activation.py 57.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20
from ...tensor.manipulation import chunk
21

22
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
23
from ...fluid.framework import convert_np_dtype_to_dtype_
24
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode
25
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
26
import paddle
27
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
Z
zhiboniu 已提交
28
from paddle.framework import core
29
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
30

31 32
__all__ = []

33

34 35 36 37 38 39 40 41 42 43 44
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
45
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

63
    if _in_legacy_dygraph():
64
        return _legacy_C_ops.celu(x, 'alpha', alpha)
65
    if in_dygraph_mode():
66
        return _C_ops.celu(x, alpha)
67 68 69 70

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
71 72 73 74
    helper.append_op(type='celu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
75 76 77
    return out


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dygraph_mode():
113
        return _C_ops.elu(x, alpha)
114 115

    if _in_legacy_dygraph():
116
        return _legacy_C_ops.elu(x, 'alpha', alpha)
117 118 119 120

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
121 122 123 124
    helper.append_op(type='elu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
125 126 127
    return out


128
@inplace_apis_in_dygraph_only
129 130 131 132 133
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
134
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
135
    if in_dygraph_mode():
136 137
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
138 139


140
def gelu(x, approximate=False, name=None):
141
    r"""
142 143
    gelu activation.

144 145
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

146
    if approximate is True
147 148 149

    .. math::

150
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
151

152
    else
153 154 155

    .. math::

156
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
157

158 159
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
160 161
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
162

163 164
    Returns:
        A Tensor with the same data type and shape as ``x`` .
165

166 167 168
    Examples:
        .. code-block:: python

169 170
            import paddle
            import paddle.nn.functional as F
171

Z
zhupengyang 已提交
172 173 174 175 176 177 178
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
179 180
    """

181
    if in_dygraph_mode():
182
        return _C_ops.gelu(x, approximate)
183 184

    if _in_legacy_dygraph():
185
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
186 187 188 189

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
190 191 192 193
    helper.append_op(type='gelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'approximate': approximate})
194 195 196
    return out


197
def hardshrink(x, threshold=0.5, name=None):
198
    r"""
199 200 201 202 203
    hard shrinkage activation

    .. math::

        hardshrink(x)=
204 205 206 207 208 209 210
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
211 212 213

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
214 215
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
216 217 218 219 220 221 222

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

223 224
            import paddle
            import paddle.nn.functional as F
225

Z
zhupengyang 已提交
226
            x = paddle.to_tensor([-1, 0.3, 2.5])
227
            out = F.hardshrink(x) # [-1., 0., 2.5]
228 229

    """
H
hong 已提交
230
    if in_dygraph_mode():
231
        return _C_ops.hard_shrink(x, threshold)
H
hong 已提交
232 233

    if _in_legacy_dygraph():
234
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
235 236 237 238 239

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
240 241 242 243
    helper.append_op(type='hard_shrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
244 245 246
    return out


247
def hardtanh(x, min=-1.0, max=1.0, name=None):
248
    r"""
249
    hardtanh activation. Calculate the `hardtanh` of input `x`.
250 251 252

    .. math::

253 254 255 256 257 258 259 260
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
261

262
    Parameters:
263 264 265
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
266
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
267 268 269 270 271 272 273 274 275 276

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

277
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
278 279 280
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
281
    if in_dygraph_mode():
282
        return _C_ops.brelu(x, min, max)
H
hong 已提交
283 284

    if _in_legacy_dygraph():
285
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
286 287 288 289 290 291

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
292 293 294 295 296 297 298
    helper.append_op(type='brelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         't_min': min,
                         't_max': max
                     })
299 300 301
    return out


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
305 306 307 308 309 310
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
311 312 313 314 315 316 317
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
318 319 320

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
321 322
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
338
    if in_dygraph_mode():
339
        return _C_ops.hard_sigmoid(x, slope, offset)
H
hong 已提交
340 341

    if _in_legacy_dygraph():
342
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
343 344 345 346 347 348

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
349 350 351 352 353 354 355
    helper.append_op(type='hard_sigmoid',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'slope': slope,
                         'offset': offset
                     })
356 357 358 359
    return out


def hardswish(x, name=None):
360
    r"""
361 362 363
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
364 365 366 367

    .. math::

        hardswish(x)=
368 369 370 371 372 373 374
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
375 376 377

