activation.py 56.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51 52 53 54 55 56 57 58 59 60

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
61
    if in_dygraph_mode():
62
        return _C_ops.celu(x, alpha)
63 64
    else:
        check_variable_and_dtype(
65
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'celu'
66 67 68 69 70 71 72 73 74 75
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
76 77


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dygraph_mode():
113
        return _C_ops.elu(x, alpha)
114

115 116
    else:
        check_variable_and_dtype(
117
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'elu'
118 119 120 121 122 123 124 125 126 127
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
128 129


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
136
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dygraph_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dygraph_mode():
184
        return _C_ops.gelu(x, approximate)
185 186
    else:
        check_variable_and_dtype(
187
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'gelu'
188 189 190 191 192 193 194 195 196 197
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
198 199


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
217 218
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
219 220 221 222 223 224 225

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

226 227
            import paddle
            import paddle.nn.functional as F
228

Z
zhupengyang 已提交
229
            x = paddle.to_tensor([-1, 0.3, 2.5])
230
            out = F.hardshrink(x) # [-1., 0., 2.5]
231 232

    """
H
hong 已提交
233
    if in_dygraph_mode():
234
        return _C_ops.hardshrink(x, threshold)
235 236
    else:
        check_variable_and_dtype(
237
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardshrink'
238 239 240 241 242 243 244 245 246 247
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
248 249


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252
    hardtanh activation. Calculate the `hardtanh` of input `x`.
253 254 255

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
270 271 272 273 274 275 276 277 278 279

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

280
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
281 282 283
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
284
    if in_dygraph_mode():
285
        return _C_ops.hardtanh(x, min, max)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
300 301


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
305 306 307 308 309 310
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
311 312 313 314 315 316 317
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
318 319 320

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
321 322
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
338
    if in_dygraph_mode():
339
        return _C_ops.hardsigmoid(x, slope, offset)
340 341
    else:
        check_variable_and_dtype(
342
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardsigmoid'
343
        )
H
hong 已提交
344

345 346 347 348 349 350 351 352 353
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
354 355 356


def hardswish(x, name=None):
357
    r"""
358 359 360
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
361 362 363 364

    .. math::

        hardswish(x)=
365 366 367 368 369 370 371
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
372 373 374

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
376 377 378 379 380 381 382 383 384 385 386 387 388

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """
389
    if in_dygraph_mode():
390
        return _C_ops.hardswish(x)
391 392
    else:
        check_variable_and_dtype(
393
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardswish'
394
        )
395

396 397 398 399 400 401
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_swish', inputs={'X': x}, outputs={'Out': out}
        )
        return out
402 403


404
def leaky_relu(x, negative_slope=0.01, name=None):
405
    r"""
406
    leaky_relu activation. The calculation formula is:
407

408
    .. math::
409 410 411 412 413 414 415
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
416 417 418 419 420

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
421
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
422 423 424 425 426 427 428 429 430 431

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
432
            x = paddle.to_tensor([-2., 0., 1.])
433 434 435
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
436 437

    """
438
    if in_dygraph_mode():
439
        return _C_ops.leaky_relu(x, negative_slope)
440 441
    else:
        check_variable_and_dtype(
442
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'leaky_relu'
443 444 445 446 447 448 449 450 451 452
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
453 454


455
def prelu(x, weight, data_format="NCHW", name=None):
456
    """
457
    prelu activation. The calculation formula is follows:
458 459 460 461 462

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

463 464
    x and weight is input Tensor.

465 466 467
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
468
            The weight shape is [], [1] or [in], where `in` is the input channel of ``x``.
469
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
470 471
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
472 473 474 475 476 477 478 479 480 481

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

482
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
483 484 485 486
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
487 488 489 490 491
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
492 493 494 495 496 497 498
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
499
    assert (
500 501
        len(weight.shape) == 0 or len(weight.shape) == 1
    ), "The dim count of weight shape should be 0 or 1 in prelu()."
502 503

    mode = 'all'
504
    if len(weight.shape) == 1 and weight.shape[0] > 1:
505
        true_data_format = [
506 507 508 509 510 511 512
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
513 514 515 516
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
517 518
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
519 520 521

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

522 523 524
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
525

526
        # NOTE(GuoxiaWang): support NHWC data format
527
        if data_format == 'NHWC':
528 529 530
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
531
        else:
532 533 534
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
535 536
        mode = 'channel'

537
    if in_dygraph_mode():
538
        return _C_ops.prelu(x, weight, data_format, mode)
539
    else:
W
Weilong Wu 已提交
540 541 542 543 544 545
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'prelu'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
        )
546 547 548 549 550 551 552
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
553
        )
554
        return out
555 556


