trainer.py 50.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval, Pose3DEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
48
from ppdet.modeling.post_process import multiclass_nms
K
Kaipeng Deng 已提交
49

50
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
51
from .export_utils import _dump_infer_config, _prune_input_spec, apply_to_static
K
Kaipeng Deng 已提交
52

53 54
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
55
from ppdet.utils.logger import setup_logger
56
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
57 58 59

__all__ = ['Trainer']

60
MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
61

K
Kaipeng Deng 已提交
62 63 64 65 66 67 68

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
69
        self.optimizer = None
70
        self.is_loaded_weights = False
S
shangliang Xu 已提交
71 72
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
73 74
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
K
Kaipeng Deng 已提交
75

G
George Ni 已提交
76
        # build data loader
W
wangguanzhong 已提交
77
        capital_mode = self.mode.capitalize()
78 79 80
        if cfg.architecture in MOT_ARCH and self.mode in [
                'eval', 'test'
        ] and cfg.metric not in ['COCO', 'VOC']:
W
wangguanzhong 已提交
81 82
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
83
        else:
W
wangguanzhong 已提交
84 85
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
86 87 88 89 90

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

91 92 93 94
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
95
        if self.mode == 'train':
W
wangguanzhong 已提交
96
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
97 98 99 100
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
101 102
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
103

F
FlyingQianMM 已提交
104
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
105 106
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
107
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
108

K
Kaipeng Deng 已提交
109
        # build model
110 111 112 113 114
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
115

F
Feng Ni 已提交
116 117 118
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
119 120
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
121

122
        #normalize params for deploy
C
Chang Xu 已提交
123 124 125
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
126 127 128 129 130 131 132
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
133 134
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
135

K
Kaipeng Deng 已提交
136 137 138
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
139 140
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
141 142 143
            elif cfg.architecture == "METRO_Body":
                reader_name = '{}Reader'.format(self.mode.capitalize())
                self.loader = create(reader_name)(self.dataset, cfg.worker_num)
144 145 146 147 148 149 150 151 152
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
153
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
154

F
Feng Ni 已提交
155 156 157 158 159 160 161 162 163
        # get Params
        print_params = self.cfg.get('print_params', False)
        if print_params:
            params = sum([
                p.numel() for n, p in self.model.named_parameters()
                if all([x not in n for x in ['_mean', '_variance']])
            ])  # exclude BatchNorm running status
            logger.info('Params: ', params / 1e6)

K
Kaipeng Deng 已提交
164 165 166
        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
167 168 169 170
            if steps_per_epoch < 1:
                logger.warning(
                    "Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
                )
K
Kaipeng Deng 已提交
171
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
172
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
173

M
minghaoBD 已提交
174 175 176 177
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
178
        if self.use_amp and self.amp_level == 'O2':
179 180 181 182
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
183 184 185 186
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
187 188
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_black_list = self.cfg.get('ema_black_list', None)
S
shangliang Xu 已提交
189 190 191 192
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
193 194
                cycle_epoch=cycle_epoch,
                ema_black_list=ema_black_list)
S
shangliang Xu 已提交
195

W
wangguanzhong 已提交
196 197
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
198

K
Kaipeng Deng 已提交
199 200 201
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
202
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
203 204 205 206 207 208 209 210 211 212 213

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
214
            if self.cfg.get('use_vdl', False):
215
                self._callbacks.append(VisualDLWriter(self))
216 217
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
218 219
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
220 221 222
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
223 224
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
225
            self._compose_callback = ComposeCallback(self._callbacks)
226
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
227 228
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
229 230 231 232
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
233 234
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
235 236
            self._metrics = []
            return
237
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
238
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
239
            # TODO: bias should be unified
W
wangxinxin08 已提交
240
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
241 242
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
243
            save_prediction_only = self.cfg.get('save_prediction_only', False)
244 245 246

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
247 248
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
249 250 251 252 253 254 255

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
256
                dataset = eval_dataset
W
Wenyu 已提交
257 258 259
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
260

