trainer.py 50.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval, Pose3DEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
48
from ppdet.modeling.post_process import multiclass_nms
K
Kaipeng Deng 已提交
49

50
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
51
from .export_utils import _dump_infer_config, _prune_input_spec, apply_to_static
K
Kaipeng Deng 已提交
52

53 54
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
55
from ppdet.utils.logger import setup_logger
56
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
57 58 59

__all__ = ['Trainer']

60
MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
61

K
Kaipeng Deng 已提交
62 63 64 65 66 67 68

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
69
        self.optimizer = None
70
        self.is_loaded_weights = False
S
shangliang Xu 已提交
71 72
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
73 74
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
K
Kaipeng Deng 已提交
75

G
George Ni 已提交
76
        # build data loader
W
wangguanzhong 已提交
77
        capital_mode = self.mode.capitalize()
78 79 80
        if cfg.architecture in MOT_ARCH and self.mode in [
                'eval', 'test'
        ] and cfg.metric not in ['COCO', 'VOC']:
W
wangguanzhong 已提交
81 82
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
83
        else:
W
wangguanzhong 已提交
84 85
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
86 87 88 89 90

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

91 92 93 94
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
95
        if self.mode == 'train':
W
wangguanzhong 已提交
96
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
97 98 99 100
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
101 102
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
103

F
FlyingQianMM 已提交
104
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
105 106
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
107
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
108

K
Kaipeng Deng 已提交
109
        # build model
110 111 112 113 114
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
115

F
Feng Ni 已提交
116 117 118
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
119 120
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
121

122
        #normalize params for deploy
C
Chang Xu 已提交
123 124 125
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
126 127 128 129 130 131 132
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
133 134
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
135

K
Kaipeng Deng 已提交
136 137 138
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
139 140
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
141 142 143
            elif cfg.architecture == "METRO_Body":
                reader_name = '{}Reader'.format(self.mode.capitalize())
                self.loader = create(reader_name)(self.dataset, cfg.worker_num)
144 145 146 147 148 149 150 151 152
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
153
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
154

F
Feng Ni 已提交
155 156 157 158 159 160 161 162 163
        # get Params
        print_params = self.cfg.get('print_params', False)
        if print_params:
            params = sum([
                p.numel() for n, p in self.model.named_parameters()
                if all([x not in n for x in ['_mean', '_variance']])
            ])  # exclude BatchNorm running status
            logger.info('Params: ', params / 1e6)

K
Kaipeng Deng 已提交
164 165 166
        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
167 168 169 170
            if steps_per_epoch < 1:
                logger.warning(
                    "Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
                )
K
Kaipeng Deng 已提交
171
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
172
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
173

M
minghaoBD 已提交
174 175 176 177
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
178
        if self.use_amp and self.amp_level == 'O2':
179 180 181 182
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
183 184 185 186
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
187 188
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_black_list = self.cfg.get('ema_black_list', None)
S
shangliang Xu 已提交
189 190 191 192
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
193 194
                cycle_epoch=cycle_epoch,
                ema_black_list=ema_black_list)
S
shangliang Xu 已提交
195

W
wangguanzhong 已提交
196 197
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
198

K
Kaipeng Deng 已提交
199 200 201
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
202
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
203 204 205 206 207 208 209 210 211 212 213

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
214
            if self.cfg.get('use_vdl', False):
215
                self._callbacks.append(VisualDLWriter(self))
216 217
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
218 219
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
220 221 222
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
223 224
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
225
            self._compose_callback = ComposeCallback(self._callbacks)
226
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
227 228
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
229 230 231 232
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
233 234
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
235 236
            self._metrics = []
            return
237
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
238
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
239
            # TODO: bias should be unified
W
wangxinxin08 已提交
240
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
241 242
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
243
            save_prediction_only = self.cfg.get('save_prediction_only', False)
244 245 246

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
247 248
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
249 250 251 252 253 254 255

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
256
                dataset = eval_dataset
W
Wenyu 已提交
257 258 259
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
260

