Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
140d786d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
140d786d
编写于
12月 27, 2022
作者:
姜
姜永久
提交者:
GitHub
12月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm in_legacy_dygraph python/paddle/nn/functional/ part1 (#49258)
* rm in_legacy_dygraph nn part1 * rm non_static_mode * modify rrelu
上级
861fef52
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
508 addition
and
785 deletion
+508
-785
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+317
-377
python/paddle/nn/functional/common.py
python/paddle/nn/functional/common.py
+90
-140
python/paddle/nn/functional/conv.py
python/paddle/nn/functional/conv.py
+1
-107
python/paddle/nn/functional/distance.py
python/paddle/nn/functional/distance.py
+25
-31
python/paddle/nn/layer/norm.py
python/paddle/nn/layer/norm.py
+75
-130
未找到文件。
python/paddle/nn/functional/activation.py
浏览文件 @
140d786d
此差异已折叠。
点击以展开。
python/paddle/nn/functional/common.py
浏览文件 @
140d786d
...
...
@@ -25,11 +25,7 @@ from ...fluid.data_feeder import (
check_type
,
check_variable_and_dtype
,
)
from
...fluid.framework
import
(
_in_legacy_dygraph
,
_non_static_mode
,
in_dygraph_mode
,
)
from
...fluid.framework
import
in_dygraph_mode
from
...tensor
import
clip
,
concat
,
sqrt
,
sum
from
...tensor.creation
import
zeros
...
...
@@ -927,24 +923,22 @@ def bilinear(x1, x2, weight, bias=None, name=None):
if
in_dygraph_mode
():
return
_C_ops
.
bilinear_tensor_product
(
x1
,
x2
,
weight
,
bias
)
elif
_non_static_mode
():
return
_legacy_C_ops
.
bilinear_tensor_product
(
x1
,
x2
,
weight
,
bias
)
check_variable_and_dtype
(
x1
,
'x1'
,
[
'float32'
,
'float64'
],
'bilinear'
)
check_variable_and_dtype
(
x2
,
'x2'
,
[
'float32'
,
'float64'
],
'bilinear'
)
else
:
check_variable_and_dtype
(
x1
,
'x1'
,
[
'float32'
,
'float64'
],
'bilinear'
)
check_variable_and_dtype
(
x2
,
'x2'
,
[
'float32'
,
'float64'
],
'bilinear'
)
inputs
=
{
"X"
:
x1
,
"Y"
:
x2
,
"Weight"
:
weight
}
if
bias
is
not
None
:
inputs
[
"Bias"
]
=
bias
inputs
=
{
"X"
:
x1
,
"Y"
:
x2
,
"Weight"
:
weight
}
if
bias
is
not
None
:
inputs
[
"Bias"
]
=
bias
helper
=
LayerHelper
(
"bilinear"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x1
.
dtype
)
helper
=
LayerHelper
(
"bilinear"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x1
.
dtype
)
helper
.
append_op
(
type
=
"bilinear_tensor_product"
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
}
)
helper
.
append_op
(
type
=
"bilinear_tensor_product"
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
}
)
return
out
return
out
def
dropout
(
...
...
@@ -1118,77 +1112,62 @@ def dropout(
'downgrade_in_infer'
if
mode
==
'downscale_in_infer'
else
mode
)
# semantic transfer
if
_non_static
_mode
():
if
in_dygraph
_mode
():
if
default_main_program
().
random_seed
!=
0
:
seed
=
default_main_program
().
random_seed
if
in_dygraph_mode
():
out
,
mask
=
_C_ops
.
dropout
(
x
,
None
,
p
,
not
training
,
mode
,
seed
if
seed
is
not
None
else
0
,
seed
is
not
None
,
)
return
out
out
,
mask
=
_legacy_C_ops
.
dropout
(
out
,
mask
=
_C_ops
.
dropout
(
x
,
'dropout_prob'
,
None
,
p
,
'is_test'
,
not
training
,
'fix_seed'
,
seed
is
not
None
,
'seed'
,
seed
if
seed
is
not
None
else
0
,
'dropout_implementation'
,
mode
,
seed
if
seed
is
not
None
else
0
,
seed
is
not
None
,
)
return
out
helper
=
LayerHelper
(
'dropout'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'dropout'
)
return
out
else
:
helper
=
LayerHelper
(
'dropout'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'dropout'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
UINT8
,
stop_gradient
=
True
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
UINT8
,
stop_gradient
=
True
)
def
get_attrs
(
prog
,
dropout_prob
,
is_test
,
seed
):
if
(
seed
is
None
or
seed
==
0
)
and
prog
.
