Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
74d3a550
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
74d3a550
编写于
10月 11, 2020
作者:
H
hong19860320
提交者:
GitHub
10月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Swish and ThresholdedReLU for API 2.0 (#27758)
上级
a2d08aa9
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
288 addition
and
57 deletion
+288
-57
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+122
-31
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+2
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+87
-14
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+77
-12
未找到文件。
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
74d3a550
...
...
@@ -1979,22 +1979,24 @@ class TestSoftsignAPI(unittest.TestCase):
F
.
softsign
(
x_fp16
)
def
ref_thresholded_relu
(
x
,
threshold
=
1.0
):
out
=
(
x
>
threshold
)
*
x
return
out
class
TestThresholdedRelu
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"thresholded_relu"
self
.
init_dtype
()
threshold
=
0.25
self
.
delta
=
0.005
np
.
random
.
seed
(
1024
)
X
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
# Same reason as TestAbs
X
[
np
.
abs
(
X
-
threshold
)
<
self
.
delta
]
=
threshold
+
0.2
out
=
(
X
>
threshold
)
*
X
threshold
=
15
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
X
)}
self
.
attrs
=
{
'threshold'
:
threshold
}
np
.
random
.
seed
(
1024
)
x
=
np
.
random
.
uniform
(
-
20
,
20
,
[
10
,
12
]).
astype
(
self
.
dtype
)
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
out
=
ref_thresholded_relu
(
x
,
threshold
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
"threshold"
:
threshold
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
...
...
@@ -2003,17 +2005,61 @@ class TestThresholdedRelu(TestActivation):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestThresholdedReluOpError
(
unittest
.
TestCase
):
class
TestThresholdedReluAPI
(
unittest
.
TestCase
):
# test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
def
setUp
(
self
):
self
.
threshold
=
15
np
.
random
.
seed
(
1024
)
self
.
x_np
=
np
.
random
.
uniform
(
-
20
,
20
,
[
10
,
12
]).
astype
(
np
.
float64
)
self
.
x_np
[
np
.
abs
(
self
.
x_np
)
<
0.005
]
=
0.02
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out1
=
F
.
thresholded_relu
(
x
,
self
.
threshold
)
thresholded_relu
=
paddle
.
nn
.
ThresholdedReLU
(
self
.
threshold
)
out2
=
thresholded_relu
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_thresholded_relu
(
self
.
x_np
,
self
.
threshold
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
thresholded_relu
(
x
,
self
.
threshold
)
thresholded_relu
=
paddle
.
nn
.
ThresholdedReLU
(
self
.
threshold
)
out2
=
thresholded_relu
(
x
)
out_ref
=
ref_thresholded_relu
(
self
.
x_np
,
self
.
threshold
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
paddle
.
enable_static
()
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out
=
fluid
.
layers
.
thresholded_relu
(
x
,
self
.
threshold
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
ref_thresholded_relu
(
self
.
x_np
,
self
.
threshold
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
res
[
0
]),
True
)
def
test_errors
(
self
):
with
program_guard
(
Program
()):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
thresholded_relu
,
1
)
self
.
assertRaises
(
TypeError
,
F
.
thresholded_relu
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
thresholded_relu
,
x_int32
)
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
thresholded_relu
,
x_int32
)
# support the input dtype is float16
x_fp16
=
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
fluid
.
layers
.
thresholded_relu
(
x_fp16
)
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
F
.
thresholded_relu
(
x_fp16
)
def
ref_hardsigmoid
(
x
,
slope
=
0.166666666666667
,
offset
=
0.5
):
...
...
@@ -2115,37 +2161,82 @@ class TestHardsigmoidAPI(unittest.TestCase):
F
.
hardsigmoid
(
x_fp16
)
def
ref_swish
(
x
):
out
=
x
*
expit
(
x
)
return
out
class
TestSwish
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"swish"
self
.
init_dtype
()
np
.
random
.
seed
(
1024
)
X
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
beta
=
2.3
out
=
X
*
expit
(
beta
*
X
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
X
)}
self
.
attrs
=
{
'beta'
:
beta
}
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
10
,
12
]).
astype
(
self
.
dtype
)
out
=
ref_swish
(
x
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'slope'
:
1.0
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSwishAPI
(
unittest
.