261
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
262 263 264 265 266 267 268 269 270 271 272
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
273
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
274 275 276 277 278 279 280 281 282
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
283
                        save_prediction_only=save_prediction_only)
284
                ]
285 286 287 288 289 290
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)
W
wangxinxin08 已提交
291
            imid2path = self.cfg.get('imid2path', None)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
W
wangxinxin08 已提交
307 308
                    save_prediction_only=save_prediction_only,
                    imid2path=imid2path)
309
            ]
K
Kaipeng Deng 已提交
310
        elif self.cfg.metric == 'VOC':
311 312 313 314
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
315 316
            self._metrics = [
                VOCMetric(
317
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
318
                    class_num=self.cfg.num_classes,
319
                    map_type=self.cfg.map_type,
320 321 322
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
323
            ]
324 325 326 327 328 329 330 331 332
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
333 334 335 336
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
337
            save_prediction_only = self.cfg.get('save_prediction_only', False)
338
            self._metrics = [
339 340 341 342 343 344
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
345
            ]
Z
zhiboniu 已提交
346 347 348 349
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
350
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
351
            self._metrics = [
352 353 354 355 356 357
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
358
            ]
359 360 361 362 363 364 365
        elif self.cfg.metric == 'Pose3DEval':
            save_prediction_only = self.cfg.get('save_prediction_only', False)
            self._metrics = [
                Pose3DEval(
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
            ]
G
George Ni 已提交
366 367
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
368
        else:
369
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
370
                self.cfg.metric))
K
Kaipeng Deng 已提交
371 372 373 374 375 376 377
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
378
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
392
    def load_weights(self, weights):
393 394
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
395
        self.start_epoch = 0
396
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
397 398
        logger.debug("Load weights {} to start training".format(weights))

399 400 401 402 403 404 405
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
406
    def resume_weights(self, weights):
407 408 409 410 411
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
412 413
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
414
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
415

K
Kaipeng Deng 已提交
416
    def train(self, validate=False):
K
Kaipeng Deng 已提交
417
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
418
        Init_mark = False
W
wangguanzhong 已提交
419
        if validate:
W
wangguanzhong 已提交
420 421
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
422

423
        model = self.model
424 425
        if self.cfg.get('to_static', False):
            model = apply_to_static(self.cfg, model)
A
Aganlengzi 已提交
426 427 428 429
        sync_bn = (
            getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
            (self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu) and
            self._nranks > 1)
W
wangxinxin08 已提交
430
        if sync_bn:
431
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
432

433
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
434
        if self.use_amp:
435
            scaler = paddle.amp.GradScaler(
436
                enable=self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu,
437 438
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
439
        if self.cfg.get('fleet', False):
440
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
441
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
442
        elif self._nranks > 1:
G
George Ni 已提交
443 444 445
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
446
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
447

K
Kaipeng Deng 已提交
448 449 450 451 452 453 454 455 456 457 458 459
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
460
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
461 462 463
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
464
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
465

466 467
        self._compose_callback.on_train_begin(self.status)

468 469 470
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
471
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
472
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
473 474 475
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
476
            model.train()
K
Kaipeng Deng 已提交
477 478 479 480
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
481
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
482
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
483
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
484

S
shangliang Xu 已提交
485
                if self.use_amp:
486 487 488 489
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
490
                            with paddle.amp.auto_cast(
A
Aganlengzi 已提交
491 492
                                    enable=self.cfg.use_gpu or
                                    self.cfg.use_npu or self.cfg.use_mlu,
493 494
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
495 496 497 498 499 500 501 502 503 504
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
505
                        with paddle.amp.auto_cast(
A
Aganlengzi 已提交
506 507
                                enable=self.cfg.use_gpu or self.cfg.use_npu or
                                self.cfg.use_mlu,
508 509 510
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
511 512 513 514 515 516
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
517 518 519
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
537
                    self.optimizer.step()
K
Kaipeng Deng 已提交
538 539
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
540 541
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
542 543 544
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
545
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
546 547 548 549
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
550
                if self.use_ema:
S
shangliang Xu 已提交
551
                    self.ema.update()
F
Feng Ni 已提交
552
                iter_tic = time.time()
K
Kaipeng Deng 已提交
553

M
minghaoBD 已提交
554 555
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
556

557
            is_snapshot = (self._nranks < 2 or (self._local_rank == 0 or self.cfg.metric == "Pose3DEval")) \
S
shangliang Xu 已提交
558 559 560 561 562 563 564
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
565 566
            self._compose_callback.on_epoch_end(self.status)

