pybind.cc 81.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
42
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
45
#include "paddle/fluid/framework/trainer.h"
X
Xin Pan 已提交
46
#include "paddle/fluid/framework/version.h"
H
hong 已提交
47
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
49
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/platform/cpu_info.h"
54
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/platform/enforce.h"
56
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
59
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
64
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
65
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
66
#include "paddle/fluid/pybind/ir.h"
67

W
wopeizl 已提交
68
#ifndef _WIN32
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
70
#endif
71
#include "paddle/fluid/framework/data_type.h"
72 73
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
74
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/tensor_py.h"
76
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
77
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
78
#ifndef _WIN32
Y
Yi Wang 已提交
79
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
80
#endif
Y
Yi Wang 已提交
81 82
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
83 84
#endif

85 86 87 88
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
89 90
#include "pybind11/stl.h"

91 92 93
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
94
DECLARE_bool(use_mkldnn);
95 96 97
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
98

Q
Qiao Longfei 已提交
99 100 101
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

102
namespace paddle {
103
namespace pybind {
104
bool IsCompiledWithCUDA() {
105
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
106 107 108 109 110 111
  return false;
#else
  return true;
#endif
}

112 113 114 115 116 117 118 119
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

120 121 122 123 124 125 126 127
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

128
bool IsCompiledWithBrpc() {
129
#ifndef PADDLE_WITH_DISTRIBUTE
130 131
  return false;
#endif
132 133 134 135 136 137

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
138 139
}

Y
update  
Yancey1989 已提交
140
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
141
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
142 143 144 145 146 147
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
148 149 150 151 152 153 154 155 156 157
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }

    const char *kIVarField = "_ivar";
    PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
    PADDLE_ENFORCE_NOT_NULL(py_ivar, "Can not find  ivar in Variable");

    vec_res.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    Py_DECREF(py_ivar);
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

240 241 242 243 244 245
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
246 247 248
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
249
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
250

251
  m.doc() = "C++ core of PaddlePaddle";
252

253 254 255 256
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

257
  BindException(&m);
Y
Yu Yang 已提交
258

259 260
  m.def("set_num_threads", &platform::SetNumThreads);

H
hong 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
294 295 296 297 298 299
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
300
  m.def(
S
sneaxiy 已提交
301
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
302 303 304 305
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
306 307 308
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
309 310 311
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
312
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
313

314
  m.def("_set_fuse_parameter_group_size",
315
        &paddle::framework::ir::SetFuseParameterGroupsSize);
316
  m.def("_set_fuse_parameter_memory_size",
317
        &paddle::framework::ir::SetFuseParameterMemorySize);
318

S
sneaxiy 已提交
319 320 321
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

322 323
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

324
  BindImperative(&m);
325

326
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
327
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
328 329
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
330
      .def("_get_dims",
331
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
332
      .def("_set_dims",
Q
qijun 已提交
333
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
334
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
335
           })
Y
yuyang18 已提交
336
      .def("_set_layout",
D
dzhwinter 已提交
337 338 339
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
340
      .def("_alloc_float",
D
dzhwinter 已提交
341
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
342
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
343
           })
Y
yuyang18 已提交
344
      .def("_alloc_float",
Y
Yu Yang 已提交
345
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
346
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
347
           })
348 349 350 351
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
352
      .def("_alloc_int",
Y
Yu Yang 已提交
353
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
354
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
355
           })
Y
yuyang18 已提交
356
      .def("_alloc_int",
D
dzhwinter 已提交
357
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
358
             self.mutable_data<int>(place);
Q
qijun 已提交
359
           })
Y
yuyang18 已提交
360
      .def("_alloc_int",
C
chengduoZH 已提交
361 362 363
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
364
      .def("_alloc_float",
C
chengduoZH 已提交
365 366 367
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
383
      .def("_clear", &Tensor::clear)
L
Leo Chen 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
      .def("set", PyCPUTensorSetFromArray<float>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<int>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<double>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<int64_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<bool>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<uint16_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<uint8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<int8_t>, py::arg("array"),
           py::arg("place"))
400
#ifdef PADDLE_WITH_CUDA
L
Leo Chen 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
      .def("set", PyCUDATensorSetFromArray<float>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<int>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<double>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<int64_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<bool>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<uint16_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<uint8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<int8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<float>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<int>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<double>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>, py::arg("array"),
           py::arg("place"), R"DOC(
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
Q
qijun 已提交
452
#endif
L
Leo Chen 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
Y
yuyang18 已提交
470 471 472 473
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
474
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
475
      .def("_dtype", [](Tensor &self) { return self.type(); })
476 477 478 479 480 481
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
482