random_seed
!=
0
:
seed
=
prog
.
random_seed
def
get_attrs
(
prog
,
dropout_prob
,
is_test
,
seed
):
if
(
seed
is
None
or
seed
==
0
)
and
prog
.
random_seed
!=
0
:
seed
=
prog
.
random_seed
if
isinstance
(
dropout_prob
,
Variable
)
and
not
dropout_prob
.
shape
!=
[
1
]:
raise
TypeError
(
"Required p.shape == [1] if type(p) is Variable, but received p.shape = {}"
.
format
(
p
.
shape
if
isinstance
(
dropout_prob
,
Variable
)
and
not
dropout_prob
.
shape
!=
[
1
]:
raise
TypeError
(
"Required p.shape == [1] if type(p) is Variable, but received p.shape = {}"
.
format
(
p
.
shape
)
)
)
attrs
=
{
'dropout_prob'
:
dropout_prob
,
'is_test'
:
is_test
,
'fix_seed'
:
seed
is
not
None
,
'seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout_implementation'
:
mode
,
}
return
attrs
attrs
=
{
'dropout_prob'
:
dropout_prob
,
'is_test'
:
is_test
,
'fix_seed'
:
seed
is
not
None
,
'seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout_implementation'
:
mode
,
}
return
attrs
attrs
=
get_attrs
(
helper
.
main_program
,
p
,
not
training
,
seed
)
attrs
=
get_attrs
(
helper
.
main_program
,
p
,
not
training
,
seed
)
helper
.
append_op
(
type
=
'dropout'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
],
'Mask'
:
[
mask
]},
attrs
=
attrs
,
)
return
out
helper
.
append_op
(
type
=
'dropout'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
],
'Mask'
:
[
mask
]},
attrs
=
attrs
,
)
return
out
else
:
# sometimes called dropout_nd #TODO: optimize with c++
if
not
in_dynamic_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'dropout'
)
...
...
@@ -1684,38 +1663,21 @@ def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
pad
=
pad
.
numpy
().
tolist
()
out
=
_C_ops
.
pad3d
(
x
,
pad
,
mode
,
value
,
data_format
)
else
:
if
_in_legacy_dygraph
():
if
isinstance
(
pad
,
Variable
):
pad
=
pad
.
numpy
().
tolist
()
out
=
_legacy_C_ops
.
pad3d
(
x
,
"paddings"
,
pad
,
"mode"
,
mode
,
"value"
,
value
,
"data_format"
,
data_format
,
"name"
,
name
,
)
attrs
=
{
'mode'
:
mode
,
'value'
:
value
,
'data_format'
:
data_format
}
inputs
=
{
'X'
:
[
x
]}
if
isinstance
(
pad
,
Variable
):
inputs
[
'Paddings'
]
=
[
pad
]
attrs
[
'paddings'
]
=
[]
else
:
attrs
=
{
'mode'
:
mode
,
'value'
:
value
,
'data_format'
:
data_format
}
inputs
=
{
'X'
:
[
x
]}
if
isinstance
(
pad
,
Variable
):
inputs
[
'Paddings'
]
=
[
pad
]
attrs
[
'paddings'
]
=
[]
else
:
attrs
[
'paddings'
]
=
pad
attrs
[
'paddings'
]
=
pad
helper
=
LayerHelper
(
'pad3d'
,
**
locals
())
helper
=
LayerHelper
(
'pad3d'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'input'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'pad3d'
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
attrs
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'input'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'pad3d'
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
attrs
)
if
len
(
unsqueezed_dim
)
!=
0
:
out
=
squeeze
(
out
,
axis
=
unsqueezed_dim
)
...
...