567
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
568 569 570 571 572 573 574
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
575 576 577
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
578 579 580 581 582 583 584 585
                    if self.cfg.metric == "Pose3DEval":
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset, self.cfg.worker_num)
                    else:
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset,
                            self.cfg.worker_num,
                            batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
586 587 588 589 590 591
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
592

K
Kaipeng Deng 已提交
593
                with paddle.no_grad():
594
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
595 596
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
597 598
            if is_snapshot and self.use_ema:
                # reset original weight
599
                self.model.set_dict(weight)
S
shangliang Xu 已提交
600
                self.status.pop('weight')
601

602 603
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
604
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
605 606 607
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
608
        self.status['mode'] = 'eval'
609

K
Kaipeng Deng 已提交
610
        self.model.eval()
G
Guanghua Yu 已提交
611
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
612 613 614
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
615
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
616 617 618
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
619 620
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
621 622
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
623 624 625
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
626 627 628
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
629 630 631 632 633

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
634 635 636 637 638
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
639 640 641 642 643 644 645 646 647
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
648
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
649 650 651
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
652
    def evaluate(self):
653 654 655 656 657 658 659 660 661
        # get distributed model
        if self.cfg.get('fleet', False):
            self.model = fleet.distributed_model(self.model)
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
        elif self._nranks > 1:
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            self.model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
662 663
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    def _eval_with_loader_slice(self,
                                loader,
                                slice_size=[640, 640],
                                overlap_ratio=[0.25, 0.25],
                                combine_method='nms',
                                match_threshold=0.6,
                                match_metric='iou'):
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
        self.status['mode'] = 'eval'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)

        merged_bboxs = []
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
689 690
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)

            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']
                # update metrics
                for metric in self._metrics:
                    metric.update(data, merged_results)

                # multi-scale inputs: all inputs have same im_id
                if isinstance(data, typing.Sequence):
                    sample_num += data[0]['im_id'].numpy().shape[0]
                else:
                    sample_num += data['im_id'].numpy().shape[0]

            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        self._compose_callback.on_epoch_end(self.status)
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def evaluate_slice(self,
                       slice_size=[640, 640],
                       overlap_ratio=[0.25, 0.25],
                       combine_method='nms',
                       match_threshold=0.6,
                       match_metric='iou'):
        with paddle.no_grad():
            self._eval_with_loader_slice(self.loader, slice_size, overlap_ratio,
                                         combine_method, match_threshold,
                                         match_metric)

    def slice_predict(self,
                      images,
                      slice_size=[640, 640],
                      overlap_ratio=[0.25, 0.25],
                      combine_method='nms',
                      match_threshold=0.6,
                      match_metric='iou',
                      draw_threshold=0.5,
                      output_dir='output',
F
Feng Ni 已提交
766 767
                      save_results=False,
                      visualize=True):
768 769 770
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
        self.dataset.set_slice_images(images, slice_size, overlap_ratio)
        loader = create('TestReader')(self.dataset, 0)
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)

        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)

        results = []  # all images
        merged_bboxs = []  # single image
        for step_id, data in enumerate(tqdm(loader)):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)

            outs['bbox'] = outs['bbox'].numpy()  # only in test mode
            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount.numpy()
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount.numpy()
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']

                for key in ['im_shape', 'scale_factor', 'im_id']:
                    if isinstance(data, typing.Sequence):
F
Feng Ni 已提交
822
                        merged_results[key] = data[0][key]
823
                    else:
F
Feng Ni 已提交
824
                        merged_results[key] = data[key]
825 826 827 828 829
                for key, value in merged_results.items():
                    if hasattr(value, 'numpy'):
                        merged_results[key] = value.numpy()
                results.append(merged_results)

F
Feng Ni 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']
                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())
                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
W
Wenyu 已提交
843

F
Feng Ni 已提交
844
                    image = visualize_results(
W
Wenyu 已提交
845 846 847 848 849 850 851 852 853 854
                        image,
                        bbox_res,
                        mask_res=None,
                        segm_res=None,
                        keypoint_res=None,
                        pose3d_res=None,
                        im_id=int(im_id),
                        catid2name=catid2name,
                        threshold=draw_threshold)