TestCase
):
# test paddle.nn.Swish, paddle.nn.functional.swish
def
setUp
(
self
):
np
.
random
.
seed
(
1024
)
self
.
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
[
10
,
12
]).
astype
(
np
.
float64
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out1
=
F
.
swish
(
x
)
swish
=
paddle
.
nn
.
Swish
()
out2
=
swish
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_swish
(
self
.
x_np
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
swish
(
x
)
swish
=
paddle
.
nn
.
Swish
()
out2
=
swish
(
x
)
out_ref
=
ref_swish
(
self
.
x_np
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
paddle
.
enable_static
()
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out
=
fluid
.
layers
.
swish
(
x
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
ref_swish
(
self
.
x_np
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
res
[
0
]),
True
)
class
TestSwishOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
()):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
swish
,
1
)
self
.
assertRaises
(
TypeError
,
F
.
swish
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
swish
,
x_int32
)
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
swish
,
x_int32
)
# support the input dtype is float16
x_fp16
=
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
fluid
.
layers
.
swish
(
x_fp16
)
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
F
.
swish
(
x_fp16
)
#------------------ Test Error Activation----------------------
...
...
python/paddle/nn/__init__.py
浏览文件 @
74d3a550
...
...
@@ -69,7 +69,9 @@ from .layer.activation import Softmax #DEFINE_ALIAS
from
.layer.activation
import
Softplus
#DEFINE_ALIAS
from
.layer.activation
import
Softshrink
#DEFINE_ALIAS
from
.layer.activation
import
Softsign
#DEFINE_ALIAS
from
.layer.activation
import
Swish
#DEFINE_ALIAS
from
.layer.activation
import
Tanhshrink
#DEFINE_ALIAS
from
.layer.activation
import
ThresholdedReLU
#DEFINE_ALIAS
from
.layer.activation
import
LogSoftmax
#DEFINE_ALIAS
from
.layer.activation
import
HSigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Maxout
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
74d3a550
...
...
@@ -15,9 +15,7 @@
# TODO: define activation functions of neural network
from
...fluid.layers
import
erf
#DEFINE_ALIAS
from
...fluid.layers
import
soft_relu
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
thresholded_relu
#DEFINE_ALIAS
from
...tensor.math
import
tanh
#DEFINE_ALIAS
__all__
=
[
...
...
@@ -787,8 +785,6 @@ def relu6(x, name=None):
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
out = F.relu6(x) # [0, 0.3, 6]
"""
...
...
@@ -839,8 +835,6 @@ def selu(x,
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
"""
...
...
@@ -1054,8 +1048,6 @@ def softplus(x, beta=1, threshold=20, name=None):
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
"""
...
...
@@ -1103,8 +1095,6 @@ def softshrink(x, threshold=0.5, name=None):
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
"""
...
...
@@ -1151,8 +1141,6 @@ def softsign(x, name=None):
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
"""
...
...
@@ -1167,6 +1155,47 @@ def softsign(x, name=None):
return
out
def
swish
(
x
,
name
=
None
):
"""
swish activation.
.. math::
swish(x) =
\\
frac{x}{1 + e^{-x}}
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
x = paddle.to_tensor(np.array([-2., 0., 1.]))
out = F.swish(x) # [-0.238406, 0., 0.731059]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
swish
(
x
,
'slop'
,
1.0
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'swish'
)
helper
=
LayerHelper
(
'swish'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'swish'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
1.0
})
return
out
def
tanhshrink
(
x
,
name
=
None
):
"""
tanhshrink activation
...
...
