Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d7064f04
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7064f04
编写于
10月 13, 2021
作者:
Y
yujun
提交者:
GitHub
10月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PaddlePaddle hackathon] + ADD CELU (#36088)
* update * update * update * try make CI pass * doc typo * update doc string
上级
0c31579c
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
461 addition
and
0 deletion
+461
-0
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+74
-0
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+66
-0
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+111
-0
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
...n/paddle/fluid/tests/unittests/test_activation_nn_grad.py
+27
-0
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+89
-0
python/paddle/fluid/tests/unittests/test_imperative_layers.py
...on/paddle/fluid/tests/unittests/test_imperative_layers.py
+3
-0
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+2
-0
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+2
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+44
-0
python/paddle/nn/layer/__init__.py
python/paddle/nn/layer/__init__.py
+1
-0
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+42
-0
未找到文件。
paddle/fluid/operators/activation_op.cc
浏览文件 @
d7064f04
...
...
@@ -560,6 +560,28 @@ $$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
}
};
class
CELUOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input is a multi-dimensional Tensor. The data type is "
"float32 or float64."
);
AddOutput
(
"Out"
,
"The output is a multi-dimensional Tensor which has same "
"dimension and data type as the ``x``."
);
AddAttr
<
float
>
(
"alpha"
,
"The alpha value of CELU"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
CELU Activation Operator.
Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.
$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$
)DOC"
);
}
};
class
Relu6OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
...
...
@@ -982,6 +1004,29 @@ class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
}
};
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template
<
typename
T
>
class
CELUDoubleGradMaker
:
public
::
paddle
::
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
::
paddle
::
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"celu_grad_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"DOut"
,
this
->
Input
(
framework
::
GradVarName
(
"Out"
)));
// X@GRAD@GRAD: ddx
op
->
SetInput
(
"DDX"
,
this
->
OutputGrad
(
framework
::
GradVarName
(
"X"
)));
op
->
SetAttrMap
(
this
->
Attrs
());
// Out@GRAD@GRAD: ddy
op
->
SetOutput
(
"DX"
,
this
->
InputGrad
(
"X"
));
op
->
SetOutput
(
"DDOut"
,
this
->
InputGrad
(
framework
::
GradVarName
(
"Out"
)));
}
};
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
template
<
typename
T
>
...
...
@@ -1353,6 +1398,35 @@ REGISTER_OP_CPU_KERNEL(
/* ========================================================================== */
/* ======================== celu register ============================
*/
REGISTER_OPERATOR
(
celu
,
ops
::
ActivationOp
,
ops
::
CELUOpMaker
,
ops
::
ActivationOpInferVarType
,
ops
::
ActivationGradOpMaker
<
ops
::
CELUGradFunctor
<
float
>::
FwdDeps
(),
paddle
::
framework
::
OpDesc
>
,
ops
::
ActivationGradOpMaker
<
ops
::
CELUGradFunctor
<
float
>::
FwdDeps
(),
paddle
::
imperative
::
OpBase
>
,
ops
::
ActFwdInplaceInferer
);
REGISTER_OPERATOR
(
celu_grad
,
ops
::
ActivationOpGrad
,
ops
::
ActivationGradOpInplaceInferer
,
ops
::
CELUDoubleGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
CELUDoubleGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
celu_grad_grad
,
ops
::
ActivationOpDoubleGrad
<
ops
::
CELUGradFunctor
<
float
>::
FwdDeps
()
>
,
ops
::
ActivationDoubleGradOpInplaceInferer
);
REGISTER_ACTIVATION_CPU_KERNEL
(
celu
,
CELU
,
CELUFunctor
,
CELUGradFunctor
);
REGISTER_OP_CPU_KERNEL
(
celu_grad_grad
,
ops
::
CELUDoubleGradKernel
<
plat
::
CPUDeviceContext
,
ops
::
CELUGradGradFunctor
<
float
>>
,
ops
::
CELUDoubleGradKernel
<
plat
::
CPUDeviceContext
,
ops
::
CELUGradGradFunctor
<
double
>>
,
ops
::
CELUDoubleGradKernel
<
plat
::
CPUDeviceContext
,
ops
::
CELUGradGradFunctor
<
plat
::
float16
>>
);
/* ========================================================================== */
/* =========================== sqrt register ============================= */
REGISTER_OPERATOR
(
sqrt
,
ops
::
ActivationOp
,
ops
::
SqrtOpMaker
,
ops
::
ActivationOpInferVarType
,
...