L
Leo Chen 已提交
483
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
484
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
559 560 561 562 563 564 565

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
566 567

        )DOC")
568
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
569 570 571 572 573 574 575 576 577
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
578 579
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
580 581 582
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
583
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
584
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
585 586
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
587 588 589
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
590
      .def("set_lod",
591
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
592
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
593
             LoD new_lod;
594 595
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
596 597 598
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
599
             self.set_lod(new_lod);
S
sneaxiy 已提交
600 601 602 603 604
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
605 606 607 608
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
609 610 611 612 613 614 615 616 617 618

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
619
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
620
           )DOC")
621 622 623 624 625 626 627 628 629 630 631
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
632 633
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
634 635
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
636 637
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
638
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
639

L
Leo Chen 已提交
640
           For example, if recursive_sequence_lengths=[[2, 3]], which means
641
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
642
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
643 644

           Args:
L
Leo Chen 已提交
645 646 647 648
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
649 650 651 652 653 654 655 656 657 658

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
659 660
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
661
           )DOC")
662 663 664 665 666 667 668 669
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
670 671 672 673 674
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
675 676
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
677 678 679 680 681 682 683 684 685 686
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
687
           )DOC")
G
gongweibao 已提交
688
      // Set above comments of set_lod.
689 690 691 692 693 694 695 696
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
697 698
           },
           R"DOC(
L
Leo Chen 已提交
699 700
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
701 702

           Returns:
L
Leo Chen 已提交
703
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
704 705 706 707 708 709 710 711 712 713 714

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
715 716 717 718 719 720 721 722
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
723
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
724 725

           Returns:
L
Leo Chen 已提交
726
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
727 728 729 730 731 732 733 734 735 736 737

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
738 739 740 741 742 743 744
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
745
           )DOC")
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
764
      });
D
dangqingqing 已提交
765

Q
qijun 已提交
766 767 768 769 770 771 772 773 774 775 776
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
777 778
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
779 780
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
781 782 783 784 785 786 787 788 789
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
790
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
791
      .def("rows", [](SelectedRows &self) {
792 793 794 795 796
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
797
      });
Q
qijun 已提交
798

799
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
800 801 802

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
803
      .def(py::init<>())
804
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
805
      .def("set_int",
806 807
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
808 809 810 811 812 813 814
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
815
      .def("get_tensor",
816 817
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
818 819
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
820 821 822
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
823 824 825 826 827
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
828 829 830
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
831
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
832 833 834 835 836
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
837
#endif
Y
Refine  
Yu Yang 已提交
838 839
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
840
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
841 842
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
843
           py::return_value_policy::reference);
844

S
sneaxiy 已提交
845
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
846

S
sneaxiy 已提交
847 848 849 850
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
851

S
sneaxiy 已提交
852 853
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
854
      .def("push",
S
sneaxiy 已提交
855
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
856
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
857
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
858
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
859
           })
S
sneaxiy 已提交
860 861 862 863
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
864

S
sneaxiy 已提交
865
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
866 867
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
868
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
869 870 871 872
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
873
        py::return_value_policy::copy);
S
sneaxiy 已提交
874

S
sneaxiy 已提交
875
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

889
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
890 891 892 893 894 895
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
896 897
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
898
      .def("var",
899
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
900
             return self.Var(name);
Y
Yu Yang 已提交
901
           },
S
sneaxiy 已提交
902 903
           py::arg("name"),
           R"DOC(
904
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
905

906
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
907
           current scope, the variable would be created. Otherwise,
908
           return the existing variable.
S
sneaxiy 已提交
909 910

           Args:
911 912
               name (str): the variable name.

