trainer.py 53.1 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval, Pose3DEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
48
from ppdet.modeling.post_process import multiclass_nms
K
Kaipeng Deng 已提交
49

50
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
51
from .export_utils import _dump_infer_config, _prune_input_spec, apply_to_static
K
Kaipeng Deng 已提交
52

53 54
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
55
from ppdet.utils.logger import setup_logger
56
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
57 58 59

__all__ = ['Trainer']

60
MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
61

K
Kaipeng Deng 已提交
62 63 64

class Trainer(object):
    def __init__(self, cfg, mode='train'):
W
wangguanzhong 已提交
65
        self.cfg = cfg.copy()
K
Kaipeng Deng 已提交
66 67 68
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
69
        self.optimizer = None
70
        self.is_loaded_weights = False
S
shangliang Xu 已提交
71 72
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
73 74
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
W
wangguanzhong 已提交
75 76
        if 'slim' in cfg and cfg['slim_type'] == 'PTQ':
            self.cfg['TestDataset'] = create('TestDataset')()
K
Kaipeng Deng 已提交
77

G
George Ni 已提交
78
        # build data loader
W
wangguanzhong 已提交
79
        capital_mode = self.mode.capitalize()
80 81 82
        if cfg.architecture in MOT_ARCH and self.mode in [
                'eval', 'test'
        ] and cfg.metric not in ['COCO', 'VOC']:
W
wangguanzhong 已提交
83 84
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
85
        else:
W
wangguanzhong 已提交
86 87
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
88 89 90 91 92

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

93 94 95 96
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
97
        if self.mode == 'train':
W
wangguanzhong 已提交
98
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
99 100 101
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
W
wangguanzhong 已提交
102
            self.cfg['JDEEmbeddingHead'][
103 104
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
105

F
FlyingQianMM 已提交
106
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
W
wangguanzhong 已提交
107
            self.cfg['FairMOTEmbeddingHead'][
M
minghaoBD 已提交
108
                'num_identities_dict'] = self.dataset.num_identities_dict
109
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
110

K
Kaipeng Deng 已提交
111
        # build model
112 113 114 115 116
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
117

F
Feng Ni 已提交
118 119 120
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
121 122
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
123

124
        #normalize params for deploy
C
Chang Xu 已提交
125 126 127
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
128 129 130 131 132 133 134
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
135 136
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
137

K
Kaipeng Deng 已提交
138 139 140
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
141 142
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
143 144 145
            elif cfg.architecture == "METRO_Body":
                reader_name = '{}Reader'.format(self.mode.capitalize())
                self.loader = create(reader_name)(self.dataset, cfg.worker_num)
146 147 148 149 150 151
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
W
wangguanzhong 已提交
152
                    self.cfg[reader_name]['collate_batch'] = False
153 154
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
155
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
156

F
Feng Ni 已提交
157 158 159 160 161
        # get Params
        print_params = self.cfg.get('print_params', False)
        if print_params:
            params = sum([
                p.numel() for n, p in self.model.named_parameters()
162
                if all([x not in n for x in ['_mean', '_variance', 'aux_']])
F
Feng Ni 已提交
163
            ])  # exclude BatchNorm running status
164 165
            logger.info('Model Params : {} M.'.format((params / 1e6).numpy()[
                0]))
F
Feng Ni 已提交
166

K
Kaipeng Deng 已提交
167 168 169
        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
170 171 172 173
            if steps_per_epoch < 1:
                logger.warning(
                    "Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
                )
K
Kaipeng Deng 已提交
174
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
175
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
176

M
minghaoBD 已提交
177 178 179 180
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
181
        if self.use_amp and self.amp_level == 'O2':
182 183 184 185
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
186 187 188 189
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
190 191
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_black_list = self.cfg.get('ema_black_list', None)
W
Wenyu 已提交
192
            ema_filter_no_grad = self.cfg.get('ema_filter_no_grad', False)
S
shangliang Xu 已提交
193 194 195 196
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
197
                cycle_epoch=cycle_epoch,
W
Wenyu 已提交
198 199
                ema_black_list=ema_black_list,
                ema_filter_no_grad=ema_filter_no_grad)
S
shangliang Xu 已提交
200

