812
    out = helper.create_variable_for_type_inference(x.dtype)
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6830 6831


W
whs 已提交
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6849

W
whs 已提交
6850
              out_shape = [2, 3, 5, 5]
6851

W
whs 已提交
6852
          Step 1:
6853

W
whs 已提交
6854 6855 6856
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6857

W
whs 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6928
            isinstance(out_shape, Variable)):
W
whs 已提交
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6950 6951 6952 6953 6954 6955 6956 6957
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6958

6959 6960
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6961

6962 6963 6964 6965
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6966

6967 6968 6969 6970 6971
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6972 6973 6974

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7010
    out = helper.create_variable_for_type_inference("float32")
7011 7012 7013 7014 7015 7016 7017 7018

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7019 7020


M
minqiyang 已提交
7021 7022
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7023
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7024
    which compares left score and right score passed in.
M
minqiyang 已提交
7025
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7026 7027 7028 7029 7030 7031

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7032
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7033 7034
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7035
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7036 7037 7038
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7039
       Variable: The ranking loss.
M
minqiyang 已提交
7040
    Raises:
M
minqiyang 已提交
7041
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7042 7043 7044 7045 7046 7047 7048
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7049
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7050 7051 7052 7053 7054 7055
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7056 7057
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7081
        .. code-block:: text
W
whs 已提交
7082

T
Tink_Y 已提交
7083
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7084

T
Tink_Y 已提交
7085 7086
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7087

T
Tink_Y 已提交
7088
	      Case 0:
M
minqiyang 已提交
7089

T
Tink_Y 已提交
7090 7091 7092
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7093

T
Tink_Y 已提交
7094 7095 7096
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7097

T
Tink_Y 已提交
7098
	      Case 1:
M
minqiyang 已提交
7099

T
Tink_Y 已提交
7100 7101
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7102

T
Tink_Y 已提交
7103 7104 7105
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7106

T
Tink_Y 已提交
7107
	      Case 2:
M
minqiyang 已提交
7108

T
Tink_Y 已提交
7109 7110
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7111

T
Tink_Y 已提交
7112 7113 7114
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7115 7116


W
whs 已提交
7117 7118
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7119
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7143
    out = helper.create_variable_for_type_inference(dtype)
7144 7145 7146 7147 7148 7149 7150 7151 7152
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7153
    helper.append_op(
7154
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7155 7156 7157 7158

    return out


7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7171 7172 7173 7174 7175

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7176 7177
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7178 7179
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7180
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7201 7202 7203 7204 7205

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7206 7207
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7208 7209
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7210
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7231 7232 7233 7234 7235

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7236 7237
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7238 7239
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7240
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7262 7263 7264 7265 7266

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7267
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7268
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7269 7270
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7271
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7294 7295 7296 7297 7298

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7299 7300
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7301 7302
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7303
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7325 7326 7327 7328 7329

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7330 7331
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7332 7333
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7334
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7335 7336 7337 7338 7339 7340 7341 7342
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7343 7344 7345 7346
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7347
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7348 7349 7350

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7351
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7352
          weight (alpha).
J
jerrywgz 已提交
7353
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7354 7355 7356
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7357
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7358
          will be named automatically.
J
jerrywgz 已提交
7359 7360 7361 7362 7363 7364 7365 7366

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7367
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7381
        attr=helper.param_attr,
J
jerrywgz 已提交
7382 7383 7384 7385
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7386
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7387 7388 7389 7390 7391 7392 7393 7394 7395
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7406
    Returns:
7407
        output(${out_type}): ${out_comment}
7408 7409 7410 7411 7412 7413 7414

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7415 7416
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7417
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7436
    Returns:
7437
        output(${out_type}): ${out_comment}
7438 7439 7440 7441 7442 7443 7444

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7445 7446
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7447
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7465
    Returns:
7466
        output(${out_type}): ${out_comment}
7467 7468 7469 7470 7471 7472 7473

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7474 7475
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7476
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7477 7478 7479 7480 7481 7482 7483 7484
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7498

7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7509 7510
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7526
        ValueError: If axis is not in range [0, rank(x)].
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7543 7544
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7545
    helper.append_op(
7546
        type='flatten2',
7547
        inputs={"X": x},
7548 7549
        outputs={'Out': out,
                 'XShape': x_shape},
7550 7551
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7552 7553


