activation.py 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16 17 18 19 20 21 22 23 24 25 26 27 28
from ...fluid.layers import brelu  #DEFINE_ALIAS
from ...fluid.layers import erf  #DEFINE_ALIAS
from ...fluid.layers import hard_sigmoid  #DEFINE_ALIAS
from ...fluid.layers import hard_swish  #DEFINE_ALIAS
from ...fluid.layers import leaky_relu  #DEFINE_ALIAS
from ...fluid.layers import maxout  #DEFINE_ALIAS
from ...fluid.layers import relu6  #DEFINE_ALIAS
from ...fluid.layers import selu  #DEFINE_ALIAS
from ...fluid.layers import soft_relu  #DEFINE_ALIAS
from ...fluid.layers import softplus  #DEFINE_ALIAS
from ...fluid.layers import softshrink  #DEFINE_ALIAS
from ...fluid.layers import softsign  #DEFINE_ALIAS
from ...fluid.layers import swish  #DEFINE_ALIAS
29
from ...fluid.layers import sigmoid  #DEFINE_ALIAS
30 31 32
from ...fluid.layers import tanh_shrink  #DEFINE_ALIAS
from ...fluid.layers import thresholded_relu  #DEFINE_ALIAS

33
__all__ = [
34 35 36 37
    'brelu',
    'elu',
    'erf',
    'gelu',
38
    'hardshrink',
39 40
    'hard_sigmoid',
    'hard_swish',
41
    'hsigmoid',
42 43 44 45
    'leaky_relu',
    'logsigmoid',
    'maxout',
    #       'prelu',
46
    'relu',
47 48 49 50 51 52 53
    'relu6',
    'selu',
    'soft_relu',
    'softmax',
    'softplus',
    'softshrink',
    'softsign',
54
    'sigmoid',
55 56 57
    'swish',
    'tanh_shrink',
    'thresholded_relu',
58 59
    'log_softmax'
]
60

61 62 63 64
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
65
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
66
import paddle
67

68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
def elu(x, alpha=1.0, name=None):
    """
    elu activation.

    ..  math::

        elu(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
        out = F.elu(x, alpha=0.2) 
        # [[-0.12642411  6.        ]
        #  [ 1.          15.6      ]]
    """

    if in_dygraph_mode():
        return core.ops.elu(x, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


def gelu(x, approximate=False, name=None):
    """
    gelu activation.

    if approximate is True
    ..  math::
        gelu(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))
    else
    ..  math::
        gelu(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        data = np.random.randn(2, 3).astype("float32")
        x = paddle.to_tensor(data)

        out = F.gelu(x)

        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        out
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
    """

    if in_dygraph_mode():
        return core.ops.gelu(x, 'approximate', approximate)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
def hardshrink(x, threshold=0.5, name=None):
    """
    hard shrinkage activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_variable(np.array([-1, 0.3, 2.5]))
        out = F.hardshrink(x) # [-1., 0., 2.5]

    """
    if in_dygraph_mode():
        return core.ops.hard_shrink(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


224 225 226 227 228 229 230 231 232
def hsigmoid(input,
             label,
             weight,
             bias,
             num_classes,
             path_table=None,
             path_code=None,
             is_sparse=False):
    """
H
hong 已提交
233 234
	:alias_main: paddle.nn.functional.hsigmoid
	:alias: paddle.nn.functional.hsigmoid,paddle.nn.functional.activation.hsigmoid
S
swtkiwi 已提交
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Variable): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 and float64.
        label (Variable): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        weight (Variable): A tensor with shape (num_classes - 1, D) if not using custom tree(path_code and path_table is None), or (num_classes, D) if using custom tree.
        bias (Variable): A tensor with shape (num_classes - 1, 1) if not using custom tree(path_code and path_table is None), or (num_classes, 1) if using custom tree.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        path_table (Variable, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. Default: None.
        path_code (Variable, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. Default: None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.