W
wangguanzhong 已提交
201 202
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
203

K
Kaipeng Deng 已提交
204 205 206
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
207
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
208 209 210 211 212 213 214 215 216 217 218

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
219
            if self.cfg.get('use_vdl', False):
220
                self._callbacks.append(VisualDLWriter(self))
221 222
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
223 224
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
225 226 227
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
228 229
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
230
            self._compose_callback = ComposeCallback(self._callbacks)
231
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
232 233
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
234 235 236 237
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
238 239
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
240 241
            self._metrics = []
            return
242
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
243
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
244
            # TODO: bias should be unified
W
wangxinxin08 已提交
245
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
246 247
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
248
            save_prediction_only = self.cfg.get('save_prediction_only', False)
249 250 251

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
252 253
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
254 255 256 257 258 259 260

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
261
                dataset = eval_dataset
W
Wenyu 已提交
262 263 264
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
265

266
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
267 268 269 270 271 272 273 274 275 276 277
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
278
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
279 280 281 282 283 284 285 286 287
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
288
                        save_prediction_only=save_prediction_only)
289
                ]
290 291 292 293 294 295
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)
W
wangxinxin08 已提交
296
            imid2path = self.cfg.get('imid2path', None)
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
W
wangxinxin08 已提交
312 313
                    save_prediction_only=save_prediction_only,
                    imid2path=imid2path)
314
            ]
K
Kaipeng Deng 已提交
315
        elif self.cfg.metric == 'VOC':
316 317 318 319
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
320 321
            self._metrics = [
                VOCMetric(
322
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
323
                    class_num=self.cfg.num_classes,
324
                    map_type=self.cfg.map_type,
325 326 327
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
328
            ]
329 330 331 332 333 334 335 336 337
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
338 339 340 341
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
342
            save_prediction_only = self.cfg.get('save_prediction_only', False)
343
            self._metrics = [
344 345 346 347 348 349
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
350
            ]
Z
zhiboniu 已提交
351 352 353 354
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
355
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
356
            self._metrics = [
357 358 359 360 361 362
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
363
            ]
364 365 366 367 368 369 370
        elif self.cfg.metric == 'Pose3DEval':
            save_prediction_only = self.cfg.get('save_prediction_only', False)
            self._metrics = [
                Pose3DEval(
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
            ]
G
George Ni 已提交
371 372
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
373
        else:
374
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
375
                self.cfg.metric))
K
Kaipeng Deng 已提交
376 377 378 379 380 381 382
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
383
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

397
    def load_weights(self, weights, ARSL_eval=False):
398 399
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
400
        self.start_epoch = 0
401
        load_pretrain_weight(self.model, weights, ARSL_eval)
K
Kaipeng Deng 已提交
402 403
        logger.debug("Load weights {} to start training".format(weights))

404 405 406
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
407 408
            if self.model.reid:
                load_weight(self.model.reid, reid_weights)
409 410 411
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
412
    def resume_weights(self, weights):
413 414 415 416 417
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
418 419
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
420
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
421

K
Kaipeng Deng 已提交
422
    def train(self, validate=False):
K
Kaipeng Deng 已提交
423
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
424
        Init_mark = False
W
wangguanzhong 已提交
425
        if validate:
W
wangguanzhong 已提交
426 427
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
428

429
        model = self.model
430 431
        if self.cfg.get('to_static', False):
            model = apply_to_static(self.cfg, model)
A
Aganlengzi 已提交
432 433 434 435
        sync_bn = (
            getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
            (self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu) and
            self._nranks > 1)
W
wangxinxin08 已提交
436
        if sync_bn:
437
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
438

439
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
440
        if self.use_amp:
441
            scaler = paddle.amp.GradScaler(
442
                enable=self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu,
443 444
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
445
        if self.cfg.get('fleet', False):
446
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
447
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
448
        elif self._nranks > 1:
G
George Ni 已提交
449 450 451
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
452
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
453