261
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
262 263 264 265 266 267 268 269 270 271 272
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
273
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
274 275 276 277 278 279 280 281 282
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
283
                        save_prediction_only=save_prediction_only)
284
                ]
285 286 287 288 289 290
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)
W
wangxinxin08 已提交
291
            imid2path = self.cfg.get('imid2path', None)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
W
wangxinxin08 已提交
307 308
                    save_prediction_only=save_prediction_only,
                    imid2path=imid2path)
309
            ]
K
Kaipeng Deng 已提交
310
        elif self.cfg.metric == 'VOC':
311 312 313 314
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
315 316
            self._metrics = [
                VOCMetric(
317
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
318
                    class_num=self.cfg.num_classes,
319
                    map_type=self.cfg.map_type,
320 321 322
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
323
            ]
324 325 326 327 328 329 330 331 332
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
333 334 335 336
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
337
            save_prediction_only = self.cfg.get('save_prediction_only', False)
338
            self._metrics = [
339 340 341 342 343 344
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
345
            ]
Z
zhiboniu 已提交
346 347 348 349
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
350
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
351
            self._metrics = [
352 353 354 355 356 357
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
358
            ]
359 360 361 362 363 364 365
        elif self.cfg.metric == 'Pose3DEval':
            save_prediction_only = self.cfg.get('save_prediction_only', False)
            self._metrics = [
                Pose3DEval(
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
            ]
G
George Ni 已提交
366 367
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
368
        else:
369
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
370
                self.cfg.metric))
K
Kaipeng Deng 已提交
371 372 373 374 375 376 377
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
378
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
392
    def load_weights(self, weights):
393 394
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
395
        self.start_epoch = 0
396
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
397 398
        logger.debug("Load weights {} to start training".format(weights))

399 400 401
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
402 403
            if self.model.reid:
                load_weight(self.model.reid, reid_weights)
404 405 406
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
407
    def resume_weights(self, weights):
408 409 410 411 412
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
413 414
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
415
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
416

K
Kaipeng Deng 已提交
417
    def train(self, validate=False):
K
Kaipeng Deng 已提交
418
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
419
        Init_mark = False
W
wangguanzhong 已提交
420
        if validate:
W
wangguanzhong 已提交
421 422
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
423

424
        model = self.model
425 426
        if self.cfg.get('to_static', False):
            model = apply_to_static(self.cfg, model)
A
Aganlengzi 已提交
427 428 429 430
        sync_bn = (
            getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
            (self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu) and
            self._nranks > 1)
W
wangxinxin08 已提交
431
        if sync_bn:
432
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
433

434
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
435
        if self.use_amp:
436
            scaler = paddle.amp.GradScaler(
437
                enable=self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu,
438 439
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
440
        if self.cfg.get('fleet', False):
441
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
442
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
443
        elif self._nranks > 1:
G
George Ni 已提交
444 445 446
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
447
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
448

K
Kaipeng Deng 已提交
449 450 451 452 453 454 455 456 457 458 459 460
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
461
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
462 463 464
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
465
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
466

467 468
        self._compose_callback.on_train_begin(self.status)

469 470 471
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
472
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
473
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
474 475 476
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
477
            model.train()
K
Kaipeng Deng 已提交
478 479 480 481
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
482
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
483
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
484
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
485

S
shangliang Xu 已提交
486
                if self.use_amp:
487 488 489 490
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
491
                            with paddle.amp.auto_cast(
A
Aganlengzi 已提交
492 493
                                    enable=self.cfg.use_gpu or
                                    self.cfg.use_npu or self.cfg.use_mlu,
494 495
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
496 497 498 499 500 501 502 503 504 505
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
506
                        with paddle.amp.auto_cast(
A
Aganlengzi 已提交
507 508
                                enable=self.cfg.use_gpu or self.cfg.use_npu or
                                self.cfg.use_mlu,
509 510 511
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
512 513 514 515 516 517
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
518 519 520
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
538
                    self.optimizer.step()
K
Kaipeng Deng 已提交
539 540
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
541 542
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
543 544 545
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
546
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
547 548 549 550
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
551
                if self.use_ema:
S
shangliang Xu 已提交
552
                    self.ema.update()
F
Feng Ni 已提交
553
                iter_tic = time.time()
K
Kaipeng Deng 已提交
554

M
minghaoBD 已提交
555 556
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
557