@@ -1873,46 +1835,34 @@ def linear(x, weight, bias=None, name=None):
# TODO(jiabin): using addmm for fast forward route
return
_C_ops
.
linear
(
x
,
weight
,
bias
)
else
:
if
_in_legacy_dygraph
():
pre_bias
=
_legacy_C_ops
.
matmul_v2
(
x
,
weight
,
'trans_x'
,
False
,
'trans_y'
,
False
)
if
bias
is
None
:
return
pre_bias
return
_legacy_C_ops
.
elementwise_add
(
pre_bias
,
bias
)
else
:
helper
=
LayerHelper
(
'linear'
,
**
locals
())
dtype
=
x
.
dtype
helper
=
LayerHelper
(
'linear'
,
**
locals
())
dtype
=
x
.
dtype
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
)
check_dtype
(
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
)
check_dtype
(
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
)
inputs
=
{
'X'
:
[
x
],
'Y'
:
[
weight
]}
attrs
=
{
'trans_x'
:
False
,
'trans_y'
:
False
}
tmp
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
'X'
:
[
x
],
'Y'
:
[
weight
]}
attrs
=
{
'trans_x'
:
False
,
'trans_y'
:
False
}
tmp
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'matmul_v2'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
tmp
},
attrs
=
attrs
,
)
if
bias
is
not
None
:
res
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'
matmul_v2
'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
tmp
},
attrs
=
attrs
,
type
=
'
elementwise_add
'
,
inputs
=
{
'X'
:
[
tmp
],
'Y'
:
[
bias
]}
,
outputs
=
{
'Out'
:
[
res
]
},
attrs
=
{
'axis'
:
len
(
x
.
shape
)
-
1
}
,
)
if
bias
is
not
None
:
res
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
tmp
],
'Y'
:
[
bias
]},
outputs
=
{
'Out'
:
[
res
]},
attrs
=
{
'axis'
:
len
(
x
.
shape
)
-
1
},
)
else
:
res
=
tmp
return
res
else
:
res
=
tmp
return
res
def
label_smooth
(
label
,
prior_dist
=
None
,
epsilon
=
0.1
,
name
=
None
):
...
...
python/paddle/nn/functional/conv.py
浏览文件 @
140d786d
...
...
@@ -19,11 +19,7 @@ from paddle.device import (
is_compiled_with_npu
,
is_compiled_with_rocm
,
)
from
paddle.fluid.framework
import
(
_global_flags
,
_in_legacy_dygraph
,
in_dygraph_mode
,
)
from
paddle.fluid.framework
import
_global_flags
,
in_dygraph_mode
from
paddle.tensor.math
import
_add_with_axis
from
...device
import
get_cudnn_version
...
...
@@ -489,30 +485,6 @@ def conv1d(
)
if
bias
is
not
None
:
out
=
_add_with_axis
(
out
,
bias
,
axis
=
channel_dim
)
elif
_in_legacy_dygraph
():
attrs
=
(
'strides'
,
stride
,
'paddings'
,
padding
,
'dilations'
,
dilation
,
'groups'
,
groups
,
'use_cudnn'
,
use_cudnn
,
'use_mkldnn'
,
False
,
'fuse_relu_before_depthwise_conv'
,
False
,
"padding_algorithm"
,
padding_algorithm
,
"data_format"
,
conv2d_data_format
,
)
out
=
getattr
(
_legacy_C_ops
,
l_type
)(
x
,
weight
,
*
attrs
)
if
bias
is
not
None
:
out
=
_add_with_axis
(
out
,
bias
,
axis
=
channel_dim
)
else
:
inputs
=
{
'Input'
:
[
x
],
'Filter'
:
[
weight
]}
attrs
=
{
...
...
@@ -1044,30 +1016,6 @@ def conv1d_transpose(
)
if
bias
is
not
None
:
out
=
_add_with_axis
(
out
,
bias
,
axis
=
channel_dim
)
elif
_in_legacy_dygraph
():
attrs
=
(
'output_padding'
,
output_padding
,
'output_size'
,
output_size
,
'strides'
,
stride
,
'paddings'
,
padding
,
'padding_algorithm'
,
padding_algorithm
,
'dilations'
,
dilation
,
'groups'
,
groups
,
'use_cudnn'
,
use_cudnn
,
'data_format'
,
conv2d_data_format
,
)
out
=
getattr
(
_legacy_C_ops
,
op_type
)(
x
,
weight
,
*
attrs
)
if
bias
is
not
None
:
out
=
_add_with_axis
(
out
,
bias
,
axis
=
channel_dim
)
else
:
inputs
=
{
'Input'
:
[
x
],
'Filter'
:
[
weight
]}
attrs
=
{
...