K
Kaipeng Deng 已提交
454 455 456 457 458 459 460 461 462 463 464 465
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
466
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
467 468 469
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
470
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
471

472 473
        self._compose_callback.on_train_begin(self.status)

474 475 476
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
477
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
478
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
479 480 481
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
482
            model.train()
K
Kaipeng Deng 已提交
483 484 485 486
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
487
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
488
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
489
                data['epoch_id'] = epoch_id
490 491 492
                if self.cfg.get('to_static',
                                False) and 'image_file' in data.keys():
                    data.pop('image_file')
K
Kaipeng Deng 已提交
493

S
shangliang Xu 已提交
494
                if self.use_amp:
495 496 497 498
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
499
                            with paddle.amp.auto_cast(
A
Aganlengzi 已提交
500 501
                                    enable=self.cfg.use_gpu or
                                    self.cfg.use_npu or self.cfg.use_mlu,
502 503
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
504 505 506 507 508 509 510 511 512 513
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
514
                        with paddle.amp.auto_cast(
A
Aganlengzi 已提交
515 516
                                enable=self.cfg.use_gpu or self.cfg.use_npu or
                                self.cfg.use_mlu,
517 518 519
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
520 521 522 523 524 525
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
526 527 528
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
546
                    self.optimizer.step()
K
Kaipeng Deng 已提交
547 548
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
549 550
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
551 552 553
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
554
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
555 556 557 558
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
559
                if self.use_ema:
S
shangliang Xu 已提交
560
                    self.ema.update()
F
Feng Ni 已提交
561
                iter_tic = time.time()
K
Kaipeng Deng 已提交
562

M
minghaoBD 已提交
563 564
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
565

566
            is_snapshot = (self._nranks < 2 or (self._local_rank == 0 or self.cfg.metric == "Pose3DEval")) \
S
shangliang Xu 已提交
567 568 569 570 571 572 573
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
574 575
            self._compose_callback.on_epoch_end(self.status)

576
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
577 578 579 580 581 582 583
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
584 585 586
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
587 588 589 590 591 592 593 594
                    if self.cfg.metric == "Pose3DEval":
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset, self.cfg.worker_num)
                    else:
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset,
                            self.cfg.worker_num,
                            batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
595 596 597 598 599 600
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
601

K
Kaipeng Deng 已提交
602
                with paddle.no_grad():
603
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
604 605
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
606 607
            if is_snapshot and self.use_ema:
                # reset original weight
608
                self.model.set_dict(weight)
S
shangliang Xu 已提交
609
                self.status.pop('weight')
610

611 612
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
613
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
614 615 616
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
617
        self.status['mode'] = 'eval'
618

K
Kaipeng Deng 已提交
619
        self.model.eval()
G
Guanghua Yu 已提交
620
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
621 622 623
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
624
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
625 626 627
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
628 629
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
630 631
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
632 633 634
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
635 636 637
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
638 639 640 641 642

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
643 644 645 646 647
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
648 649 650 651 652 653 654 655 656
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
657
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
658 659 660
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
661
    def evaluate(self):
662 663 664 665 666 667 668 669 670
        # get distributed model
        if self.cfg.get('fleet', False):
            self.model = fleet.distributed_model(self.model)
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
        elif self._nranks > 1:
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            self.model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
671 672
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    def _eval_with_loader_slice(self,
                                loader,
                                slice_size=[640, 640],
                                overlap_ratio=[0.25, 0.25],
                                combine_method='nms',
                                match_threshold=0.6,
                                match_metric='iou'):
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
        self.status['mode'] = 'eval'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)

        merged_bboxs = []
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
698 699
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)

            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']
                # update metrics
                for metric in self._metrics:
                    metric.update(data, merged_results)

                # multi-scale inputs: all inputs have same im_id
                if isinstance(data, typing.Sequence):
                    sample_num += data[0]['im_id'].numpy().shape[0]
                else:
                    sample_num += data['im_id'].numpy().shape[0]