...
paddle/fluid/operators/activation_op.cu
浏览文件 @
d7064f04
...
...
@@ -1202,6 +1202,59 @@ struct CudaELUGradFunctor : public BaseActivationFunctor<T> {
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
template
<
typename
T
>
struct
CudaCELUFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
CT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
CT
zero
=
static_cast
<
CT
>
(
0.0
f
);
CT
one
=
static_cast
<
CT
>
(
1.0
f
);
float
alpha
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha
}};
}
// celu(x) = max(0, x) + min(0, alpha * (exp(x/alpha) - 1))
__device__
__forceinline__
T
operator
()(
const
T
&
arg_x
)
const
{
CT
x
=
static_cast
<
CT
>
(
arg_x
);
CT
temp
=
static_cast
<
CT
>
(
alpha
)
*
(
exp
(
x
/
static_cast
<
CT
>
(
alpha
))
-
one
);
CT
res
=
(
x
>
zero
?
x
:
zero
)
+
(
temp
>
zero
?
zero
:
temp
);
return
static_cast
<
T
>
(
res
);
}
};
template
<
typename
T
>
struct
CudaCELUGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
MPType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
MPType
zero
=
static_cast
<
MPType
>
(
0.0
f
);
MPType
one
=
static_cast
<
MPType
>
(
1.0
f
);
float
alpha
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha
}};
}
// dx = dout, if alpha > 0 and x > 0
// dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
// dx = dout , if alpha < 0 and x > 0
// dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
__device__
__forceinline__
T
operator
()(
const
T
&
arg_dout
,
const
T
&
arg_x
)
const
{
MPType
dout
=
static_cast
<
MPType
>
(
arg_dout
);
MPType
x
=
static_cast
<
MPType
>
(
arg_x
);
MPType
a
=
static_cast
<
MPType
>
(
alpha
);
MPType
temp_a_pos
=
static_cast
<
MPType
>
(
alpha
>
0.0
f
);
MPType
temp_a_neg
=
static_cast
<
MPType
>
(
alpha
<=
0.0
f
);
MPType
temp_x_pos
=
static_cast
<
MPType
>
(
x
>
zero
);
MPType
temp_x_neg
=
static_cast
<
MPType
>
(
x
<=
zero
);
return
static_cast
<
T
>
(
dout
*
(
temp_a_pos
*
temp_x_pos
+
temp_a_pos
*
temp_x_neg
*
exp
(
x
/
a
)
+
temp_a_neg
*
temp_x_pos
+
exp
(
x
/
a
)
*
temp_a_neg
*
temp_x_neg
));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
ActivationCudaKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
...
...
@@ -1341,6 +1394,19 @@ REGISTER_OP_CUDA_KERNEL(
ops
::
ELUGradGradFunctor
<
plat
::
float16
>>
);
/* ========================================================================== */
/* ======================== celu register ============================ */
REGISTER_ACTIVATION_CUDA_KERNEL
(
celu
,
CELU
,
CudaCELUFunctor
,
CudaCELUGradFunctor
);
REGISTER_OP_CUDA_KERNEL
(
celu_grad_grad
,
ops
::
CELUDoubleGradKernel
<
plat
::
CUDADeviceContext
,
ops
::
CELUGradGradFunctor
<
float
>>
,
ops
::
CELUDoubleGradKernel
<
plat
::
CUDADeviceContext
,
ops
::
CELUGradGradFunctor
<
double
>>
,
ops
::
CELUDoubleGradKernel
<
plat
::
CUDADeviceContext
,
ops
::
CELUGradGradFunctor
<
plat
::
float16
>>
);
/* ========================================================================== */
/* =========================== relu register ============================ */
#ifdef PADDLE_WITH_HIP
REGISTER_ACTIVATION_CUDA_KERNEL
(
relu
,
Relu
,
CudaReluFunctor
,
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
d7064f04
...