C
chenweihang 已提交
7554
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7555
    """
C
chenweihang 已提交
7556
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7557
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7558 7559
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7560

C
chenweihang 已提交
7561 7562 7563 7564
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7565
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7566 7567 7568 7569 7570 7571
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7572
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7573 7574 7575
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7576 7577 7578
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7590 7591
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7592 7593 7594 7595 7596 7597
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7598
    return out
7599

7600

S
sneaxiy 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7610

S
sneaxiy 已提交
7611
    .. math::
7612

S
sneaxiy 已提交
7613 7614 7615
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7616
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7617 7618 7619 7620
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7621 7622 7623
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7624 7625
    Returns:
        Variable: The output sequence mask.
7626

S
sneaxiy 已提交
7627 7628
    """

Q
qingqing01 已提交
7629
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7630
    if name is None:
X
Xin Pan 已提交
7631
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7632
    else:
X
Xin Pan 已提交
7633
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7634

Q
qingqing01 已提交
7635 7636 7637
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7638 7639
        outputs={'Y': out},
        attrs={
7640
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7641 7642 7643
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7644 7645


X
Xin Pan 已提交
7646
def stack(x, axis=0):
S
sneaxiy 已提交
7647 7648 7649 7650
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7651 7652 7653 7654 7655 7656 7657

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7658
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7659
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7660 7661

    Args:
7662
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7663
        axis (int|None): The axis along which all inputs are stacked.
7664

S
sneaxiy 已提交
7665 7666
    Returns:
        Variable: The stacked variable.
7667

S
sneaxiy 已提交
7668 7669
    """

X
Xin Pan 已提交
7670 7671 7672 7673 7674 7675
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7676
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7677
    helper.append_op(
S
sneaxiy 已提交
7678 7679
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7680

X
Xin Pan 已提交
7681
    return out
D
dzhwinter 已提交
7682 7683 7684 7685 7686 7687 7688


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7689

D
dzhwinter 已提交
7690 7691 7692
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7693
    raised.
D
dzhwinter 已提交
7694 7695

    Args:
M
minqiyang 已提交
7696
        x (Variable): Input variable.
D
dzhwinter 已提交
7697 7698
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7699

D
dzhwinter 已提交
7700 7701
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7702

D
dzhwinter 已提交
7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7714
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7715 7716 7717 7718 7719 7720 7721 7722

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7735

W
whs 已提交
7736 7737 7738 7739
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7740

W
whs 已提交
7741
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7742

W
whs 已提交
7743
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7744

W
whs 已提交
7745 7746 7747 7748
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7749

W
whs 已提交
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7766
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7767 7768 7769 7770 7771 7772
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7773 7774


G
fix  
gongweibao 已提交
7775 7776 7777
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7778
@templatedoc()
G
fix  
gongweibao 已提交
7779 7780 7781 7782 7783 7784 7785 7786 7787
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7788
    ${comment}
G
fix  
gongweibao 已提交
7789 7790

    Args:
G
gongweibao 已提交
7791 7792 7793
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7794
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7795 7796 7797
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7798 7799
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7800
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7801

7802 7803 7804 7805 7806
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7807 7808 7809
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7810
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7827 7828


G
gongweibao 已提交
7829
@templatedoc()
X
Xin Pan 已提交
7830
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7831
    """
G
gongweibao 已提交
7832
    ${comment}
G
fix  
gongweibao 已提交
7833 7834

    Args:
G
gongweibao 已提交
7835 7836 7837 7838
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7839 7840 7841
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7842
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7843

7844 7845 7846 7847
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7848 7849 7850
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7851
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7862
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7863 7864 7865 7866 7867
        })

    return out


G
gongweibao 已提交
7868
@templatedoc()
G
fix  
gongweibao 已提交
7869
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7870
    """
G
gongweibao 已提交
7871
    ${comment}
G
fix  
gongweibao 已提交
7872 7873

    Args:
G
gongweibao 已提交
7874 7875 7876 7877
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7878
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7879 7880

    Returns:
G
gongweibao 已提交
7881
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7882