557
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
597 598
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.3333333333333333.
599
        training (bool, optional): Current mode is in training or others.  Default is True.
600
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
619
            print(out)
620 621 622 623 624 625 626 627 628
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
629 630 631 632
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
633 634 635

    if lower < 0 or lower > 1:
        raise ValueError(
636 637 638 639
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
640 641 642

    if upper < lower:
        raise ValueError(
643 644 645 646
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
647 648 649 650

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
651 652 653
                upper
            )
        )
654 655 656

    is_test = not training

657
    if in_dygraph_mode():
W
Weilong Wu 已提交
658
        return _C_ops.rrelu(x, lower, upper, is_test)
659
    else:
W
Weilong Wu 已提交
660
        check_variable_and_dtype(
661
            x, 'X', ['float16', 'uint16', 'float32', 'float64'], 'rrelu'
W
Weilong Wu 已提交
662
        )
663 664 665 666 667 668 669 670 671 672 673
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
674 675


676
def relu(x, name=None):
677
    """
678
    relu activation. The calculation formula is follows:
679

680
    .. math::
681 682 683

        out = max(x, 0)

684 685
    x is input Tensor.

686
    Parameters:
687
        x (Tensor): The input Tensor with data type float32, float64.
688
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
689 690

    Returns:
691
        A Tensor with the same data type and shape as ``x`` .
692 693 694 695

    Examples:
        .. code-block:: python

696 697
            import paddle
            import paddle.nn.functional as F
698

699 700 701 702
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
703 704
    """

705
    if in_dygraph_mode():
W
wanghuancoder 已提交
706
        return _C_ops.relu(x)
707 708
    else:
        check_variable_and_dtype(
709
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu'
710 711 712 713 714
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
715 716


717
@inplace_apis_in_dygraph_only
718 719 720 721 722
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
723
    return _C_ops.relu_(x)
724 725


726
def log_sigmoid(x, name=None):
727
    r"""
728
    log_sigmoid activation.
729

730
    .. math::
731

732
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
733

734 735
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
736
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
737

738 739
    Returns:
        A Tensor with the same data type and shape as ``x`` .
740

741 742 743
    Examples:
        .. code-block:: python

744 745
            import paddle
            import paddle.nn.functional as F
746

747 748
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
749 750
    """

H
hong 已提交
751
    if in_dygraph_mode():
752
        return _C_ops.logsigmoid(x)
753 754 755 756 757 758 759 760 761 762
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
763 764


765
def maxout(x, groups, axis=1, name=None):
766
    r"""
767 768 769 770 771 772 773 774
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

775 776 777 778 779 780 781 782 783
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

784 785 786 787

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
788
        groups (int): The groups number of maxout. `groups` specifies the
789
            index of channel dimension where maxout will be performed. This must be
790
            a factor of number of features.
791 792 793 794 795
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
796
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
819
    if in_dygraph_mode():
820
        return _C_ops.maxout(x, groups, axis)
821 822 823 824 825 826 827 828 829
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
830

831 832 833 834 835 836 837 838 839
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
840 841


842 843 844 845 846 847
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

848
        relu6(x) = min(max(0,x), 6)
849

850
    Parameters:
851
        x (Tensor): The input Tensor with data type float32, float64.
852
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
853 854 855 856 857 858 859

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

860 861
            import paddle
            import paddle.nn.functional as F
862

863 864 865 866
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
867 868
    """
    threshold = 6.0
869
    if in_dygraph_mode():
870
        return _C_ops.relu6(x)
Z
zhiboniu 已提交
871
    if in_dynamic_mode():
872
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
873

874 875 876
    check_variable_and_dtype(
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu6'
    )
877 878
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
879 880 881 882 883 884
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
885 886 887
    return out


888 889 890 891 892 893
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
894
    r"""
895 896 897 898
    selu activation

    .. math::

899
        selu(x)= scale *
900 901 902 903 904 905
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
906

907
    Parameters:
908
        x (Tensor): The input Tensor with data type float32, float64.
909 910
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946.
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717.
911
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
912 913 914 915 916 917 918

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

919 920
            import paddle
            import paddle.nn.functional as F
921

922 923 924 925
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
926
    """
927 928
    if scale <= 1.0:
        raise ValueError(
929
            f"The scale must be greater than 1.0. Received: {scale}."
930
        )
931 932 933

    if alpha < 0:
        raise ValueError(
934
            f"The alpha must be no less than zero. Received: {alpha}."
935
        )
936

H
hong 已提交
937
    if in_dygraph_mode():
938
        return _C_ops.selu(x, scale, alpha)
939 940 941 942 943 944 945 946 947 948 949 950 951
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
952 953


M
minghaoBD 已提交
954
def silu(x, name=None):
955 956 957 958 959
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
960
        silu(x) = \frac{x}{1 + e^{-x}}
961

962 963
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
964 965
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
966
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
967