...
@@ -1389,6 +1389,51 @@ struct ELUGradFunctor : public BaseActivationFunctor<T> {
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
template
<
typename
T
>
struct
CELUFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
alpha
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha
}};
}
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
(
x
<
static_cast
<
T
>
(
0
))
.
select
(
static_cast
<
T
>
(
alpha
)
*
((
x
/
static_cast
<
T
>
(
alpha
)).
exp
()
-
static_cast
<
T
>
(
1
)),
x
);
}
};
template
<
typename
T
>
struct
CELUGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
alpha
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha
}};
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp_a_pos
=
static_cast
<
T
>
(
alpha
>
0
);
auto
temp_a_neg
=
static_cast
<
T
>
(
alpha
<=
0
);
auto
temp_x_pos
=
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
auto
temp_x_neg
=
(
x
<=
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
// dx = dout, if alpha > 0 and x > 0
// dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
// dx = dout , if alpha < 0 and x > 0
// dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
dx
.
device
(
d
)
=
dout
*
temp_a_pos
*
temp_x_pos
+
dout
*
(
x
/
static_cast
<
T
>
(
alpha
)).
exp
()
*
temp_a_pos
*
temp_x_neg
+
dout
*
temp_a_neg
*
temp_x_pos
+
dout
*
(
x
/
static_cast
<
T
>
(
alpha
)).
exp
()
*
temp_a_neg
*
temp_x_neg
;
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
template
<
typename
T
>
struct
PowFunctor
:
public
BaseActivationFunctor
<
T
>
{
...
...
@@ -1775,6 +1820,45 @@ struct ELUGradGradFunctor : public BaseActivationFunctor<T> {
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
template
<
typename
T
>
struct
CELUGradGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
alpha
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha
}};
}
template
<
typename
Device
>
void
operator
()(
const
Device
&
dev
,
const
framework
::
Tensor
*
X
,
const
framework
::
Tensor
*
ddX
,
framework
::
Tensor
*
ddOut
,
const
framework
::
Tensor
*
dOut
,
framework
::
Tensor
*
dX
)
const
{
auto
*
d
=
dev
.
eigen_device
();
auto
ddx
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
ddX
,
"Input"
,
"DDX"
,
"CELUGradGrad"
));
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
X
,
"Input"
,
"X"
,
"CELUGradGrad"
));
if
(
dX
)
{
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
dX
,
"Output"
,
"DX"
,
"CELUGradGrad"
));
auto
dout
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
dOut
,
"Output"
,
"DOut"
,
"CELUGradGrad"
));
dx
.
device
(
*
d
)
=
ddx
*
dout
/
static_cast
<
T
>
(
alpha
)
*
(
x
/
static_cast
<
T
>
(
alpha
)).
exp
()
*
(
x
<=
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
}
if
(
ddOut
)
{
auto
ddout
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
ddOut
,
"Output"
,
"DDOut"
,
"CELUGradGrad"
));
ddout
.
device
(
*
d
)
=
ddx
*
((
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>()
+
(
x
/
static_cast
<
T
>
(
alpha
)).
exp
()
*
(
x
<=
static_cast
<
T
>
(
0
)).
template
cast
<
T
>())
.
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
template
<
typename
T
>
struct
SqrtGradGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
>
...
...
@@ -2107,6 +2191,33 @@ class ELUDoubleGradKernel
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
CELUDoubleGradKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
public:
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
Tensor
*
X
,
*
ddX
,
*
dOut
;
X
=
ddX
=
dOut
=
nullptr
;
framework
::
Tensor
*
dX
,
*
ddOut
;
dX
=
ddOut
=
nullptr
;
ExtractDoubleGradTensorWithInputDOut
(
ctx
,
&
X
,
&
ddX
,
&
dX
,
&
dOut
,
&
ddOut
);
if
(
dX
)
dX
->
mutable_data
<
T
>
(
X
->
dims
(),
ctx
.
GetPlace
());
if
(
ddOut
)
ddOut
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
place
=
ctx
.
template
device_context
<
DeviceContext
>();
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
ctx
.
