activation.py 43.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhiboniu 已提交
15 16 17
from ...fluid.layers import sigmoid  # noqa: F401
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24 25 26
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
W
wanghuancoder 已提交
29
from paddle import _C_ops
30

31 32
__all__ = []

33

34
def elu(x, alpha=1.0, name=None):
35
    r"""
36 37
    elu activation.

38
    .. math::
39 40 41 42 43 44 45 46

        elu(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
47

48 49
    Returns:
        A Tensor with the same data type and shape as ``x`` .
50

51 52 53
    Examples:
        .. code-block:: python

54 55
            import paddle
            import paddle.nn.functional as F
56

Z
zhupengyang 已提交
57
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
58
            out = F.elu(x, alpha=0.2)
59 60
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
61 62 63
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
64
        return _C_ops.elu(x, 'alpha', alpha)
65 66 67 68 69 70 71 72 73 74 75 76

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


77
@inplace_apis_in_dygraph_only
78 79 80 81 82
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
W
wanghuancoder 已提交
83
    return _C_ops.elu_(x, 'alpha', alpha)
84 85


86
def gelu(x, approximate=False, name=None):
87
    r"""
88 89 90
    gelu activation.

    if approximate is True
91 92 93

    .. math::

94
        gelu(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))
95

96
    else
97 98 99

    .. math::

100
        gelu(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))
101

102 103 104 105 106
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
107

108 109
    Returns:
        A Tensor with the same data type and shape as ``x`` .
110

111 112 113
    Examples:
        .. code-block:: python

114 115
            import paddle
            import paddle.nn.functional as F
116

Z
zhupengyang 已提交
117 118 119 120 121 122 123
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
124 125 126
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
127
        return _C_ops.gelu(x, 'approximate', approximate)
128 129 130 131 132 133 134 135 136 137 138 139

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


140
def hardshrink(x, threshold=0.5, name=None):
141
    r"""
142 143 144 145 146
    hard shrinkage activation

    .. math::

        hardshrink(x)=
147 148 149 150 151 152 153
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x > threshold \\\\
            &x, & & if \\ x < -threshold \\\\
            &0, & & if \\ others
            \\end{aligned}
            \\right.
154 155 156 157 158 159 160 161 162 163 164 165 166

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

167 168
            import paddle
            import paddle.nn.functional as F
169

Z
zhupengyang 已提交
170
            x = paddle.to_tensor([-1, 0.3, 2.5])
171
            out = F.hardshrink(x) # [-1., 0., 2.5]
172 173 174

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
175
        return _C_ops.hard_shrink(x, 'threshold', threshold)
176 177 178 179 180 181 182 183 184 185 186 187 188

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


189
def hardtanh(x, min=-1.0, max=1.0, name=None):
190
    r"""
191 192 193 194 195 196 197 198 199 200
    hardtanh activation

    .. math::

        hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

201
    Parameters:
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
223
        return _C_ops.brelu(x, 't_min', min, 't_max', max)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


239
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
240
    r"""
241 242 243 244 245 246 247 248 249 250 251 252
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &1, & & \\text{if } x \\geq 3 \\\\
253
            &slope * x + offset, & & \\text{otherwise}
254 255 256 257 258
            \\end{aligned}
            \\right.

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
259 260
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
278
        return _C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
279 280 281 282 283 284 285 286 287 288

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
289 290
        attrs={'slope': slope,
               'offset': offset})
291 292 293 294
    return out


def hardswish(x, name=None):
295
    r"""
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &x, & & \\text{if } x \\geq 3 \\\\
            &\\frac{x(x+3)}{6}, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
332
        return _C_ops.hard_swish(x)
333 334 335 336 337 338 339 340 341 342

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


343
def leaky_relu(x, negative_slope=0.01, name=None):
344
    r"""
345 346
    leaky_relu activation

347 348 349 350 351 352 353 354
    .. math::
        leaky\\_relu(x)=
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x >= 0 \\\\
            &negative\_slope * x, & & otherwise \\\\
            \\end{aligned}
            \\right. \\\\
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
372
            x = paddle.to_tensor([-2., 0., 1.])
373 374 375 376
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
377
        return _C_ops.leaky_relu(x, 'alpha', negative_slope)
378 379 380 381 382 383 384 385 386 387 388 389 390

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
def prelu(x, weight, name=None):
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
417 418 419 420 421
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