558
            is_snapshot = (self._nranks < 2 or (self._local_rank == 0 or self.cfg.metric == "Pose3DEval")) \
S
shangliang Xu 已提交
559 560 561 562 563 564 565
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
566 567
            self._compose_callback.on_epoch_end(self.status)

568
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
569 570 571 572 573 574 575
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
576 577 578
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
579 580 581 582 583 584 585 586
                    if self.cfg.metric == "Pose3DEval":
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset, self.cfg.worker_num)
                    else:
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset,
                            self.cfg.worker_num,
                            batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
587 588 589 590 591 592
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
593

K
Kaipeng Deng 已提交
594
                with paddle.no_grad():
595
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
596 597
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
598 599
            if is_snapshot and self.use_ema:
                # reset original weight
600
                self.model.set_dict(weight)
S
shangliang Xu 已提交
601
                self.status.pop('weight')
602

603 604
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
605
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
606 607 608
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
609
        self.status['mode'] = 'eval'
610

K
Kaipeng Deng 已提交
611
        self.model.eval()
G
Guanghua Yu 已提交
612
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
613 614 615
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
616
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
617 618 619
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
620 621
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
622 623
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
624 625 626
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
627 628 629
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
630 631 632 633 634

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
635 636 637 638 639
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
640 641 642 643 644 645 646 647 648
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
649
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
650 651 652
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
653
    def evaluate(self):
654 655 656 657 658 659 660 661 662
        # get distributed model
        if self.cfg.get('fleet', False):
            self.model = fleet.distributed_model(self.model)
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
        elif self._nranks > 1:
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            self.model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
663 664
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    def _eval_with_loader_slice(self,
                                loader,
                                slice_size=[640, 640],
                                overlap_ratio=[0.25, 0.25],
                                combine_method='nms',
                                match_threshold=0.6,
                                match_metric='iou'):
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
        self.status['mode'] = 'eval'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)

        merged_bboxs = []
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
690 691
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)

            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']
                # update metrics
                for metric in self._metrics:
                    metric.update(data, merged_results)

                # multi-scale inputs: all inputs have same im_id
                if isinstance(data, typing.Sequence):
                    sample_num += data[0]['im_id'].numpy().shape[0]
                else:
                    sample_num += data['im_id'].numpy().shape[0]

            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        self._compose_callback.on_epoch_end(self.status)
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def evaluate_slice(self,
                       slice_size=[640, 640],
                       overlap_ratio=[0.25, 0.25],
                       combine_method='nms',
                       match_threshold=0.6,
                       match_metric='iou'):
        with paddle.no_grad():
            self._eval_with_loader_slice(self.loader, slice_size, overlap_ratio,
                                         combine_method, match_threshold,
                                         match_metric)

    def slice_predict(self,
                      images,
                      slice_size=[640, 640],
                      overlap_ratio=[0.25, 0.25],
                      combine_method='nms',
                      match_threshold=0.6,
                      match_metric='iou',
                      draw_threshold=0.5,
                      output_dir='output',
F
Feng Ni 已提交
767 768
                      save_results=False,
                      visualize=True):
769 770 771
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        self.dataset.set_slice_images(images, slice_size, overlap_ratio)
        loader = create('TestReader')(self.dataset, 0)
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)

        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)

        results = []  # all images
        merged_bboxs = []  # single image
        for step_id, data in enumerate(tqdm(loader)):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)

            outs['bbox'] = outs['bbox'].numpy()  # only in test mode
            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount.numpy()
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount.numpy()
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']

                for key in ['im_shape', 'scale_factor', 'im_id']:
                    if isinstance(data, typing.Sequence):
F
Feng Ni 已提交
823
                        merged_results[key] = data[0][key]
824
                    else:
F
Feng Ni 已提交
825
                        merged_results[key] = data[key]
826 827 828 829 830
                for key, value in merged_results.items():
                    if hasattr(value, 'numpy'):
                        merged_results[key] = value.numpy()
                results.append(merged_results)

F
Feng Ni 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']
                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())
                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
W
Wenyu 已提交
844

F
Feng Ni 已提交
845
                    image = visualize_results(
W
Wenyu 已提交
846 847 848 849 850 851 852 853 854 855
                        image,
                        bbox_res,
                        mask_res=None,
                        segm_res=None,
                        keypoint_res=None,
                        pose3d_res=None,
                        im_id=int(im_id),
                        catid2name=catid2name,
                        threshold=draw_threshold)

