activation.py 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhiboniu 已提交
15 16 17
from ...fluid.layers import sigmoid  # noqa: F401
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18 19

from ...tensor.manipulation import _print_warning_in_static_mode
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24 25 26
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
29

30

31
def elu(x, alpha=1.0, name=None):
32
    r"""
33 34
    elu activation.

35
    .. math::
36 37 38 39 40 41 42 43

        elu(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
44

45 46
    Returns:
        A Tensor with the same data type and shape as ``x`` .
47

48 49 50
    Examples:
        .. code-block:: python

51 52
            import paddle
            import paddle.nn.functional as F
53

Z
zhupengyang 已提交
54
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
55
            out = F.elu(x, alpha=0.2)
56 57
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    """

    if in_dygraph_mode():
        return core.ops.elu(x, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


74 75 76 77 78 79 80 81 82 83 84 85 86
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """

    if in_dygraph_mode():
        return core.ops.elu_(x, 'alpha', alpha)

    _print_warning_in_static_mode("elu")
    return elu(x, alpha, name)


87
def gelu(x, approximate=False, name=None):
88
    r"""
89 90 91
    gelu activation.

    if approximate is True
92 93 94

    .. math::

95
        gelu(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))
96

97
    else
98 99 100

    .. math::

101
        gelu(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))
102

103 104 105 106 107
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
108

109 110
    Returns:
        A Tensor with the same data type and shape as ``x`` .
111

112 113 114
    Examples:
        .. code-block:: python

115 116
            import paddle
            import paddle.nn.functional as F
117

Z
zhupengyang 已提交
118 119 120 121 122 123 124
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    """

    if in_dygraph_mode():
        return core.ops.gelu(x, 'approximate', approximate)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


141
def hardshrink(x, threshold=0.5, name=None):
142
    r"""
143 144 145 146 147
    hard shrinkage activation

    .. math::

        hardshrink(x)=
148 149 150 151 152 153 154
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x > threshold \\\\
            &x, & & if \\ x < -threshold \\\\
            &0, & & if \\ others
            \\end{aligned}
            \\right.
155 156 157 158 159 160 161 162 163 164 165 166 167

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

168 169
            import paddle
            import paddle.nn.functional as F
170

Z
zhupengyang 已提交
171
            x = paddle.to_tensor([-1, 0.3, 2.5])
172
            out = F.hardshrink(x) # [-1., 0., 2.5]
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    """
    if in_dygraph_mode():
        return core.ops.hard_shrink(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


190
def hardtanh(x, min=-1.0, max=1.0, name=None):
191
    r"""
192 193 194 195 196 197 198 199 200 201
    hardtanh activation

    .. math::

        hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

202
    Parameters:
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

    if in_dygraph_mode():
        return core.ops.brelu(x, 't_min', min, 't_max', max)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


240
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
241
    r"""
242 243 244 245 246 247 248 249 250 251 252 253
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &1, & & \\text{if } x \\geq 3 \\\\
254
            &slope * x + offset, & & \\text{otherwise}
255 256 257 258 259
            \\end{aligned}
            \\right.

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
260 261
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

    if in_dygraph_mode():
279
        return core.ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
280 281 282 283 284 285 286 287 288 289

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
290 291
        attrs={'slope': slope,
               'offset': offset})
292 293 294 295
    return out


def hardswish(x, name=None):
296
    r"""
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &x, & & \\text{if } x \\geq 3 \\\\
            &\\frac{x(x+3)}{6}, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

    if in_dygraph_mode():
        return core.ops.hard_swish(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


344
def leaky_relu(x, negative_slope=0.01, name=None):
345
    r"""
346 347
    leaky_relu activation

348 349 350 351 352 353 354 355
    .. math::
        leaky\\_relu(x)=
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x >= 0 \\\\
            &negative\_slope * x, & & otherwise \\\\
            \\end{aligned}
            \\right. \\\\
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
373
            x = paddle.to_tensor([-2., 0., 1.])
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
    if in_dygraph_mode():
        return core.ops.leaky_relu(x, 'alpha', negative_slope)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
def prelu(x, weight, name=None):
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
418 419 420 421 422
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    helper = LayerHelper('prelu', **locals())
    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