7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7893 7894 7895
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7896
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7908
@templatedoc()
G
fix  
gongweibao 已提交
7909 7910 7911 7912 7913 7914 7915 7916 7917
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7918
    ${comment}
G
fix  
gongweibao 已提交
7919 7920

    Args:
G
gongweibao 已提交
7921 7922
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7923
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7924 7925 7926 7927
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7928
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7929 7930

    Returns:
G
gongweibao 已提交
7931
        out (Variable): ${out_comment}
7932 7933 7934 7935 7936 7937 7938 7939

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7940 7941 7942
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7943
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7962
@templatedoc()
X
Xin Pan 已提交
7963
def sum(x):
G
fix  
gongweibao 已提交
7964
    """
G
gongweibao 已提交
7965
    ${comment}
G
fix  
gongweibao 已提交
7966 7967

    Args:
G
gongweibao 已提交
7968
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7969 7970

    Returns:
G
gongweibao 已提交
7971
        out (Variable): ${out_comment}
7972 7973 7974 7975 7976 7977

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7978 7979 7980
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7981 7982
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7983 7984 7985 7986
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7987
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7988 7989 7990 7991

    return out


G
gongweibao 已提交
7992
@templatedoc()
G
fix  
gongweibao 已提交
7993 7994
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7995
    ${comment}
G
fix  
gongweibao 已提交
7996 7997

    Args:
G
gongweibao 已提交
7998 7999 8000 8001
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8002 8003

    Returns:
G
gongweibao 已提交
8004
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8005

8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8017 8018 8019
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8020 8021
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8033
@templatedoc()
G
fix  
gongweibao 已提交
8034 8035
def shape(input):
    """
G
gongweibao 已提交
8036
    ${comment}
G
fix  
gongweibao 已提交
8037 8038

    Args:
G
gongweibao 已提交
8039
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8040 8041

    Returns:
G
gongweibao 已提交
8042
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8043

8044 8045 8046 8047 8048 8049
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8050 8051 8052
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8053 8054
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8055
    helper.append_op(
G
fix  
gongweibao 已提交
8056
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8057 8058

    return out
G
merge  
gongweibao 已提交
8059 8060


S
sneaxiy 已提交
8061 8062 8063 8064 8065 8066 8067 8068
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8069 8070
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8071
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8072 8073 8074
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8075

S
sneaxiy 已提交
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8087
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8088 8089 8090 8091 8092 8093 8094 8095
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8096
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8097
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8098 8099 8100 8101 8102 8103

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8104
    if name is None:
X
Xin Pan 已提交
8105
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8106 8107 8108
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8109 8110 8111 8112 8113 8114 8115 8116 8117 8118

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8119
    return helper.append_activation(out)
S
sneaxiy 已提交
8120 8121


X
Xin Pan 已提交
8122
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8123 8124 8125
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8126
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8127 8128 8129
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8130
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8131 8132 8133
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8134
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8135 8136 8137
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8138
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8139 8140 8141
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8142
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8143 8144 8145
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8146
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8158 8159
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8160
        ])
M
minqiyang 已提交
8161 8162


8163
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8164 8165
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8166 8167
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8168 8169 8170

    if out is None:
        if name is None:
X
Xin Pan 已提交
8171
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8187
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8199 8200 8201 8202 8203 8204 8205 8206 8207

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8208 8209 8210 8211 8212 8213 8214
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8215
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8227 8228 8229 8230 8231 8232 8233 8234 8235

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8236 8237 8238 8239 8240 8241 8242
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8243
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8255 8256 8257 8258 8259 8260 8261 8262 8263

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8264 8265 8266 8267 8268 8269 8270
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8271
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8282 8283 8284 8285 8286 8287 8288

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8289 8290 8291 8292
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8308 8309 8310 8311 8312 8313 8314

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8315 8316 8317 8318 8319
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8320 8321 8322 8323
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8347 8348 8349 8350 8351 8352 8353

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8354 8355 8356 8357 8358
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8359 8360 8361 8362
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8363 8364 8365 8366 8367 8368 8369 8370

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8389
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8442
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8443 8444 8445 8446 8447 8448 8449 8450 8451
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8452 8453
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8454 8455 8456 8457 8458 8459
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8460 8461 8462 8463
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8464 8465 8466 8467 8468 8469
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8470
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8471 8472 8473 8474 8475 8476 8477 8478 8479
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8480
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8481 8482 8483 8484 8485 8486 8487 8488
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8489
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8510
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8521 8522