439
    # NOTE(): The input of this API should be ``N,C,...`` format,
440 441 442 443 444 445 446 447 448 449 450
    # which means x.shape[0] is batch_size and x.shape[0] is channel.
    mode = 'all'
    if weight.shape[0] > 1:
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
        assert weight.shape[0] == x.shape[
            1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        mode = 'channel'

    if in_dygraph_mode():
W
wanghuancoder 已提交
451
        return _C_ops.prelu(x, weight, 'mode', mode)
452

453
    helper = LayerHelper('prelu', **locals())
454 455 456 457 458 459 460 461 462 463
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode})
    return out


464
def relu(x, name=None):
465
    """
466
    relu activation.
467

468
    .. math::
469 470 471 472

        out = max(x, 0)

    Parameters:
473 474 475
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
476 477

    Returns:
478
        A Tensor with the same data type and shape as ``x`` .
479 480 481 482

    Examples:
        .. code-block:: python

483 484 485
            import paddle
            import paddle.nn.functional as F
            import numpy as np
486

487 488
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
489 490 491
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
492
        return _C_ops.relu(x)
493

494
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
495
    helper = LayerHelper('relu', **locals())
496 497 498 499 500
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


501
@inplace_apis_in_dygraph_only
502 503 504 505 506
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
W
wanghuancoder 已提交
507
    return _C_ops.relu_(x)
508 509


510
def log_sigmoid(x, name=None):
511
    r"""
512
    log_sigmoid activation.
513

514
    .. math::
515

516
        log\\_sigmoid(x) = log \\frac{1}{1 + e^{-x}}
517

518 519 520 521
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
522

523 524
    Returns:
        A Tensor with the same data type and shape as ``x`` .
525

526 527 528
    Examples:
        .. code-block:: python

529 530
            import paddle
            import paddle.nn.functional as F
531

532 533
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
534 535 536
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
537
        return _C_ops.logsigmoid(x)
538 539

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
540 541
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
542 543 544
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
545 546


547
def maxout(x, groups, axis=1, name=None):
548
    r"""
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

        &out_{si+j} = \\max_{k} x_{gsi + sk + j} \\\\
        &g = groups \\\\
        &s = \\frac{input.size}{num\\_channels} \\\\
        &0 \\le i < \\frac{num\\_channels}{groups} \\\\
        &0 \\le j < s \\\\
        &0 \\le k < groups

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
601
        return _C_ops.maxout(x, 'groups', groups, 'axis', axis)
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups,
               'axis': axis})
    return out


622 623 624 625 626 627
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

628
        relu6(x) = min(max(0,x), 6)
629

630
    Parameters:
631 632 633 634 635 636 637 638 639 640
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

641 642 643
            import paddle
            import paddle.nn.functional as F
            import numpy as np
644

645 646
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
647 648 649
    """
    threshold = 6.0
    if in_dygraph_mode():
W
wanghuancoder 已提交
650
        return _C_ops.relu6(x, 'threshold', threshold)
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
667
    r"""
668 669 670 671
    selu activation

    .. math::

672 673 674 675 676
        selu(x)= scale *
                 \\begin{cases}
                   x, \\text{if } x > 0 \\\\
                   alpha * e^{x} - alpha, \\text{if } x <= 0
                 \\end{cases}
677

678
    Parameters:
679
        x (Tensor): The input Tensor with data type float32, float64.
680 681
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
682 683 684 685 686 687 688 689 690
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

691 692 693
            import paddle
            import paddle.nn.functional as F
            import numpy as np
694

695
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
696
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
697
    """
698 699 700 701 702 703 704 705
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

706
    if in_dygraph_mode():
W
wanghuancoder 已提交
707
        return _C_ops.selu(x, 'scale', scale, 'alpha', alpha)
708 709 710 711 712 713 714 715 716 717 718 719 720

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


M
minghaoBD 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
def silu(x, name=None):
    """
    silu activation.
    .. math:
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
        import paddle
        import paddle.nn.functional as F
        
        x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
        out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
745
        return _C_ops.silu(x)
M
minghaoBD 已提交
746 747 748 749 750 751 752 753

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


754
def softmax(x, axis=-1, dtype=None, name=None):
755
    r"""
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

781
        softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

830 831 832 833 834 835
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
836
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
837 838 839 840
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
841 842
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
843 844 845 846