    Examples:

        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            main = fluid.Program()
            start = fluid.Program()
            feature_size = 6
            num_classes = 8
            with fluid.unique_name.guard():
                with fluid.program_guard(main, start):
                    x = fluid.data("input", [-1, feature_size],
                                  dtype="float32")
                    label = fluid.data("labels", [-1, 1], dtype="int64")
                    w = fluid.data("weight", (num_classes -1, feature_size), dtype="float32")
                    b = fluid.data("bias", (num_classes -1, ), dtype="float32")
                    y = F.hsigmoid(x, label, w, b, num_classes)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(start)
            feed_dict = {
                "input": np.random.randn(4, feature_size).astype(np.float32),
                "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
                "weight": np.random.randn(num_classes - 1, feature_size).astype(np.float32),
                "bias": np.random.randn(num_classes - 1, ).astype(np.float32),
            }
            y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
            print(y_np.shape)

          # (4, 1)
    """

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()

    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out
345 346


347
def relu(x, name=None):
348 349 350 351 352 353 354 355
    """
    ReLU Activation.

    .. math:

        out = max(x, 0)

    Parameters:
356 357 358
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
359 360

    Returns:
361
        A Tensor with the same data type and shape as ``x`` .
362 363 364 365

    Examples:
        .. code-block:: python

366 367 368 369 370
        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()
371

372 373
        x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
        out = F.relu(x) # [0., 0., 1.]
374 375 376
    """

    if in_dygraph_mode():
377
        return core.ops.relu(x)
378

379
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
380
    helper = LayerHelper('relu', **locals())
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


def logsigmoid(x, name=None):
    """
    logsigmoid activation.

    .. math:

        logsigmoid(x) = \log \frac{1}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
        out = F.logsigmoid(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
    """

    if in_dygraph_mode():
        return core.ops.logsigmoid(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'logsigmoid')
    helper = LayerHelper("logsigmoid", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
424 425


426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
def softmax(x, axis=-1, name=None):
    """
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        out[i, j] = \\frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Args:
        x (Tensor): The input multi-dimension Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform softmax calculations.
            It should be in range [-D, D), where D is the dimensions of ``x`` .
            When ``axis`` < 0, it works the same way as :math:`axis + D` .
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

522
        paddle.disable_static()
523 524 525 526 527 528 529

        x = np.array([[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]], 'float32')
530
        x = paddle.to_tensor(x)
531 532 533 534 535 536 537 538 539 540 541
        out = F.softmax(x)
        # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
        # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """
    return paddle.fluid.layers.softmax(input=x, axis=axis, name=name)


542
def log_softmax(x, axis=-1, dtype=None, name=None):
543
    """
544 545
    This operator implements the log_softmax layer. The calculation process is
    as follows:
546 547 548 549 550 551 552

    .. math::

        Out[i, j] = log(softmax(x)) 
                  = log(\\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})

    Parameters:
553 554 555 556 557 558 559 560 561 562 563 564 565
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
566 567
 
    Returns:
568 569
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
570 571 572 573

    Examples:
        .. code-block:: python

574 575 576
        import paddle
        import paddle.nn.functional as F
        import numpy as np
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        paddle.disable_static()

        x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                        [3.0, -4.0, 5.0, -6.0],
                        [-7.0, -8.0, 8.0, 9.0]],
                        [[1.0, -2.0, -3.0, 4.0],
                        [-5.0, 6.0, 7.0, -8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
        x = paddle.to_tensor(x)
        out1 = F.log_softmax(x)
        out2 = F.log_softmax(x, dtype='float64')
        # out1's data type is float32; out2's data type is float64
        # out1 and out2's value is as follows:
        # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
        #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
        #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
        #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
        #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
        #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
597 598
    """

599 600 601 602
    if axis is None:
        axis = -1
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
603 604

    if in_dygraph_mode():
605 606 607
        if dtype is not None:
            x = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.log_softmax(x, 'axis', axis)
608

609
    if dtype is None:
610 611 612 613 614
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
615

616
    helper = LayerHelper("log_softmax", **locals())
617
    out_cast = x
618
    if dtype is not None:
619
        out_cast = helper.create_variable_for_type_inference(dtype)
620 621
        helper.append_op(
            type='cast',
622 623 624
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
625 626
                   'out_dtype': dtype})

627
    out = helper.create_variable_for_type_inference(out_cast.dtype)
628
    helper.append_op(
629 630 631 632
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
633

634
    return out