            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        self._compose_callback.on_epoch_end(self.status)
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def evaluate_slice(self,
                       slice_size=[640, 640],
                       overlap_ratio=[0.25, 0.25],
                       combine_method='nms',
                       match_threshold=0.6,
                       match_metric='iou'):
        with paddle.no_grad():
            self._eval_with_loader_slice(self.loader, slice_size, overlap_ratio,
                                         combine_method, match_threshold,
                                         match_metric)

    def slice_predict(self,
                      images,
                      slice_size=[640, 640],
                      overlap_ratio=[0.25, 0.25],
                      combine_method='nms',
                      match_threshold=0.6,
                      match_metric='iou',
                      draw_threshold=0.5,
                      output_dir='output',
F
Feng Ni 已提交
775 776
                      save_results=False,
                      visualize=True):
777 778 779
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

780 781 782 783
        self.dataset.set_slice_images(images, slice_size, overlap_ratio)
        loader = create('TestReader')(self.dataset, 0)
        imid2path = self.dataset.get_imid2path()

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self.cfg['imid2path'] = imid2path
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            self.cfg.pop('imid2path')

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
        anno_file = self.dataset.get_anno()
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)

        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)

        results = []  # all images
        merged_bboxs = []  # single image
        for step_id, data in enumerate(tqdm(loader)):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)

            outs['bbox'] = outs['bbox'].numpy()  # only in test mode
            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount.numpy()
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount.numpy()
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']

867 868 869
                for _m in metrics:
                    _m.update(data, merged_results)

870 871
                for key in ['im_shape', 'scale_factor', 'im_id']:
                    if isinstance(data, typing.Sequence):
F
Feng Ni 已提交
872
                        merged_results[key] = data[0][key]
873
                    else:
F
Feng Ni 已提交
874
                        merged_results[key] = data[key]
875 876 877 878 879
                for key, value in merged_results.items():
                    if hasattr(value, 'numpy'):
                        merged_results[key] = value.numpy()
                results.append(merged_results)

880 881 882 883
        for _m in metrics:
            _m.accumulate()
            _m.reset()

F
Feng Ni 已提交
884 885 886 887
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']
888

F
Feng Ni 已提交
889 890 891 892 893 894
                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())
895

F
Feng Ni 已提交
896 897 898
                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
899 900 901 902 903 904 905 906
                    mask_res = batch_res['mask'][start:end] \
                            if 'mask' in batch_res else None
                    segm_res = batch_res['segm'][start:end] \
                            if 'segm' in batch_res else None
                    keypoint_res = batch_res['keypoint'][start:end] \
                            if 'keypoint' in batch_res else None
                    pose3d_res = batch_res['pose3d'][start:end] \
                            if 'pose3d' in batch_res else None
F
Feng Ni 已提交
907
                    image = visualize_results(
908 909
                        image, bbox_res, mask_res, segm_res, keypoint_res,
                        pose3d_res, int(im_id), catid2name, draw_threshold)
F
Feng Ni 已提交
910 911 912 913 914 915 916 917 918
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)
919

F
Feng Ni 已提交
920
                    start = end
921

C
cnn 已提交
922 923 924 925
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
wangxinxin08 已提交
926 927 928 929 930
                save_results=False,
                visualize=True):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

K
Kaipeng Deng 已提交
931 932 933
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
wangxinxin08 已提交
934 935
        imid2path = self.dataset.get_imid2path()

W
Wenyu 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
W
wangxinxin08 已提交
949
            self.cfg['imid2path'] = imid2path
W
Wenyu 已提交
950 951 952 953 954 955 956 957 958 959 960 961
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

W
wangxinxin08 已提交
962 963
            self.cfg.pop('imid2path')

W
Wenyu 已提交
964 965 966 967 968 969 970 971 972 973
            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
974
        anno_file = self.dataset.get_anno()
C
cnn 已提交
975 976
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
977