@@ -1190,8 +1219,6 @@ def tanhshrink(x, name=None):
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
"""
...
...
@@ -1206,6 +1233,52 @@ def tanhshrink(x, name=None):
return
out
def
thresholded_relu
(
x
,
threshold
=
1.0
,
name
=
None
):
"""
thresholded relu activation.
.. math::
thresholded
\\
_relu(x) =
\\
begin{cases}
x,
\\
text{if } x > threshold
\\\\
0,
\\
text{otherwise}
\\
end{cases}
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
x = paddle.to_tensor(np.array([2., 0., 1.]))
out = F.thresholded_relu(x) # [2., 0., 0.]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
thresholded_relu
(
x
,
'threshold'
,
threshold
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'thresholded_relu'
)
helper
=
LayerHelper
(
'thresholded_relu'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'thresholded_relu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'threshold'
:
threshold
})
return
out
def
log_softmax
(
x
,
axis
=-
1
,
dtype
=
None
,
name
=
None
):
"""
This operator implements the log_softmax layer. The calculation process is
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
74d3a550
...
...
@@ -32,7 +32,9 @@ __all__ = [
'Softplus'
,
'Softshrink'
,
'Softsign'
,
'Swish'
,
'Tanhshrink'
,
'ThresholdedReLU'
,
'LogSigmoid'
,
'LogSoftmax'
,
'Maxout'
,
...
...
@@ -580,8 +582,6 @@ class ReLU6(layers.Layer):
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
m = paddle.nn.ReLU6()
out = m(x) # [0, 0.3, 6]
...
...
@@ -623,8 +623,6 @@ class SELU(layers.Layer):
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
m = paddle.nn.SELU()
out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
...
...
@@ -801,8 +799,6 @@ class Softplus(layers.Layer):
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
m = paddle.nn.Softplus()
out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
...
...
@@ -845,8 +841,6 @@ class Softshrink(layers.Layer):
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
m = paddle.nn.Softshrink()
out = m(x) # [-0.4, 0, 0, 0.3]
...
...
@@ -883,8 +877,6 @@ class Softsign(layers.Layer):
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
m = paddle.nn.Softsign()
out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
...
...
@@ -898,6 +890,41 @@ class Softsign(layers.Layer):
return
F
.
softsign
(
x
,
self
.
_name
)
class
Swish
(
layers
.
Layer
):
"""
Swish Activation.
.. math::
Swish(x) =
\\
frac{x}{1 + e^{-x}}
Parameters:
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(np.array([-2., 0., 1.]))
m = paddle.nn.Swish()
out = m(x) # [-0.238406, 0., 0.731059]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Swish
,
self
).
__init__
()
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
swish
(
x
,
self
.
_name
)
class
Tanhshrink
(
layers
.
Layer
):
"""
Tanhshrink Activation
...
...
@@ -920,8 +947,6 @@ class Tanhshrink(layers.Layer):
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
m = paddle.nn.Tanhshrink()
out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
...
...
@@ -935,6 +960,46 @@ class Tanhshrink(layers.Layer):
return
F
.
tanhshrink
(
x
,
self
.
_name
)
class
ThresholdedReLU
(
layers
.
Layer
):
"""
Thresholded ReLU Activation
.. math::
ThresholdedReLU(x) =
\\
begin{cases}
x,
\\
text{if } x > threshold
\\\\
0,
\\
text{otherwise}
\\
end{cases}
Parameters:
threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(np.array([2., 0., 1.]))
m = paddle.nn.ThresholdedReLU()
out = m(x) # [2., 0., 0.]
"""
def
__init__
(
self
,
threshold
=
1.0
,
name
=
None
):
super
(
ThresholdedReLU
,
self
).
__init__
()
self
.
_threshold
=
threshold
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
thresholded_relu
(
x
,
self
.
_threshold
,
self
.
_name
)
class
LogSigmoid
(
layers
.
Layer
):
"""
LogSigmoid Activation.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录