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
378
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
379 380 381 382 383 384 385 386 387 388 389 390 391 392

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

393
    if _in_legacy_dygraph():
394
        return _legacy_C_ops.hard_swish(x)
395
    if in_dygraph_mode():
396
        return _C_ops.hard_swish(x, 6, 6, 3)
397 398 399 400 401 402 403 404 405 406

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


407
def leaky_relu(x, negative_slope=0.01, name=None):
408
    r"""
409
    leaky_relu activation. The calculation formula is:
410

411
    .. math::
412 413 414 415 416 417 418
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
419 420 421 422 423

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
424
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
425 426 427 428 429 430 431 432 433 434

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
435
            x = paddle.to_tensor([-2., 0., 1.])
436 437 438
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
439 440

    """
441
    if in_dygraph_mode():
442
        return _C_ops.leaky_relu(x, negative_slope)
443 444

    if _in_legacy_dygraph():
445
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
446 447 448 449 450

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
451 452 453 454
    helper.append_op(type='leaky_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': negative_slope})
455 456 457
    return out


458
def prelu(x, weight, data_format="NCHW", name=None):
459 460 461 462 463 464 465 466 467 468 469
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
470
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
471 472
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
473 474 475 476 477 478 479 480 481 482

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

483
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
484 485 486 487
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
488 489 490 491 492
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
509 510 511 512 513 514 515 516 517 518 519

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

520 521 522
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
523 524 525 526 527 528 529 530

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
531 532
        mode = 'channel'

533
    if in_dygraph_mode():
534
        return _C_ops.prelu(x, weight, data_format, mode)
535
    if _in_legacy_dygraph():
536 537
        return _legacy_C_ops.prelu(x, weight, 'mode', mode, 'data_format',
                                   data_format)
538

539
    helper = LayerHelper('prelu', **locals())
540
    out = helper.create_variable_for_type_inference(x.dtype)
541 542 543 544 545 546 547 548 549 550
    helper.append_op(type="prelu",
                     inputs={
                         "X": x,
                         "Alpha": weight
                     },
                     outputs={"Out": out},
                     attrs={
                         "mode": mode,
                         "data_format": data_format
                     })
551 552 553
    return out


554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
def rrelu(x, lower=1. / 8., upper=1. / 3., training=True, name=None):
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
597
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
616
            print(out)
617 618 619 620 621 622 623 624 625 626 627 628 629 630
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
        check_variable_and_dtype(x, 'X', ['float16', 'float32', 'float64'],
                                 'rrelu')

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
631 632
            "The lower and upper values must be float type. Received: lower {}, upper {}."
            .format(lower, upper))
633 634 635

    if lower < 0 or lower > 1:
        raise ValueError(
636 637
            "The lower value must be no less than zero or greater than one. Received: {}."
            .format(lower))
638 639 640

    if upper < lower:
        raise ValueError(
641 642
            "The upper value must be greater than lower value. Received: lower {}, upper {}."
            .format(lower, upper))
643 644 645 646 647 648 649 650 651

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
                upper))

    is_test = not training

    if _in_legacy_dygraph():
652 653
        out, noise = _legacy_C_ops.rrelu(x, 'lower', lower, 'upper', upper,
                                         'is_test', is_test)
654 655 656 657 658 659
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
660 661 662 663 664 665 666
    helper.append_op(type='rrelu',
                     inputs={"X": x},
                     outputs={
                         "Out": out,
                         "Noise": noise
                     },
                     attrs=attrs)
667 668 669
    return out


670
def relu(x, name=None):
671
    """
672
    relu activation.
673

674
    .. math::
675 676 677 678

        out = max(x, 0)

    Parameters:
679
        x (Tensor): The input Tensor with data type float32, float64.
680
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
681 682

    Returns:
683
        A Tensor with the same data type and shape as ``x`` .
684 685 686 687

    Examples:
        .. code-block:: python

688 689
            import paddle
            import paddle.nn.functional as F
690

691 692 693 694
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
695 696
    """

697
    if in_dygraph_mode():
W
wanghuancoder 已提交
698
        return _C_ops.relu(x)
699 700
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
701
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
702
    helper = LayerHelper('relu', **locals())
703 704 705 706 707
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