K
Kaipeng Deng 已提交
978 979 980
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
981
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
982 983
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
984
        results = []
F
Feng Ni 已提交
985
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
986 987
            self.status['step_id'] = step_id
            # forward
988 989 990 991
            if hasattr(self.model, 'modelTeacher'):
                outs = self.model.modelTeacher(data)
            else:
                outs = self.model(data)
W
Wenyu 已提交
992 993 994
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
995
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
996 997 998 999
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
1000
            for key, value in outs.items():
1001 1002
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
1003
            results.append(outs)
W
Wenyu 已提交
1004

1005 1006
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
1007 1008
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
1009

W
Wenyu 已提交
1010 1011 1012 1013
        for _m in metrics:
            _m.accumulate()
            _m.reset()

W
wangxinxin08 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']

                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())

                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
                    mask_res = batch_res['mask'][start:end] \
                            if 'mask' in batch_res else None
                    segm_res = batch_res['segm'][start:end] \
                            if 'segm' in batch_res else None
                    keypoint_res = batch_res['keypoint'][start:end] \
                            if 'keypoint' in batch_res else None
1035 1036
                    pose3d_res = batch_res['pose3d'][start:end] \
                            if 'pose3d' in batch_res else None
W
wangxinxin08 已提交
1037 1038
                    image = visualize_results(
                        image, bbox_res, mask_res, segm_res, keypoint_res,
1039
                        pose3d_res, int(im_id), catid2name, draw_threshold)
W
wangxinxin08 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)

                    start = end
X
xs1997zju 已提交
1051
        return results
W
Wenyu 已提交
1052

K
Kaipeng Deng 已提交
1053 1054 1055 1056 1057 1058 1059 1060
    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
1061 1062 1063 1064
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
1065
        image_shape = None
1066 1067
        im_shape = [None, 2]
        scale_factor = [None, 2]
1068 1069 1070 1071 1072 1073
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
1074
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
1075
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
1076
        if image_shape is None:
G
Guanghua Yu 已提交
1077
            image_shape = [None, 3, -1, -1]
1078

G
Guanghua Yu 已提交
1079 1080
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
1081 1082 1083
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
1084

1085
        if hasattr(self.model, 'deploy'):
1086
            self.model.deploy = True
S
shangliang Xu 已提交
1087

1088 1089 1090 1091
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
1092

1093 1094 1095 1096
        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

1097 1098 1099 1100 1101 1102
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
1103 1104 1105
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
1106 1107 1108 1109 1110 1111
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
1112

K
Kaipeng Deng 已提交
1113 1114 1115 1116 1117 1118 1119
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
1120
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
1121
            "im_shape": InputSpec(
1122
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
1123
            "scale_factor": InputSpec(
1124
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
1125
        }]
G
George Ni 已提交
1126 1127 1128 1129 1130
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
1143
        # TODO: Hard code, delete it when support prune input_spec.
1144
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
1145 1146 1147 1148
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
1162

G
Guanghua Yu 已提交
1163 1164 1165
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
1166 1167 1168 1169
        if hasattr(self.model, 'aux_neck'):
            self.model.__delattr__('aux_neck')
        if hasattr(self.model, 'aux_head'):
            self.model.__delattr__('aux_head')
G
Guanghua Yu 已提交
1170
        self.model.eval()
1171

G
Guanghua Yu 已提交
1172 1173 1174 1175
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
1176

G
Guanghua Yu 已提交
1177 1178
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
1179 1180

        # dy2st and save model
1181
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
1182 1183 1184 1185 1186
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
1187
            self.cfg.slim.save_quantized_model(
1188 1189
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
1190 1191
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
1192

G
Guanghua Yu 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
1205
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
1206
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
1207
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
1208 1209 1210 1211 1212 1213

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
1214 1215

    def _flops(self, loader):
1216 1217 1218 1219
        if hasattr(self.model, 'aux_neck'):
            self.model.__delattr__('aux_neck')
        if hasattr(self.model, 'aux_head'):
            self.model.__delattr__('aux_head')
G
Guanghua Yu 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
1266 1267 1268
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images