F
Feng Ni 已提交
856 857 858 859 860 861 862 863 864 865
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)
                    start = end
866

C
cnn 已提交
867 868 869 870
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
wangxinxin08 已提交
871 872 873 874 875
                save_results=False,
                visualize=True):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

K
Kaipeng Deng 已提交
876 877 878
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
wangxinxin08 已提交
879 880
        imid2path = self.dataset.get_imid2path()

W
Wenyu 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
W
wangxinxin08 已提交
894
            self.cfg['imid2path'] = imid2path
W
Wenyu 已提交
895 896 897 898 899 900 901 902 903 904 905 906
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

W
wangxinxin08 已提交
907 908
            self.cfg.pop('imid2path')

W
Wenyu 已提交
909 910 911 912 913 914 915 916 917 918
            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
919
        anno_file = self.dataset.get_anno()
C
cnn 已提交
920 921
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
922

K
Kaipeng Deng 已提交
923 924 925
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
926
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
927 928
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
929
        results = []
F
Feng Ni 已提交
930
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
931 932 933
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
934

W
Wenyu 已提交
935 936 937
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
938
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
939 940 941 942
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
943
            for key, value in outs.items():
944 945
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
946
            results.append(outs)
W
Wenyu 已提交
947

948 949
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
950 951
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
952

W
Wenyu 已提交
953 954 955 956
        for _m in metrics:
            _m.accumulate()
            _m.reset()

W
wangxinxin08 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']

                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())

                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
                    mask_res = batch_res['mask'][start:end] \
                            if 'mask' in batch_res else None
                    segm_res = batch_res['segm'][start:end] \
                            if 'segm' in batch_res else None
                    keypoint_res = batch_res['keypoint'][start:end] \
                            if 'keypoint' in batch_res else None
978 979
                    pose3d_res = batch_res['pose3d'][start:end] \
                            if 'pose3d' in batch_res else None
W
wangxinxin08 已提交
980 981
                    image = visualize_results(
                        image, bbox_res, mask_res, segm_res, keypoint_res,
982
                        pose3d_res, int(im_id), catid2name, draw_threshold)
W
wangxinxin08 已提交
983 984 985 986 987 988 989 990 991 992 993
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)

                    start = end
K
Kaipeng Deng 已提交
994 995 996 997 998 999 1000 1001 1002

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
1003 1004 1005 1006
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
1007
        image_shape = None
1008 1009
        im_shape = [None, 2]
        scale_factor = [None, 2]
1010 1011 1012 1013 1014 1015
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
1016
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
1017
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
1018
        if image_shape is None:
G
Guanghua Yu 已提交
1019
            image_shape = [None, 3, -1, -1]
1020

G
Guanghua Yu 已提交
1021 1022
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
1023 1024 1025
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
1026

1027
        if hasattr(self.model, 'deploy'):
1028
            self.model.deploy = True
S
shangliang Xu 已提交
1029

1030 1031 1032 1033
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
1034

1035 1036 1037 1038
        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

1039 1040 1041 1042 1043 1044
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
1045 1046 1047
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
1048 1049 1050 1051 1052 1053
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
1054

K
Kaipeng Deng 已提交
1055 1056 1057 1058 1059 1060 1061
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
1062
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
1063
            "im_shape": InputSpec(
1064
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
1065
            "scale_factor": InputSpec(
1066
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
1067
        }]
G
George Ni 已提交
1068 1069 1070 1071 1072
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
1085
        # TODO: Hard code, delete it when support prune input_spec.
1086
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
1087 1088 1089 1090
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
1104

G
Guanghua Yu 已提交
1105 1106 1107 1108
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
1109

G
Guanghua Yu 已提交
1110 1111 1112 1113
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
1114

G
Guanghua Yu 已提交
1115 1116
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
1117 1118

        # dy2st and save model
1119
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
1120 1121 1122 1123 1124
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
1125
            self.cfg.slim.save_quantized_model(
1126 1127
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
1128 1129
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
1130

G
Guanghua Yu 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
1143
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
1144
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
1145
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
1146 1147 1148 1149 1150 1151

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
1200 1201 1202
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images