708
@inplace_apis_in_dygraph_only
709 710 711 712 713
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
714 715
    if in_dygraph_mode():
        return _C_ops.relu_(x)
716 717
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
718 719


720
def log_sigmoid(x, name=None):
721
    r"""
722
    log_sigmoid activation.
723

724
    .. math::
725

726
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
727

728 729
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
730
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
731

732 733
    Returns:
        A Tensor with the same data type and shape as ``x`` .
734

735 736 737
    Examples:
        .. code-block:: python

738 739
            import paddle
            import paddle.nn.functional as F
740

741 742
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
743 744
    """

H
hong 已提交
745
    if in_dygraph_mode():
746
        return _C_ops.logsigmoid(x)
H
hong 已提交
747 748

    if _in_legacy_dygraph():
749
        return _legacy_C_ops.logsigmoid(x)
750 751

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
752 753
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
754 755 756
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
757 758


759
def maxout(x, groups, axis=1, name=None):
760
    r"""
761 762 763 764 765 766 767 768
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

769 770 771 772 773 774 775 776 777
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

778 779 780 781 782 783 784 785 786 787 788 789

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
790
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
813
    if _in_legacy_dygraph():
814
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
815
    if in_dygraph_mode():
816
        return _C_ops.maxout(x, groups, axis)
817 818 819 820 821 822 823 824 825 826
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
827 828 829 830 831 832 833
    helper.append_op(type='maxout',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'groups': groups,
                         'axis': axis
                     })
834 835 836
    return out


837 838 839 840 841 842
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

843
        relu6(x) = min(max(0,x), 6)
844

845
    Parameters:
846
        x (Tensor): The input Tensor with data type float32, float64.
847
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
848 849 850 851 852 853 854

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

855 856
            import paddle
            import paddle.nn.functional as F
857

858 859 860 861
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
862 863
    """
    threshold = 6.0
864
    if in_dygraph_mode():
865
        return _C_ops.relu6(x, threshold)
Z
zhiboniu 已提交
866
    if in_dynamic_mode():
867
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
868 869 870 871

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
872 873 874 875
    helper.append_op(type='relu6',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
876 877 878 879 880 881 882
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
883
    r"""
884 885 886 887
    selu activation

    .. math::

888
        selu(x)= scale *
889 890 891 892 893 894
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
895

896
    Parameters:
897
        x (Tensor): The input Tensor with data type float32, float64.
898 899
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
900
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
901 902 903 904 905 906 907

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

908 909
            import paddle
            import paddle.nn.functional as F
910

911 912 913 914
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
915
    """
916 917 918 919 920 921 922 923
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
924
    if in_dygraph_mode():
925
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
926
    if _in_legacy_dygraph():
927
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
928 929 930 931

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
932 933 934 935 936 937 938
    helper.append_op(type='selu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale': scale,
                         'alpha': alpha
                     })
939 940 941
    return out


M
minghaoBD 已提交
942
def silu(x, name=None):
943 944 945 946 947
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
948
        silu(x) = \frac{x}{1 + e^{-x}}
949

950 951
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
952 953
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
954
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
955

M
minghaoBD 已提交
956
    Returns:
957
        A Tensor with the same data type and shape as :attr:`x`.
958

M
minghaoBD 已提交
959 960
    Examples:
        .. code-block:: python
961 962 963

            import paddle
            import paddle.nn.functional as F
964

965 966
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
967 968
    """

969
    if in_dygraph_mode():
W
wanghuancoder 已提交
970
        return _C_ops.silu(x)
971 972
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
973 974 975 976 977 978 979 980

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


981
def softmax(x, axis=-1, dtype=None, name=None):
982
    r"""
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1008
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1057 1058
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1059
        axis (int, optional): The axis along which to perform softmax
1060
            calculations. It should be in range [-D, D), where D is the
1061
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1062
            :math:`axis + D` . Default is -1.
1063
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1064
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1065 1066

    Returns:
1067 1068
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1069 1070 1071 1072

    Examples:
        .. code-block:: python

1073 1074
            import paddle
            import paddle.nn.functional as F
1075

1076
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1077 1078 1079 1080
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1081
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1092
    """
1093 1094 1095

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1096
    use_cudnn = True
1097