S
sneaxiy 已提交
913
           Returns:
914
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
915 916 917 918
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
919
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
920
           its parent scope. Return None if not found.
921

S
sneaxiy 已提交
922 923
           Args:
               name (str): the variable name.
924

S
sneaxiy 已提交
925
           Returns:
926
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
927
           )DOC",
928
           py::return_value_policy::reference)
929
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
930 931 932 933 934 935
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
936
           py::return_value_policy::reference)
S
sneaxiy 已提交
937 938 939
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
940 941
           )DOC")
      .def("_kids", &Scope::kids);
942

S
sneaxiy 已提交
943 944 945 946 947 948
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
949 950
        R"DOC(
        Create a new scope.
951

S
sneaxiy 已提交
952 953 954
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
955 956
        py::return_value_policy::reference);

Y
Yu Yang 已提交
957 958
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
959 960
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
961 962 963 964
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
965 966
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
967 968 969 970
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
971 972
    return ret_values;
  });
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
989 990 991 992 993 994 995
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
996 997 998
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
999

Y
Yu Yang 已提交
1000
  m.def("prune", [](const ProgramDesc &origin,
1001
                    const std::set<std::string> &feeded_var_names,
1002
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1003
    ProgramDesc prog_with_targets(origin);
1004

1005
    for (const auto &t : targets) {
1006
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1007
    }
1008
    proto::ProgramDesc pruned_desc;
1009
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1010
    return new ProgramDesc(pruned_desc);
1011
  });
1012 1013 1014
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
1015 1016 1017 1018
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1019 1020 1021
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1022 1023
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1024
  // clang-format off
Y
Yu Yang 已提交
1025
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1026 1027
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1028
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1029 1030 1031
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1032
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1033
                      -> paddle::platform::DeviceContext* {
1034
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1035
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1036
#else
Q
qijun 已提交
1037
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1038
#endif
C
chengduoZH 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1050
// clang-format on
P
peizhilin 已提交
1051
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
1052 1053
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1054
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1055 1056 1057 1058 1059 1060 1061 1062
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1063
    The memory of CUDAPlace with different dev_id is not accessible.
1064 1065 1066 1067 1068 1069 1070 1071
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1072 1073 1074 1075

    Examples:
        .. code-block:: python

1076
          import paddle.fluid as fluid
L
lujun 已提交
1077 1078
          gpu_place = fluid.CUDAPlace(0)

1079
        )DOC")
S
sneaxiy 已提交
1080 1081 1082
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1107 1108
             new (&self) platform::CUDAPlace(dev_id);
#else
1109 1110 1111 1112 1113 1114 1115 1116 1117
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1118 1119
#endif
           })
S
sneaxiy 已提交
1120 1121 1122 1123 1124 1125
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1126
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1127

1128
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1129 1130
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1131 1132 1133 1134

    Examples:
        .. code-block:: python

1135
          import paddle.fluid as fluid
1136
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1137

1138
        )DOC")
1139
      .def(py::init<>())
S
sneaxiy 已提交
1140 1141 1142 1143 1144 1145
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1146
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1147

1148
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1149 1150 1151 1152 1153 1154
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1155 1156 1157 1158

    Examples:
        .. code-block:: python

1159
          import paddle.fluid as fluid
L
lujun 已提交
1160 1161
          place = fluid.CUDAPinnedPlace()