Attr
<
float
>
(
attr
.
first
);
}
functor
(
place
,
X
,
ddX
,
ddOut
,
dOut
,
dX
);
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
SqrtDoubleGradKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
...
...
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
浏览文件 @
d7064f04
...
...
@@ -22,6 +22,7 @@ import paddle
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
gradient_checker
import
paddle.nn.functional
as
F
from
decorator_helper
import
prog_scope
...
...
@@ -168,6 +169,32 @@ class TestELUDoubleGradCheck(unittest.TestCase):
self
.
func
(
p
)
class
TestCELUDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
4
,
4
,
4
]
eps
=
1e-6
alpha
=
0.2
dtype
=
np
.
float64
SEED
=
0
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
F
.
celu
(
x
,
alpha
=
alpha
)
np
.
random
.
RandomState
(
SEED
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestSqrtDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
d7064f04
...
...
@@ -1827,6 +1827,94 @@ class TestELUAPI(unittest.TestCase):
self
.
elu
(
x_fp16
)
def
celu
(
x
,
alpha
):
out_ref
=
np
.
maximum
(
0
,
x
)
+
np
.
minimum
(
0
,
alpha
*
(
np
.
exp
(
x
/
alpha
)
-
1
))
return
out_ref
.
astype
(
x
.
dtype
)
class
TestCELU
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"celu"
self
.
init_dtype
()
np
.
random
.
seed
(
1024
)
x
=
np
.
random
.
uniform
(
-
3
,
3
,
[
10
,
12
]).
astype
(
self
.
dtype
)
alpha
=
1.5
out
=
celu
(
x
,
alpha
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'alpha'
:
alpha
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
)
class
TestCELUAPI
(
unittest
.
TestCase
):
# test paddle.nn.CELU, paddle.nn.functional.celu
def
setUp
(
self
):
np
.
random
.
seed
(
1024
)
self
.
x_np
=
np
.
random
.
uniform
(
-
3
,
3
,
[
10
,
12
]).
astype
(
'float32'
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
self
.
executed_api
()
def
executed_api
(
self
):
self
.
celu
=
F
.
celu
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
fluid
.
data
(
'X'
,
[
10
,
12
])
out1
=
self
.
celu
(
x
,
1.5
)
m
=
paddle
.
nn
.
CELU
(
1.5
)
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
celu
(
self
.
x_np
,
1.5
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
self
.
celu
(
x
,
1.5
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
CELU
(
1.5
)
out2
=
m
(
x
)
out_ref
=
celu
(
self
.
x_np
,
1.5
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
out1
=
self
.
celu
(
x
,
0.2
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
CELU
(
0.2
)
out2
=
m
(
x
)
out_ref
=
celu
(
self
.
x_np
,
0.2
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_errors
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
self
.
celu
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
paddle
.
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
10
,
12
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
self
.
celu
,
x_int32
)
# The alpha must be not equal 0
x_fp32
=
paddle
.
fluid
.
data
(
name
=
'x_fp32'
,
shape
=
[
10
,
12
],
dtype
=
'float32'
)
self
.
assertRaises
(
ZeroDivisionError
,
F
.
celu
,
x_fp32
,
0
)
# support the input dtype is float16
x_fp16
=
paddle
.
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
10
,
12
],
dtype
=
'float16'
)
self
.
celu
(
x_fp16
)
class
TestELUInplaceAPI
(
TestELUAPI
):
# test paddle.nn.functional.elu_
def
executed_api
(
self
):
...
...
@@ -2791,6 +2879,7 @@ create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class
(
TestRelu6
)
create_test_act_fp16_class
(
TestSoftRelu
,
grad_atol
=
0.85
)
create_test_act_fp16_class
(
TestELU
)
create_test_act_fp16_class
(
TestCELU
)
create_test_act_fp16_class
(
TestReciprocal
)
create_test_act_fp16_class
(
TestLog
)
if
core
.
is_compiled_with_rocm
():
...
...
python/paddle/fluid/tests/unittests/test_imperative_layers.py
浏览文件 @
d7064f04
...
...