M
minghaoBD 已提交
968
    Returns:
969
        A Tensor with the same data type and shape as :attr:`x`.
970

M
minghaoBD 已提交
971 972
    Examples:
        .. code-block:: python
973 974 975

            import paddle
            import paddle.nn.functional as F
976

977 978
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
979 980
    """

981
    if in_dygraph_mode():
W
wanghuancoder 已提交
982
        return _C_ops.silu(x)
983 984
    else:
        check_variable_and_dtype(
985
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'silu'
986 987 988 989 990
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
991 992


993
def softmax(x, axis=-1, dtype=None, name=None):
994
    r"""
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1020
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1069
    Parameters:
1070
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1071
        axis (int, optional): The axis along which to perform softmax
1072
            calculations. It should be in range [-D, D), where D is the
1073
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1074
            :math:`axis + D` . Default is -1.
1075
        dtype (str, optional): The data type of the output tensor, can be bfloat16, float16, float32, float64.
1076
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1077 1078

    Returns:
1079 1080
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1081 1082 1083 1084

    Examples:
        .. code-block:: python

1085 1086
            import paddle
            import paddle.nn.functional as F
1087

1088
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1089 1090 1091 1092
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1093
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1104
    """
1105 1106 1107

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
H
hong 已提交
1108
    if in_dygraph_mode():
1109
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1110
        return _C_ops.softmax(outs_cast, axis)
1111 1112 1113 1114
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
1115
                x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'softmax'
1116 1117 1118 1119 1120
            )
        else:
            check_dtype(
                dtype,
                'dtype',
1121
                ['uint16', 'float16', 'float32', 'float64'],
1122
                'softmax',
1123
                'If dtype is not None, it only support uint16, float16, float32 or float64.',
1124
            )
H
hong 已提交
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1136

1137 1138
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1139 1140
        )
        helper.append_op(
1141 1142 1143 1144
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1145
        )
1146

1147
        return outs_softmax
1148 1149


1150
@inplace_apis_in_dygraph_only
1151 1152 1153 1154 1155 1156 1157
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1158 1159 1160 1161 1162 1163
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1164 1165


1166
def softplus(x, beta=1, threshold=20, name=None):
1167
    r"""
1168 1169 1170
    softplus activation

    .. math::
1171 1172 1173 1174
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1175

1176
    Parameters:
1177
        x (Tensor): The input Tensor with data type float32, float64.
1178 1179
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1180
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1181 1182 1183 1184 1185 1186 1187

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1188 1189
            import paddle
            import paddle.nn.functional as F
1190

1191
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1192
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1193
    """
W
Wang Bojun 已提交
1194 1195

    if in_dygraph_mode():
1196
        return _C_ops.softplus(x, beta, threshold)
1197 1198
    else:
        check_variable_and_dtype(
1199
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softplus'
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1210 1211 1212


def softshrink(x, threshold=0.5, name=None):
1213
    r"""
1214 1215 1216 1217
    softshrink activation

    .. math::

1218
        softshrink(x)=
1219 1220 1221 1222 1223 1224 1225
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1226

1227
    Parameters:
1228 1229
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1230
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1231 1232 1233 1234 1235 1236 1237

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1238 1239
            import paddle
            import paddle.nn.functional as F
1240

1241 1242 1243 1244 1245
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1246
    """
1247 1248 1249
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1250 1251 1252
                threshold
            )
        )
1253

1254
    if in_dygraph_mode():
1255
        return _C_ops.softshrink(x, threshold)
1256 1257
    else:
        check_variable_and_dtype(
1258
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softshrink'
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1269 1270 1271


def softsign(x, name=None):
1272
    r"""
1273 1274 1275 1276
    softsign activation

    .. math::

1277
        softsign(x) = \frac{x}{1 + |x|}
1278

1279
    Parameters:
1280
        x (Tensor): The input Tensor with data type float32, float64.
1281
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1282 1283 1284 1285 1286 1287 1288

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1289 1290
            import paddle
            import paddle.nn.functional as F
1291

1292 1293 1294 1295 1296
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1297
    """
1298
    if in_dygraph_mode():
W
wanghuancoder 已提交
1299
        return _C_ops.softsign(x)
1300 1301
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1302

1303
    check_variable_and_dtype(
1304
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softsign'
1305
    )
1306 1307 1308 1309 1310 1311
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1312
def swish(x, name=None):
1313
    r"""
1314 1315 1316 1317
    swish activation.