...
@@ -1350,33 +1298,6 @@ def conv2d_transpose(
return
_add_with_axis
(
pre_bias
,
bias
,
axis
=
channel_dim
)
else
:
return
pre_bias
if
_in_legacy_dygraph
():
attrs
=
(
'output_padding'
,
output_padding
,
'output_size'
,
output_size
,
'strides'
,
stride
,
'paddings'
,
padding
,
'padding_algorithm'
,
padding_algorithm
,
'dilations'
,
dilation
,
'groups'
,
groups
,
'use_cudnn'
,
use_cudnn
,
'data_format'
,
data_format
,
)
pre_bias
=
getattr
(
_legacy_C_ops
,
op_type
)(
x
,
weight
,
*
attrs
)
if
bias
is
not
None
:
out
=
_add_with_axis
(
pre_bias
,
bias
,
axis
=
channel_dim
)
else
:
out
=
pre_bias
else
:
inputs
=
{
'Input'
:
[
x
],
'Filter'
:
[
weight
]}
attrs
=
{
...
...
@@ -1823,33 +1744,6 @@ def conv3d_transpose(
return
_add_with_axis
(
pre_bias
,
bias
,
axis
=
channel_dim
)
else
:
return
pre_bias
if
_in_legacy_dygraph
():
attrs
=
(
'output_padding'
,
output_padding
,
'output_size'
,
output_size
,
'paddings'
,
padding
,
"padding_algorithm"
,
padding_algorithm
,
'strides'
,
stride
,
'dilations'
,
dilation
,
'groups'
,
groups
,
'use_cudnn'
,
use_cudnn
,
"data_format"
,
data_format_
,
)
pre_bias
=
getattr
(
_legacy_C_ops
,
op_type
)(
x
,
weight
,
*
attrs
)
if
bias
is
not
None
:
out
=
_add_with_axis
(
pre_bias
,
bias
,
axis
=
channel_dim
)
else
:
out
=
pre_bias
else
:
inputs
=
{
'Input'
:
[
x
],
'Filter'
:
[
weight
]}
attrs
=
{
...
...
python/paddle/nn/functional/distance.py
浏览文件 @
140d786d
...
...
@@ -13,8 +13,8 @@
# limitations under the License.
import
paddle
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle.fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
in_dygraph_mode
from
...fluid.data_feeder
import
check_type
,
check_variable_and_dtype
from
...fluid.layer_helper
import
LayerHelper
...
...
@@ -81,36 +81,30 @@ def pairwise_distance(x, y, p=2.0, epsilon=1e-6, keepdim=False, name=None):
sub
=
_C_ops
.
add
(
sub
,
epsilon
)
return
_C_ops
.
p_norm
(
sub
,
p
,
-
1
,
0.0
,
keepdim
,
False
)
if
_in_legacy_dygraph
():
sub
=
_legacy_C_ops
.
elementwise_sub
(
x
,
y
)
else
:
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'PairwiseDistance'
)
check_variable_and_dtype
(
y
,
'y'
,
[
'float32'
,
'float64'
],
'PairwiseDistance'
)
sub
=
paddle
.
subtract
(
x
,
y
)
if
epsilon
!=
0.0
:
epsilon
=
paddle
.
fluid
.
dygraph
.
base
.
to_variable
(
[
epsilon
],
dtype
=
sub
.
dtype
epsilon_var
=
sub
.
block
.
create_var
(
dtype
=
sub
.
dtype
)
epsilon_var
=
paddle
.
full
(
shape
=
[
1
],
fill_value
=
epsilon
,
dtype
=
sub
.
dtype
)
sub
=
_legacy_C_ops
.
elementwise_add
(
sub
,
epsilon
)
return
_legacy_C_ops
.
p_norm
(
sub
,
'axis'
,
-
1
,
'porder'
,
p
,
'keepdim'
,
keepdim
,
'epsilon'
,
0.0
sub
=
paddle
.