441
    # NOTE(): The input of this API should be ``N,C,...`` format,
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    # which means x.shape[0] is batch_size and x.shape[0] is channel.
    mode = 'all'
    if weight.shape[0] > 1:
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
        assert weight.shape[0] == x.shape[
            1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        mode = 'channel'

    if in_dygraph_mode():
        return core.ops.prelu(x, weight, 'mode', mode)

    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode})
    return out


465
def relu(x, name=None):
466
    """
467
    relu activation.
468

469
    .. math::
470 471 472 473

        out = max(x, 0)

    Parameters:
474 475 476
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
477 478

    Returns:
479
        A Tensor with the same data type and shape as ``x`` .
480 481 482 483

    Examples:
        .. code-block:: python

484 485 486
            import paddle
            import paddle.nn.functional as F
            import numpy as np
487

488 489
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
490 491 492
    """

    if in_dygraph_mode():
493
        return core.ops.relu(x)
494

495
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
496
    helper = LayerHelper('relu', **locals())
497 498 499 500 501
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


502 503 504 505 506 507 508 509 510 511 512 513 514
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """

    if in_dygraph_mode():
        return core.ops.relu_(x)

    _print_warning_in_static_mode("relu")
    return relu(x, name)


515
def log_sigmoid(x, name=None):
516
    r"""
517
    log_sigmoid activation.
518

519
    .. math::
520

521
        log\\_sigmoid(x) = log \\frac{1}{1 + e^{-x}}
522

523 524 525 526
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
527

528 529
    Returns:
        A Tensor with the same data type and shape as ``x`` .
530

531 532 533
    Examples:
        .. code-block:: python

534 535
            import paddle
            import paddle.nn.functional as F
536

537 538
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
539 540 541 542 543 544
    """

    if in_dygraph_mode():
        return core.ops.logsigmoid(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
545 546
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
547 548 549
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
550 551


552
def maxout(x, groups, axis=1, name=None):
553
    r"""
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

        &out_{si+j} = \\max_{k} x_{gsi + sk + j} \\\\
        &g = groups \\\\
        &s = \\frac{input.size}{num\\_channels} \\\\
        &0 \\le i < \\frac{num\\_channels}{groups} \\\\
        &0 \\le j < s \\\\
        &0 \\le k < groups

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    if in_dygraph_mode():
        return core.ops.maxout(x, 'groups', groups, 'axis', axis)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups,
               'axis': axis})
    return out


627 628 629 630 631 632
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

633
        relu6(x) = min(max(0,x), 6)
634

635
    Parameters:
636 637 638 639 640 641 642 643 644 645
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

646 647 648
            import paddle
            import paddle.nn.functional as F
            import numpy as np
649

650 651
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
    """
    threshold = 6.0
    if in_dygraph_mode():
        return core.ops.relu6(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
672
    r"""
673 674 675 676
    selu activation

    .. math::

677 678 679 680 681
        selu(x)= scale *
                 \\begin{cases}
                   x, \\text{if } x > 0 \\\\
                   alpha * e^{x} - alpha, \\text{if } x <= 0
                 \\end{cases}
682

683
    Parameters:
684
        x (Tensor): The input Tensor with data type float32, float64.
685 686
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
687 688 689 690 691 692 693 694 695
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

696 697 698
            import paddle
            import paddle.nn.functional as F
            import numpy as np
699

700
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
701
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
702
    """
703 704 705 706 707 708 709 710
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    if in_dygraph_mode():
        return core.ops.selu(x, 'scale', scale, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


M
minghaoBD 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
def silu(x, name=None):
    """
    silu activation.
    .. math:
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
        import paddle
        import paddle.nn.functional as F
        
        x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
        out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    if in_dygraph_mode():
        return core.ops.silu(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


759
def softmax(x, axis=-1, dtype=None, name=None):
760
    r"""
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

786
        softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

835 836 837 838 839 840
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
841
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
842 843 844 845
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
846 847
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
848 849 850 851

    Examples:
        .. code-block:: python

852 853 854
            import paddle
            import paddle.nn.functional as F
            import numpy as np
855