F
Feng Ni 已提交
855 856 857 858 859 860 861 862 863 864
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)
                    start = end
865

C
cnn 已提交
866 867 868 869
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
wangxinxin08 已提交
870 871 872 873 874
                save_results=False,
                visualize=True):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

K
Kaipeng Deng 已提交
875 876 877
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
wangxinxin08 已提交
878 879
        imid2path = self.dataset.get_imid2path()

W
Wenyu 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
W
wangxinxin08 已提交
893
            self.cfg['imid2path'] = imid2path
W
Wenyu 已提交
894 895 896 897 898 899 900 901 902 903 904 905
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

W
wangxinxin08 已提交
906 907
            self.cfg.pop('imid2path')

W
Wenyu 已提交
908 909 910 911 912 913 914 915 916 917
            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
918
        anno_file = self.dataset.get_anno()
C
cnn 已提交
919 920
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
921

K
Kaipeng Deng 已提交
922 923 924
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
925
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
926 927
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
928
        results = []
F
Feng Ni 已提交
929
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
930 931 932
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
933

W
Wenyu 已提交
934 935 936
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
937
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
938 939 940 941
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
942
            for key, value in outs.items():
943 944
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
945
            results.append(outs)
W
Wenyu 已提交
946

947 948
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
949 950
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
951

W
Wenyu 已提交
952 953 954 955
        for _m in metrics:
            _m.accumulate()
            _m.reset()

W
wangxinxin08 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']

                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())

                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
                    mask_res = batch_res['mask'][start:end] \
                            if 'mask' in batch_res else None
                    segm_res = batch_res['segm'][start:end] \
                            if 'segm' in batch_res else None
                    keypoint_res = batch_res['keypoint'][start:end] \
                            if 'keypoint' in batch_res else None
977 978
                    pose3d_res = batch_res['pose3d'][start:end] \
                            if 'pose3d' in batch_res else None
W
wangxinxin08 已提交
979 980
                    image = visualize_results(
                        image, bbox_res, mask_res, segm_res, keypoint_res,
981
                        pose3d_res, int(im_id), catid2name, draw_threshold)
W
wangxinxin08 已提交
982 983 984 985 986 987 988 989 990 991 992
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)

                    start = end
K
Kaipeng Deng 已提交
993 994 995 996 997 998 999 1000 1001

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
1002 1003 1004 1005
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
1006
        image_shape = None
1007 1008
        im_shape = [None, 2]
        scale_factor = [None, 2]
1009 1010 1011 1012 1013 1014
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
1015
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
1016
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
1017
        if image_shape is None:
G
Guanghua Yu 已提交
1018
            image_shape = [None, 3, -1, -1]
1019

G
Guanghua Yu 已提交
1020 1021
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
1022 1023 1024
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
1025

1026
        if hasattr(self.model, 'deploy'):
1027
            self.model.deploy = True
S
shangliang Xu 已提交
1028

1029 1030 1031 1032
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
1033

1034 1035 1036 1037
        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

1038 1039 1040 1041 1042 1043
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
1044 1045 1046
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
1047 1048 1049 1050 1051 1052
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
1053

K
Kaipeng Deng 已提交
1054 1055 1056 1057 1058 1059 1060
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
1061
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
1062
            "im_shape": InputSpec(
1063
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
1064
            "scale_factor": InputSpec(
1065
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
1066
        }]
G
George Ni 已提交
1067 1068 1069 1070 1071
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
1084
        # TODO: Hard code, delete it when support prune input_spec.
1085
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
1086 1087 1088 1089
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
1103

G
Guanghua Yu 已提交
1104 1105 1106 1107
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
1108

G
Guanghua Yu 已提交
1109 1110 1111 1112
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
1113

G
Guanghua Yu 已提交
1114 1115
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
1116 1117

        # dy2st and save model
1118
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
1119 1120 1121 1122 1123
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
1124
            self.cfg.slim.save_quantized_model(
1125 1126
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
1127 1128
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
1129

G
Guanghua Yu 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
1142
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
1143
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
1144
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
1145 1146 1147 1148 1149 1150

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
1199 1200 1201
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images