    Examples:
        .. code-block:: python

847 848 849
            import paddle
            import paddle.nn.functional as F
            import numpy as np
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
868
    """
869 870 871

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
872
    use_cudnn = True
873 874 875

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
W
wanghuancoder 已提交
876 877
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
906 907


908
@inplace_apis_in_dygraph_only
909 910 911 912 913 914 915 916
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
W
wanghuancoder 已提交
917
    return _C_ops.softmax_(x, 'axis', axis, 'use_cudnn', use_cudnn)
918 919


920
def softplus(x, beta=1, threshold=20, name=None):
921
    r"""
922 923 924 925
    softplus activation

    .. math::

926 927
        softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
928

929
    Parameters:
930 931 932 933 934 935 936 937 938 939 940 941
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

942 943 944
            import paddle
            import paddle.nn.functional as F
            import numpy as np
945

946 947
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
948 949
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
950
        return _C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
966
    r"""
967 968 969 970
    softshrink activation

    .. math::

971 972 973 974 975
        softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
976

977
    Parameters:
978 979 980 981 982 983 984 985 986 987 988
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

989 990 991
            import paddle
            import paddle.nn.functional as F
            import numpy as np
992

993 994
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
995
    """
996 997 998 999 1000
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1001
    if in_dygraph_mode():
W
wanghuancoder 已提交
1002
        return _C_ops.softshrink(x, 'lambda', threshold)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
1017
    r"""
1018 1019 1020 1021
    softsign activation

    .. math::

1022
        softsign(x) = \\frac{x}{1 + |x|}
1023

1024
    Parameters:
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1035 1036 1037
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1038

1039 1040
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1041 1042
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1043
        return _C_ops.softsign(x)
1044 1045 1046 1047 1048 1049 1050 1051 1052

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1053
def swish(x, name=None):
1054
    r"""
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    swish activation.

    .. math::

        swish(x) = \\frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1081
        return _C_ops.swish(x, 'beta', 1.0)
1082 1083 1084 1085 1086 1087 1088 1089

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
H
hong19860320 已提交
1090
        attrs={'beta': 1.0})
1091 1092 1093
    return out


1094 1095 1096 1097 1098 1099
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1100
        tanhshrink(x) = x - tanh(x)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1113 1114 1115
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1116

1117 1118
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1119 1120
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1121
        return _C_ops.tanh_shrink(x)
1122 1123 1124 1125 1126 1127 1128 1129 1130

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1131
def thresholded_relu(x, threshold=1.0, name=None):
1132
    r"""
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    thresholded relu activation.

    .. math::

        thresholded\\_relu(x) = \\begin{cases}
                                 x, \\text{if } x > threshold \\\\
                                 0, \\text{otherwise}
                                \\end{cases}

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1163
        return _C_ops.thresholded_relu(x, 'threshold', threshold)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


1177
def log_softmax(x, axis=-1, dtype=None, name=None):
1178
    r"""
1179 1180
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1181 1182 1183

    .. math::

Z
zhupengyang 已提交
1184 1185 1186 1187
        \\begin{aligned} 
        log\\_softmax[i, j] &= log(softmax(x)) \\\\
        &= log(\\frac{\\exp(X[i, j])}{\\sum_j(\\exp(X[i, j])})
        \\end{aligned}
1188 1189

    Parameters:
1190 1191 1192 1193 1194 1195 1196
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1197
            to ``dtype`` before the operation is performed. This is useful for
1198 1199 1200 1201 1202
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1203

1204
    Returns:
1205 1206
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1207 1208 1209 1210

    Examples:
        .. code-block:: python

1211 1212 1213
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1214 1215 1216 1217 1218 1219
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1232 1233 1234

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1235 1236

    if in_dygraph_mode():
1237
        if dtype is not None:
W
wanghuancoder 已提交
1238 1239
            x = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.log_softmax(x, 'axis', axis)
1240

1241
    if dtype is None:
1242 1243 1244 1245 1246
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1247

1248
    helper = LayerHelper("log_softmax", **locals())
1249
    out_cast = x
1250
    if dtype is not None:
1251
        out_cast = helper.create_variable_for_type_inference(dtype)
1252 1253
        helper.append_op(
            type='cast',
1254 1255 1256
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1257 1258
                   'out_dtype': dtype})

1259
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1260
    helper.append_op(
1261 1262 1263 1264
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1265

1266
    return out
F
Feiyu Chan 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out