add
(
sub
,
epsilon_var
)
helper
=
LayerHelper
(
"PairwiseDistance"
,
name
=
name
)
attrs
=
{
'axis'
:
-
1
,
'porder'
:
p
,
'keepdim'
:
keepdim
,
'epsilon'
:
0.0
,
}
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'p_norm'
,
inputs
=
{
'X'
:
sub
},
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'PairwiseDistance'
)
check_variable_and_dtype
(
y
,
'y'
,
[
'float32'
,
'float64'
],
'PairwiseDistance'
)
sub
=
paddle
.
subtract
(
x
,
y
)
if
epsilon
!=
0.0
:
epsilon_var
=
sub
.
block
.
create_var
(
dtype
=
sub
.
dtype
)
epsilon_var
=
paddle
.
full
(
shape
=
[
1
],
fill_value
=
epsilon
,
dtype
=
sub
.
dtype
)
sub
=
paddle
.
add
(
sub
,
epsilon_var
)
helper
=
LayerHelper
(
"PairwiseDistance"
,
name
=
name
)
attrs
=
{
'axis'
:
-
1
,
'porder'
:
p
,
'keepdim'
:
keepdim
,
'epsilon'
:
0.0
,
}
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'p_norm'
,
inputs
=
{
'X'
:
sub
},
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
return
out
return
out
python/paddle/nn/layer/norm.py
浏览文件 @
140d786d
...
...
@@ -34,17 +34,11 @@ import numpy as np
from
paddle
import
_C_ops
,
_legacy_C_ops
,
in_dynamic_mode
from
paddle.device
import
get_all_custom_device_type
from
paddle.fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
paddle.fluid.framework
import
in_dygraph_mode
from
...fluid
import
dygraph_utils
from
...fluid.data_feeder
import
check_variable_and_dtype
from
...framework
import
(
ParamAttr
,
_global_flags
,
_non_static_mode
,
get_default_dtype
,
no_grad
,
)
from
...framework
import
ParamAttr
,
_global_flags
,
get_default_dtype
,
no_grad
from
..
import
Layer
from
..
import
functional
as
F
from
..functional
import
batch_norm
,
instance_norm
,
layer_norm
...
...
@@ -492,20 +486,6 @@ class GroupNorm(Layer):
dtype
=
input
.
dtype
,
stop_gradient
=
True
)
if
_in_legacy_dygraph
():
pre_act
,
_
,
_
=
_legacy_C_ops
.
group_norm
(
input
,
self
.
weight
,
self
.
bias
,
mean_out
,
variance_out
,
'epsilon'
,
self
.
_epsilon
,
'groups'
,
self
.
_num_groups
,
)
return
pre_act
inputs
=
{
'X'
:
input
}
if
self
.
bias
is
not
None
:
inputs
[
'Bias'
]
=
self
.
bias
...
...
@@ -1005,121 +985,86 @@ class BatchNorm(Layer):
self
.
_trainable_statistics
=
trainable_statistics
def
forward
(
self
,
input
):
# create output
# mean and mean_out share the same memory
mean_out
=
self
.
_mean
# variance and variance out share the same memory
variance_out
=
self
.
_variance
if
_non_static_mode
():
if
in_dygraph_mode
():
batch_norm_out
,
t1
,
t2
,
t3
,
t4
,
_
=
_C_ops
.
batch_norm
(
input
,
self
.
_mean
,
self
.
_variance
,
self
.
weight
,
self
.
bias
,
not
self
.
training
,
self
.
_momentum
,
self
.
_epsilon
,
self
.
_data_layout
,
self
.
_use_global_stats
,
self
.
_trainable_statistics
,
)
return
dygraph_utils
.
_append_activation_in_dygraph
(
batch_norm_out
,
act
=
self
.
_act
,
use_mkldnn
=
self
.
_use_mkldnn
)
elif
_in_legacy_dygraph
():
attrs
=
(
"momentum"
,
self
.
_momentum
,
"epsilon"
,
self
.
_epsilon
,
"is_test"
,
not
self
.
training
,
"data_layout"
,
self
.
_data_layout
,
"use_mkldnn"
,
self
.
_use_mkldnn
,
"fuse_with_relu"
,
self
.
_fuse_with_relu
,
"use_global_stats"
,
self
.
_use_global_stats
,
'trainable_statistics'
,
self
.