1162
        )DOC")
S
sneaxiy 已提交
1163
      .def("__init__",
S
sneaxiy 已提交
1164
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1165 1166 1167
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1168
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1169
           })
S
sneaxiy 已提交
1170 1171 1172 1173 1174 1175 1176 1177
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1178 1179
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1180 1181
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1182 1183 1184 1185 1186
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1187 1188
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1189 1190 1191 1192 1193 1194
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1195 1196 1197 1198
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1199 1200
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1201 1202 1203 1204 1205
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1206
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1207
             self = gpu_place;
C
chengduoZH 已提交
1208 1209
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1210 1211
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1212
      });
Y
Yu Yang 已提交
1213

Y
Yu Yang 已提交
1214
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1226
      .def("run",
1227
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1228 1229 1230
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1231
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1232 1233 1234 1235 1236
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1237 1238 1239 1240 1241 1242 1243
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1244 1245
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1246
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1247
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1248 1249 1250 1251
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1252

1253 1254 1255
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1256 1257 1258 1259 1260 1261 1262 1263 1264
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1265
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1266
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1267
      .def("close", &Executor::Close)
1268 1269
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1293 1294 1295 1296 1297 1298 1299 1300
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1301 1302
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1303 1304
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1305
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1306 1307
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1308
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1309 1310
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1311
      });
S
sneaxiy 已提交
1312

D
dzhwinter 已提交
1313
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1314
  m.def("init_glog", framework::InitGLOG);
1315
  m.def("init_dgc", framework::InitDGC);
1316
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1317 1318
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1319

1320
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1321
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1322
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1323
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1324
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1325 1326 1327 1328 1329 1330
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1331

1332
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1333
  m.def("get_fetch_variable", framework::GetFetchVariable);
1334
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1335

X
Xin Pan 已提交
1336 1337
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1338 1339 1340 1341 1342
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1343

Y
Yu Yang 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1353
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1354
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1355 1356 1357

    Examples:
        .. code-block:: python
1358

Z
Zeng Jinle 已提交
1359 1360 1361 1362
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1363 1364
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1375 1376 1377 1378 1379 1380
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1381 1382
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1383 1384 1385 1386 1387 1388
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1411

Y
Yu Yang 已提交
1412
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1413
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1414
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1415

P
peizhilin 已提交
1416
#ifndef _WIN32
D
dangqingqing 已提交
1417 1418 1419
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1420
#endif
P
peizhilin 已提交
1421
#endif
Y
Yu Yang 已提交
1422

1423 1424 1425 1426
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1427
      .value("kAll", platform::ProfilerState::kAll)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1441
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1442
  m.def("reset_profiler", platform::ResetProfiler);
1443
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1444 1445 1446
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1447

1448 1449
  m.def("size_of_dtype", framework::SizeOfType);

1450 1451 1452
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1453 1454
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1455
      .def("has", &ir::Pass::Has)
1456 1457 1458
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1459
           })
1460
      .def(
1461
          "set",
1462 1463 1464
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1465 1466
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1481 1482
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1483
        self.Apply(graph.get());
F
flame 已提交
1484
      });
1485

X
fix  
Xin Pan 已提交
1486 1487
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1502
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1503

Y
yuyang18 已提交
1504
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1505 1506 1507 1508
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1509 1510 1511
    Examples:
        .. code-block:: python

1512
          import paddle.fluid as fluid
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1523 1524 1525
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1526 1527
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1528 1529
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1530 1531
        )DOC");

Y
yuyang18 已提交
1532
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1533 1534 1535 1536 1537
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1548
      .def_property(
1549 1550 1551 1552
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1553 1554 1555 1556
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1557 1558 1559 1560 1561
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1562 1563 1564
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1565 1566
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1567 1568 1569 1570 1571 1572 1573
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1574 1575 1576 1577
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1578 1579
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1580 1581 1582 1583 1584 1585

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1586
              )DOC")
Q
Qiao Longfei 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1598 1599 1600 1601 1602
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1603