J
JiabinYang 已提交
8523
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8524
    """
J
JiabinYang 已提交
8525
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8526 8527 8528

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8529
    The attr blocksize indicates the input block size.
8530 8531

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8532
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8533 8534

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8535
    (but keeping all data)
J
JiabinYang 已提交
8536

J
JiabinYang 已提交
8537
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8538
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8539 8540 8541 8542 8543
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8544
    Args:
J
JiabinYang 已提交
8545
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8546
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8547 8548

    Returns:
J
JiabinYang 已提交
8549
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8550 8551

    Raises:
J
JiabinYang 已提交
8552
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8553 8554 8555 8556 8557 8558

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8559
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8560
                x=data, blocksize=2)
J
JiabinYang 已提交
8561 8562
    """

J
JiabinYang 已提交
8563
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8564

J
JiabinYang 已提交
8565 8566
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8567 8568

    if name is None:
J
JiabinYang 已提交
8569 8570
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8571 8572 8573 8574 8575
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8576
        type="space_to_depth",
J
JiabinYang 已提交
8577
        inputs={"X": x},
J
JiabinYang 已提交
8578
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8579
        outputs={"Out": out})
J
JiabinYang 已提交
8580 8581
    return out

J
JiabinYang 已提交
8582

S
sneaxiy 已提交
8583 8584
@templatedoc()
def sequence_reverse(x, name=None):
8585
    """
S
sneaxiy 已提交
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8597
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8608 8609


8610 8611 8612 8613 8614 8615
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8616

8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8636
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8649 8650


B
barrierye 已提交
8651
def similarity_focus(input, axis, indexes, name=None):
8652
    """
B
barrierye 已提交
8653
    SimilarityFocus Operator
B
barrierye 已提交
8654 8655

    Generate a similarity focus mask with the same shape of input using the following method:
8656 8657 8658
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8659
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8660 8661 8662 8663 8664 8665 8666
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8667
       each index.
B
barrierye 已提交
8668 8669 8670 8671
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8721
    Args:
8722
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8723
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8724
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8725
            1, 2 or 3.
B
barrierye 已提交
8726
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8727 8728

    Returns:
8729
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8730
            as the input.
8731

B
barrierye 已提交
8732 8733 8734
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8735 8736
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8749 8750 8751 8752 8753
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8754 8755 8756 8757 8758 8759 8760
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8761 8762


M
minqiyang 已提交
8763 8764
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8765 8766
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8767 8768
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8807
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8808
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8809 8810 8811 8812 8813 8814 8815 8816 8817

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8818 8819
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8820 8821
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8822 8823 8824 8825 8826 8827 8828
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8829 8830


D
dengkaipeng 已提交
8831
@templatedoc()
8832 8833
def grid_sampler(x, grid, name=None):
    """
8834
    This operation samples input X by using bilinear interpolation based on
8835
    flow field grid, which is usually gennerated by affine_grid. The grid of
8836 8837 8838 8839
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8840
    interpolation value of 4 nearest corner points.
8841 8842 8843 8844 8845 8846 8847 8848

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8849
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8879 8880

    Args:
8881 8882 8883
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8884 8885

    Returns:
8886
        out(Variable): Output of shape [N, C, H, W] data samples input X
8887 8888 8889 8890 8891 8892 8893 8894 8895
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8896 8897 8898 8899 8900 8901 8902 8903 8904
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8905
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8906 8907
    ipts = {'X': x, 'Grid': grid}

8908
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8909 8910 8911
    return out


G
gmcather 已提交
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9006 9007 9008 9009 9010 9011 9012 9013 9014 9015


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9016
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9017

Q
Qiao Longfei 已提交
9018
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9019 9020 9021
    For example:

    .. math::
9022
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9023

Q
Qiao Longfei 已提交
9024
    In this formula:
9025 9026
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9027
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9028
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9029 9030 9031
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9032 9033
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9034 9035 9036
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9037
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9038
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9039
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9040 9041 9042 9043
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9044
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9045 9046 9047 9048

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9049
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9050 9051
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9052
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9053 9054 9055 9056

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9057
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out