_trainable_statistics
,
)
batch_norm_out
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
batch_norm
(
input
,
self
.
weight
,
self
.
bias
,
self
.
_mean
,
self
.
_variance
,
None
,
mean_out
,
variance_out
,
*
attrs
)
if
in_dygraph_mode
():
batch_norm_out
,
t1
,
t2
,
t3
,
t4
,
_
=
_C_ops
.
batch_norm
(
input
,
self
.
_mean
,
self
.
_variance
,
self
.
weight
,
self
.
bias
,
not
self
.
training
,
self
.
_momentum
,
self
.
_epsilon
,
self
.
_data_layout
,
self
.
_use_global_stats
,
self
.
_trainable_statistics
,
)
return
dygraph_utils
.
_append_activation_in_dygraph
(
batch_norm_out
,
act
=
self
.
_act
,
use_mkldnn
=
self
.
_use_mkldnn
)
else
:
# create output
# mean and mean_out share the same memory
mean_out
=
self
.
_mean
# variance and variance out share the same memory
variance_out
=
self
.
_variance
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'BatchNorm'
)
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'BatchNorm'
)
attrs
=
{
"momentum"
:
self
.
_momentum
,
"epsilon"
:
self
.
_epsilon
,
"is_test"
:
self
.
_is_test
,
"data_layout"
:
self
.
_data_layout
,
"use_mkldnn"
:
False
,
"fuse_with_relu"
:
self
.
_fuse_with_relu
,
"use_global_stats"
:
self
.
_use_global_stats
,
"trainable_statistics"
:
self
.
_trainable_statistics
,
}
inputs
=
{
"X"
:
[
input
],
"Scale"
:
[
self
.
weight
],
"Bias"
:
[
self
.
bias
],
"Mean"
:
[
self
.
_mean
],
"Variance"
:
[
self
.
_variance
],
}
saved_mean
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
saved_variance
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
reserve_space
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_helper
.
input_dtype
(
input
),
stop_gradient
=
True
)
batch_norm_out
=
(
input
if
self
.
_in_place
else
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
)
attrs
=
{
"momentum"
:
self
.
_momentum
,
"epsilon"
:
self
.
_epsilon
,
"is_test"
:
self
.
_is_test
,
"data_layout"
:
self
.
_data_layout
,
"use_mkldnn"
:
False
,
"fuse_with_relu"
:
self
.
_fuse_with_relu
,
"use_global_stats"
:
self
.
_use_global_stats
,
"trainable_statistics"
:
self
.
_trainable_statistics
,
}
inputs
=
{
"X"
:
[
input
],
"Scale"
:
[
self
.
weight
],
"Bias"
:
[
self
.
bias
],
"Mean"
:
[
self
.
_mean
],
"Variance"
:
[
self
.
_variance
],
}
saved_mean
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
saved_variance
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
reserve_space
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_helper
.
input_dtype
(
input
),
stop_gradient
=
True
)
outputs
=
{
"Y"
:
[
batch_norm_out
],
"MeanOut"
:
[
mean_out
],
"VarianceOut"
:
[
variance_out
],
"SavedMean"
:
[
saved_mean
],
"SavedVariance"
:
[
saved_variance
],
}
if
reserve_space
is
not
None
:
outputs
[
"ReserveSpace"
]
=
[
reserve_space
]
batch_norm_out
=
(
input
if
self
.
_in_place
else
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
)
self
.
_helper
.
append_op
(
type
=
"batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
outputs
=
{
"Y"
:
[
batch_norm_out
],
"MeanOut"
:
[
mean_out
],
"VarianceOut"
:
[
variance_out
],
"SavedMean"
:
[
saved_mean
],
"SavedVariance"
:
[
saved_variance
],
}
if
reserve_space
is
not
None
:
outputs
[
"ReserveSpace"
]
=
[
reserve_space
]
self
.
_helper
.
append_op
(
type
=
"batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
# Currently, we don't support inplace in dygraph mode
return
self
.
_helper
.
append_activation
(
batch_norm_out
,
self
.
_act
)
# Currently, we don't support inplace in dygraph mode
return
self
.
_helper
.
append_activation
(
batch_norm_out
,
self
.
_act
)
class
BatchNorm1D
(
_BatchNormBase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录