H
hong 已提交
1098 1099
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1100 1101
            else _C_ops.cast(x, dtype)
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1102 1103

    if _in_legacy_dygraph():
1104
        outs_cast = x if dtype is None \
1105 1106 1107
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn',
                                     use_cudnn)
1108 1109 1110 1111 1112

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
1113 1114 1115
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'softmax',
            'If dtype is not None, it only support float32 or float64.')
1116 1117 1118 1119 1120

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1121 1122 1123 1124 1125 1126 1127
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': outs_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1128 1129

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1130 1131 1132 1133 1134 1135 1136
    helper.append_op(type='softmax',
                     inputs={'X': outs_cast},
                     outputs={'Out': outs_softmax},
                     attrs={
                         'axis': axis,
                         'use_cudnn': use_cudnn
                     })
1137 1138

    return outs_softmax
1139 1140


1141
@inplace_apis_in_dygraph_only
1142 1143 1144 1145 1146 1147 1148 1149
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1150 1151 1152

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1153 1154
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax_(outs_cast, axis)
1155 1156 1157

    if _in_legacy_dygraph():
        outs_cast = x if dtype is None \
1158 1159 1160
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax_(outs_cast, 'axis', axis, 'use_cudnn',
                                      use_cudnn)
1161 1162


1163
def softplus(x, beta=1, threshold=20, name=None):
1164
    r"""
1165 1166 1167
    softplus activation

    .. math::
1168 1169 1170 1171
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1172

1173
    Parameters:
1174
        x (Tensor): The input Tensor with data type float32, float64.
1175 1176
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1177
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1178 1179 1180 1181 1182 1183 1184

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1185 1186
            import paddle
            import paddle.nn.functional as F
1187

1188
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1189
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1190
    """
W
Wang Bojun 已提交
1191 1192

    if in_dygraph_mode():
1193
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1194 1195

    if _in_legacy_dygraph():
1196
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1197 1198 1199 1200 1201

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1202 1203 1204 1205 1206 1207 1208
    helper.append_op(type='softplus',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'beta': beta,
                         'threshold': threshold
                     })
1209 1210 1211 1212
    return out


def softshrink(x, threshold=0.5, name=None):
1213
    r"""
1214 1215 1216 1217
    softshrink activation

    .. math::

1218
        softshrink(x)=
1219 1220 1221 1222 1223 1224 1225
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1226

1227
    Parameters:
1228 1229
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1230
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1231 1232 1233 1234 1235 1236 1237

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1238 1239 1240
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1241

1242 1243
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1244
    """
1245 1246 1247 1248 1249
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1250
    if in_dygraph_mode():
1251
        return _C_ops.soft_shrink(x, threshold)
1252
    if _in_legacy_dygraph():
1253
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1254 1255 1256 1257 1258

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1259 1260 1261 1262
    helper.append_op(type='softshrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'lambda': threshold})
1263 1264 1265 1266
    return out


def softsign(x, name=None):
1267
    r"""
1268 1269 1270 1271
    softsign activation

    .. math::

1272
        softsign(x) = \frac{x}{1 + |x|}
1273

1274
    Parameters:
1275
        x (Tensor): The input Tensor with data type float32, float64.
1276
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1277 1278 1279 1280 1281 1282 1283

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1284 1285 1286
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1287

1288 1289
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1290
    """
1291
    if in_dygraph_mode():
W
wanghuancoder 已提交
1292
        return _C_ops.softsign(x)
1293 1294
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1295 1296 1297 1298 1299 1300 1301 1302 1303

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1304
def swish(x, name=None):
1305
    r"""
1306 1307 1308 1309
    swish activation.

    .. math::

1310
        swish(x) = \frac{x}{1 + e^{-x}}
1311 1312 1313

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1314
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1329
    if in_dygraph_mode():
1330
        return _C_ops.swish(x, 1.0)
1331
    if _in_legacy_dygraph():
1332
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1333 1334 1335 1336

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1337 1338 1339 1340
    helper.append_op(type='swish',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'beta': 1.0})
1341 1342 1343
    return out


1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1356

1357 1358
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1359
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1370
            x = paddle.to_tensor([-5., 0., 5.])
1371 1372
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1373
    if in_dygraph_mode():
1374
        return _C_ops.mish(x, 20)
1375
    if _in_legacy_dygraph():
1376
        return _legacy_C_ops.mish(x)
1377 1378 1379 1380 1381 1382 1383 1384