    .. math::

1318
        swish(x) = \frac{x}{1 + e^{-x}}
1319 1320 1321

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1322
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1333 1334 1335 1336 1337
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1338
    """
1339
    if in_dygraph_mode():
1340
        return _C_ops.swish(x)
1341 1342
    else:
        check_variable_and_dtype(
1343
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'swish'
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1354 1355


1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1368

1369 1370
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1371
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1382
            x = paddle.to_tensor([-5., 0., 5.])
1383 1384
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1385
    if in_dygraph_mode():
1386
        return _C_ops.mish(x, 20)
1387 1388
    else:
        check_variable_and_dtype(
1389
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'mish'
1390 1391 1392 1393 1394
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1395 1396


1397 1398 1399 1400 1401 1402
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1403
        tanhshrink(x) = x - tanh(x)
1404 1405 1406

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1407
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1408 1409 1410 1411 1412 1413 1414

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1415 1416
            import paddle
            import paddle.nn.functional as F
1417

1418 1419 1420 1421 1422
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1423
    """
H
hong 已提交
1424
    if in_dygraph_mode():
1425
        return _C_ops.tanh_shrink(x)
1426 1427
    else:
        check_variable_and_dtype(
1428
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'tanhshrink'
1429 1430 1431 1432 1433 1434 1435
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1436 1437


1438
def thresholded_relu(x, threshold=1.0, name=None):
1439
    r"""
1440 1441 1442 1443
    thresholded relu activation.

    .. math::

1444
        thresholded\_relu(x) =
1445 1446 1447 1448 1449 1450 1451
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1452 1453 1454 1455

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1456
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1467 1468 1469 1470 1471
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1472 1473
    """

H
hong 已提交
1474
    if in_dygraph_mode():
1475
        return _C_ops.thresholded_relu(x, threshold)
1476 1477
    else:
        check_variable_and_dtype(
1478 1479 1480 1481
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64'],
            'thresholded_relu',
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1492 1493


1494
def log_softmax(x, axis=-1, dtype=None, name=None):
1495
    r"""
1496 1497
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1498 1499 1500

    .. math::

1501
        \begin{aligned}
1502 1503 1504
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1505 1506

    Parameters:
1507 1508 1509 1510 1511 1512 1513
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1514
            to ``dtype`` before the operation is performed. This is useful for
1515 1516 1517
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1518
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1519

1520
    Returns:
1521 1522
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1523 1524 1525 1526

    Examples:
        .. code-block:: python

1527 1528 1529
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1530 1531 1532 1533 1534 1535
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1548 1549 1550

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1551

H
hong 已提交
1552
    if in_dygraph_mode():
1553
        if dtype is not None:
1554 1555
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1556 1557 1558
    else:
        if dtype is None:
            check_variable_and_dtype(
1559 1560 1561 1562
                x,
                'x',
                ['float16', 'uint16', 'float32', 'float64'],
                'log_softmax',
1563 1564 1565 1566 1567 1568 1569 1570 1571
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1572

1573 1574
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1575
        if dtype is not None:
1576 1577 1578 1579 1580 1581 1582
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1583

1584
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1585
        helper.append_op(
1586 1587 1588 1589
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1590
        )
1591

1592
        return out
F
Feiyu Chan 已提交
1593 1594 1595 1596


def glu(x, axis=-1, name=None):
    r"""
1597
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1608 1609 1610
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1611
            Default is -1.
1612
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1613

F
Feiyu Chan 已提交
1614
    Returns:
1615
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1616
        halved.
1617

F
Feiyu Chan 已提交
1618 1619
    Examples:
        .. code-block:: python
1620

F
Feiyu Chan 已提交
1621 1622
            import paddle
            from paddle.nn import functional as F
1623

F
Feiyu Chan 已提交
1624 1625
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1626
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1627
            )
1628 1629 1630 1631
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1632

F
Feiyu Chan 已提交
1633
    """
1634 1635 1636
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
1637 1638 1639 1640 1641 1642 1643
    rank = len(x.shape)
    if not (-rank <= axis < rank):
        raise ValueError(
            "Expected value range of `axis` is [{}, {}), but received axis: {}".format(
                -rank, rank, axis
            )
        )
F
Feiyu Chan 已提交
1644 1645 1646 1647
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1673 1674
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1675
            a vector of probabilities with datatype float16, float32, float64.
1676 1677
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1678 1679
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1680
            in autograd. Default is False.
1681
        axis (int, optional): The axis along will be calculated softmax value.
1682
            Default is -1.
1683
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1684

1685
    Returns:
1686 1687
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1688
        probability distributions that sum to 1 across ``axis``.
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1705

1706
    """
H
hong 已提交
1707
    if in_dygraph_mode():
1708
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1709

Z
zhiboniu 已提交
1710
    if in_dynamic_mode():
1711 1712 1713
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1714 1715

    helper = LayerHelper("gumbel_softmax", **locals())
1716 1717 1718
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'gumbel_softmax'
    )
1719
    out = helper.create_variable_for_type_inference(x.dtype)
1720 1721 1722 1723 1724 1725
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1726
    return out