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
873
    """
874 875 876

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
877
    use_cudnn = True
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
911 912


913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True

    if in_dygraph_mode():
        return core.ops.softmax_(x, 'axis', axis, 'use_cudnn', use_cudnn)

    _print_warning_in_static_mode("softmax")
    return softmax(x, axis, dtype, name)


930
def softplus(x, beta=1, threshold=20, name=None):
931
    r"""
932 933 934 935
    softplus activation

    .. math::

936 937
        softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
938

939
    Parameters:
940 941 942 943 944 945 946 947 948 949 950 951
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

952 953 954
            import paddle
            import paddle.nn.functional as F
            import numpy as np
955

956 957
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    """
    if in_dygraph_mode():
        return core.ops.softplus(x, 'beta', beta, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
976
    r"""
977 978 979 980
    softshrink activation

    .. math::

981 982 983 984 985
        softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
986

987
    Parameters:
988 989 990 991 992 993 994 995 996 997 998
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

999 1000 1001
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1002

1003 1004
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1005
    """
1006 1007 1008 1009 1010
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    if in_dygraph_mode():
        return core.ops.softshrink(x, 'lambda', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
1027
    r"""
1028 1029 1030 1031
    softsign activation

    .. math::

1032
        softsign(x) = \\frac{x}{1 + |x|}
1033

1034
    Parameters:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1045 1046 1047
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1048

1049 1050
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    """
    if in_dygraph_mode():
        return core.ops.softsign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1063
def swish(x, name=None):
1064
    r"""
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    swish activation.

    .. math::

        swish(x) = \\frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """

    if in_dygraph_mode():
H
hong19860320 已提交
1091
        return core.ops.swish(x, 'beta', 1.0)
1092 1093 1094 1095 1096 1097 1098 1099

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
H
hong19860320 已提交
1100
        attrs={'beta': 1.0})
1101 1102 1103
    return out


1104 1105 1106 1107 1108 1109
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1110
        tanhshrink(x) = x - tanh(x)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1123 1124 1125
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1126

1127 1128
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    """
    if in_dygraph_mode():
        return core.ops.tanh_shrink(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1141
def thresholded_relu(x, threshold=1.0, name=None):
1142
    r"""
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    thresholded relu activation.

    .. math::

        thresholded\\_relu(x) = \\begin{cases}
                                 x, \\text{if } x > threshold \\\\
                                 0, \\text{otherwise}
                                \\end{cases}

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

    if in_dygraph_mode():
        return core.ops.thresholded_relu(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


1187
def log_softmax(x, axis=-1, dtype=None, name=None):
1188
    r"""
1189 1190
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1191 1192 1193

    .. math::

Z
zhupengyang 已提交
1194 1195 1196 1197
        \\begin{aligned} 
        log\\_softmax[i, j] &= log(softmax(x)) \\\\
        &= log(\\frac{\\exp(X[i, j])}{\\sum_j(\\exp(X[i, j])})
        \\end{aligned}
1198 1199

    Parameters:
1200 1201 1202 1203 1204 1205 1206
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1207
            to ``dtype`` before the operation is performed. This is useful for
1208 1209 1210 1211 1212
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1213

1214
    Returns:
1215 1216
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1217 1218 1219 1220

    Examples:
        .. code-block:: python

1221 1222 1223
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1224 1225 1226 1227 1228 1229
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1242 1243 1244

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1245 1246

    if in_dygraph_mode():
1247 1248 1249
        if dtype is not None:
            x = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.log_softmax(x, 'axis', axis)
1250

1251
    if dtype is None:
1252 1253 1254 1255 1256
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1257

1258
    helper = LayerHelper("log_softmax", **locals())
1259
    out_cast = x
1260
    if dtype is not None:
1261
        out_cast = helper.create_variable_for_type_inference(dtype)
1262 1263
        helper.append_op(
            type='cast',
1264 1265 1266
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1267 1268
                   'out_dtype': dtype})

1269
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1270
    helper.append_op(
1271 1272 1273 1274
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1275

1276
    return out
F
Feiyu Chan 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out