Y
yuyang18 已提交
1604
  exec_strategy.def_property(
Y
yuyang18 已提交
1605 1606 1607 1608 1609 1610 1611
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1612 1613
      });

C
chengduo 已提交
1614 1615 1616 1617
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1618 1619 1620
    Examples:
        .. code-block:: python

F
flame 已提交
1621 1622 1623
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1624
)DOC");
Y
yuyang18 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1641 1642
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1643
            self.reduce_ = strategy;
C
chengduo 已提交
1644
          },
C
chengduo 已提交
1645 1646 1647 1648 1649 1650 1651
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1652 1653 1654 1655 1656 1657 1658 1659

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1660 1661 1662 1663 1664
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1665 1666
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1667
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1668
          },
C
chengduo 已提交
1669 1670 1671 1672 1673
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1674 1675 1676 1677 1678

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1707
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1722
                   )DOC")
Y
yuyang18 已提交
1723 1724 1725 1726
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1727 1728
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1729
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1730
          },
C
chengduo 已提交
1731
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1732 1733 1734 1735 1736 1737 1738 1739
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1740 1741
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1742
                    )DOC")
S
sneaxiy 已提交
1743 1744 1745 1746 1747 1748
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1749 1750
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1751 1752
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1753 1754
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1755 1756 1757 1758 1759 1760 1761 1762

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1763 1764 1765 1766 1767 1768
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1769 1770
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1771 1772
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1773 1774
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1775 1776 1777 1778 1779 1780 1781 1782

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1783 1784 1785 1786
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1787 1788 1789
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1790 1791
            self.num_trainers_ = num_trainers;
          })
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1804 1805 1806 1807 1808 1809
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1810
      .def_property("use_hierarchical_allreduce",
1811 1812 1813 1814 1815 1816
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1817
      .def_property("hierarchical_allreduce_inter_nranks",
1818 1819 1820 1821 1822 1823 1824
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1825 1826 1827 1828 1829 1830
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1831 1832
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1833 1834 1835
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1846 1847 1848 1849 1850 1851
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1852 1853
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1854 1855 1856
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
                    R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
1880 1881 1882 1883 1884
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1885 1886
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1887 1888
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1889 1890
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1891 1892
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1893 1894
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1895 1896 1897 1898
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1899 1900
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1919 1920
      .def_property(
          "memory_optimize",
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
1936 1937
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
1938 1939 1940
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1941
                consumption, set to True to enable it.
1942

1943 1944 1945 1946
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1947 1948 1949
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1950 1951 1952 1953 1954 1955 1956 1957 1958
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1959 1960 1961
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1962
      .def_property(
D
dzhwinter 已提交
1963 1964 1965
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1966 1967
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
1968 1969 1970 1971
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
1972
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1973 1974 1975 1976 1977 1978 1979
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1980 1981 1982 1983
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1984 1985 1986 1987 1988 1989 1990 1991 1992
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1993
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1994
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1995 1996 1997 1998 1999
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2000 2001

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2002
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2003
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2004
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2005 2006 2007 2008
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2009 2010 2011 2012 2013
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2014 2015 2016
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2017 2018 2019 2020
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
2021
      .def("run", [](ParallelExecutor &self,
2022
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
2023
        pybind11::gil_scoped_release release;
2024
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
2025
      });
Y
Yu Yang 已提交
2026

D
dongdaxiang 已提交
2027
  BindFleetWrapper(&m);
H
hutuxian 已提交
2028
  BindBoxHelper(&m);
W
wopeizl 已提交
2029
#ifndef _WIN32
D
dongdaxiang 已提交
2030
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2031
#endif
F
flame 已提交
2032 2033
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2034
  BindInferenceApi(&m);
2035
  BindDataset(&m);
2036 2037 2038
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2039
}
2040
}  // namespace pybind
2041
}  // namespace paddle