@@ -22,6 +22,9 @@ class TestLayerPrint(unittest.TestCase):
module
=
nn
.
ELU
(
0.2
)
self
.
assertEqual
(
str
(
module
),
'ELU(alpha=0.2)'
)
module
=
nn
.
CELU
(
0.2
)
self
.
assertEqual
(
str
(
module
),
'CELU(alpha=0.2)'
)
module
=
nn
.
GELU
(
True
)
self
.
assertEqual
(
str
(
module
),
'GELU(approximate=True)'
)
...
...
python/paddle/nn/__init__.py
浏览文件 @
d7064f04
...
...
@@ -25,6 +25,7 @@ from .clip import ClipGradByNorm # noqa: F401
from
.clip
import
ClipGradByValue
# noqa: F401
from
.decode
import
BeamSearchDecoder
# noqa: F401
from
.decode
import
dynamic_decode
# noqa: F401
from
.layer.activation
import
CELU
# noqa: F401
from
.layer.activation
import
ELU
# noqa: F401
from
.layer.activation
import
GELU
# noqa: F401
from
.layer.activation
import
Tanh
# noqa: F401
...
...
@@ -185,6 +186,7 @@ def weight_norm(*args):
__all__
=
[
#noqa
'BatchNorm'
,
'CELU'
,
'GroupNorm'
,
'LayerNorm'
,
'SpectralNorm'
,
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
d7064f04
...
...
@@ -15,6 +15,7 @@
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
from
.activation
import
celu
# noqa: F401
from
.activation
import
elu
# noqa: F401
from
.activation
import
elu_
# noqa: F401
from
.activation
import
gelu
# noqa: F401
...
...
@@ -115,6 +116,7 @@ from ...fluid.layers import temporal_shift # noqa: F401
from
.sparse_attention
import
sparse_attention
__all__
=
[
#noqa
'celu'
,
'conv1d'
,
'conv1d_transpose'
,
'conv2d'
,
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
d7064f04
...
...
@@ -31,6 +31,50 @@ from paddle import _C_ops
__all__
=
[]
def
celu
(
x
,
alpha
=
1.0
,
name
=
None
):
r
"""
celu activation.
.. math::
celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
out = F.celu(x, alpha=0.2)
# [[-0.19865242, 6. ],
# [ 1. , 15.60000038]]
"""
if
alpha
==
0
:
raise
ZeroDivisionError
(
"alpha cannot be 0 for celu"
)
if
in_dygraph_mode
():
return
_C_ops
.
celu
(
x
,
'alpha'
,
alpha
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'celu'
)
helper
=
LayerHelper
(
"celu"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'celu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'alpha'
:
alpha
})
return
out
def
elu
(
x
,
alpha
=
1.0
,
name
=
None
):
r
"""
elu activation.
...
...
python/paddle/nn/layer/__init__.py
浏览文件 @
d7064f04
...
...
@@ -18,6 +18,7 @@ from . import rnn # noqa: F401
from
.
import
transformer
# noqa: F401
from
.
import
container
# noqa: F401
from
.activation
import
CELU
# noqa: F401
from
.activation
import
PReLU
# noqa: F401
from
.activation
import
ReLU
# noqa: F401
from
.activation
import
ReLU6
# noqa: F401
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
d7064f04
...
...
@@ -25,6 +25,48 @@ from paddle.nn import Layer
__all__
=
[]
class
CELU
(
Layer
):
r
"""
CELU Activation.
.. math::
CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))
Parameters:
alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
m = paddle.nn.CELU(0.2)
out = m(x)
# [[-0.19865242, 6. ],
# [ 1. , 15.60000038]]
"""
def
__init__
(
self
,
alpha
=
1.0
,
name
=
None
):
super
(
CELU
,
self
).
__init__
()
self
.
_alpha
=
alpha
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
celu
(
x
,
self
.
_alpha
,
self
.
_name
)
def
extra_repr
(
self
):
name_str
=
', name={}'
.
format
(
self
.
_name
)
if
self
.
_name
else
''
return
'alpha={}{}'
.
format
(
self
.
_alpha
,
name_str
)
class
ELU
(
Layer
):
r
"""
ELU Activation.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录