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1385 1386 1387 1388 1389 1390
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1391
        tanhshrink(x) = x - tanh(x)
1392 1393 1394

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1395
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1396 1397 1398 1399 1400 1401 1402

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1403 1404 1405
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1406

1407 1408
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1409
    """
H
hong 已提交
1410
    if in_dygraph_mode():
1411
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1412 1413

    if _in_legacy_dygraph():
1414
        return _legacy_C_ops.tanh_shrink(x)
1415 1416 1417 1418 1419 1420 1421 1422 1423

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1424
def thresholded_relu(x, threshold=1.0, name=None):
1425
    r"""
1426 1427 1428 1429
    thresholded relu activation.

    .. math::

1430
        thresholded\_relu(x) =
1431 1432 1433 1434 1435 1436 1437
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1438 1439 1440 1441

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1442
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

H
hong 已提交
1458
    if in_dygraph_mode():
1459
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1460 1461

    if _in_legacy_dygraph():
1462
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1463 1464 1465 1466 1467

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1468 1469 1470 1471
    helper.append_op(type='thresholded_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
1472 1473 1474
    return out


1475
def log_softmax(x, axis=-1, dtype=None, name=None):
1476
    r"""
1477 1478
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1479 1480 1481

    .. math::

1482
        \begin{aligned}
1483 1484 1485
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1486 1487

    Parameters:
1488 1489 1490 1491 1492 1493 1494
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1495
            to ``dtype`` before the operation is performed. This is useful for
1496 1497 1498
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1499
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1500

1501
    Returns:
1502 1503
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1504 1505 1506 1507

    Examples:
        .. code-block:: python

1508 1509 1510
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1511 1512 1513 1514 1515 1516
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1529 1530 1531

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1532

H
hong 已提交
1533
    if in_dygraph_mode():
1534
        if dtype is not None:
1535 1536
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1537

H
hong 已提交
1538 1539
    if _in_legacy_dygraph():
        if dtype is not None:
1540 1541
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1542

1543
    if dtype is None:
1544 1545 1546
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
1547 1548 1549
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
            'If dtype is not None, it only support float32 or float64.')
1550

1551
    helper = LayerHelper("log_softmax", **locals())
1552
    out_cast = x
1553
    if dtype is not None:
1554
        out_cast = helper.create_variable_for_type_inference(dtype)
1555 1556 1557 1558 1559 1560 1561
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': out_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1562

1563
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1564 1565 1566 1567
    helper.append_op(type='log_softmax',
                     inputs={'X': out_cast},
                     outputs={'Out': out},
                     attrs={'axis': axis})
1568

1569
    return out
F
Feiyu Chan 已提交
1570 1571 1572 1573


def glu(x, axis=-1, name=None):
    r"""
1574
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1585 1586 1587
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1588
            Default is -1.
1589
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1590

F
Feiyu Chan 已提交
1591
    Returns:
1592
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1593
        halved.
1594

F
Feiyu Chan 已提交
1595 1596
    Examples:
        .. code-block:: python
1597

F
Feiyu Chan 已提交
1598 1599
            import paddle
            from paddle.nn import functional as F
1600

F
Feiyu Chan 已提交
1601 1602 1603 1604 1605 1606 1607
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
1608

F
Feiyu Chan 已提交
1609 1610 1611 1612 1613 1614 1615
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1641 1642
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1643 1644 1645
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1646 1647
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1648
            in autograd. Default is False.
1649
        axis (int, optional): The axis along will be calculated softmax value.
1650
            Default is -1.
1651
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1652

1653
    Returns:
1654 1655
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1656
        probability distributions that sum to 1 across ``axis``.
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1673

1674
    """
H
hong 已提交
1675
    if in_dygraph_mode():
1676
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1677

Z
zhiboniu 已提交
1678
    if in_dynamic_mode():
1679 1680
        return _legacy_C_ops.gumbel_softmax(x, 'temperature', temperature,
                                            'hard', hard, 'axis', axis)
1681 1682 1683 1684

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1685 1686 1687 1688 1689 1690 1691 1692
    helper.append_op(type='gumbel_softmax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'temperature': temperature,
                         'hard': hard,
                         'axis': axis
                     })
1693
    return out