activation.py 56.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51 52 53 54 55 56 57 58 59 60

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
61
    if in_dygraph_mode():
62
        return _C_ops.celu(x, alpha)
63 64 65 66 67 68 69 70 71 72 73 74 75
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'celu'
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
76 77


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dygraph_mode():
113
        return _C_ops.elu(x, alpha)
114

115 116 117 118 119 120 121 122 123 124 125 126 127
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'elu'
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
128 129


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
136
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dygraph_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dygraph_mode():
184
        return _C_ops.gelu(x, approximate)
185 186 187 188 189 190 191 192 193 194 195 196 197
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'gelu'
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
198 199


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
217 218
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
219 220 221 222 223 224 225

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

226 227
            import paddle
            import paddle.nn.functional as F
228

Z
zhupengyang 已提交
229
            x = paddle.to_tensor([-1, 0.3, 2.5])
230
            out = F.hardshrink(x) # [-1., 0., 2.5]
231 232

    """
H
hong 已提交
233
    if in_dygraph_mode():
234
        return _C_ops.hardshrink(x, threshold)
235 236 237 238 239 240 241 242 243 244 245 246 247
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardshrink'
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
248 249


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252
    hardtanh activation. Calculate the `hardtanh` of input `x`.
253 254 255

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
270 271 272 273 274 275 276 277 278 279

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

280
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
281 282 283
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
284
    if in_dygraph_mode():
285
        return _C_ops.hardtanh(x, min, max)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
300 301


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
305 306 307 308 309 310
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
311 312 313 314 315 316 317
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
318 319 320

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
321 322
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
338
    if in_dygraph_mode():
339
        return _C_ops.hardsigmoid(x, slope, offset)
340 341 342 343
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid'
        )
H
hong 已提交
344

345 346 347 348 349 350 351 352 353
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
354 355 356


def hardswish(x, name=None):
357
    r"""
358 359 360
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
361 362 363 364

    .. math::

        hardswish(x)=
365 366 367 368 369 370 371
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
372 373 374

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
376 377 378 379 380 381 382 383 384 385 386 387 388

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """
389
    if in_dygraph_mode():
390
        return _C_ops.hardswish(x)
391 392 393 394
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardswish'
        )
395

396 397 398 399 400 401
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_swish', inputs={'X': x}, outputs={'Out': out}
        )
        return out
402 403


404
def leaky_relu(x, negative_slope=0.01, name=None):
405
    r"""
406
    leaky_relu activation. The calculation formula is:
407

408
    .. math::
409 410 411 412 413 414 415
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
416 417 418 419 420

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
421
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
422 423 424 425 426 427 428 429 430 431

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
432
            x = paddle.to_tensor([-2., 0., 1.])
433 434 435
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
436 437

    """
438
    if in_dygraph_mode():
439
        return _C_ops.leaky_relu(x, negative_slope)
440 441 442 443 444 445 446 447 448 449 450 451 452
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu'
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
453 454


455
def prelu(x, weight, data_format="NCHW", name=None):
456 457 458 459 460 461 462 463 464 465 466
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
467
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
468 469
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
470 471 472 473 474 475 476 477 478 479

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

480
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
481 482 483 484
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
485 486 487 488 489
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
490 491 492 493 494 495 496
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
497 498 499
    assert (
        len(weight.shape) == 1
    ), "The dim count of weight shape should be 1 in prelu()."
500 501 502

    mode = 'all'
    if weight.shape[0] > 1:
503 504

        true_data_format = [
505 506 507 508 509 510 511
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
512 513 514 515
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
516 517
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
518 519 520

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

521 522 523
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
524

525
        # NOTE(GuoxiaWang): support NHWC data format
526
        if data_format == 'NHWC':
527 528 529
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
530
        else:
531 532 533
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
534 535
        mode = 'channel'

536
    if in_dygraph_mode():
537
        return _C_ops.prelu(x, weight, data_format, mode)
538
    else:
W
Weilong Wu 已提交
539 540 541 542 543 544
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'prelu'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
        )
545 546 547 548 549 550 551
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
552
        )
553
        return out
554 555


556
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
599
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
618
            print(out)
619 620 621 622 623 624 625 626 627
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
628 629 630 631
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
632 633 634

    if lower < 0 or lower > 1:
        raise ValueError(
635 636 637 638
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
639 640 641

    if upper < lower:
        raise ValueError(
642 643 644 645
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
646 647 648 649

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
650 651 652
                upper
            )
        )
653 654 655

    is_test = not training

656
    if in_dygraph_mode():
657 658 659
        out, noise = _legacy_C_ops.rrelu(
            x, 'lower', lower, 'upper', upper, 'is_test', is_test
        )
660
        return out
661
    else:
W
Weilong Wu 已提交
662 663 664
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64'], 'rrelu'
        )
665 666 667 668 669 670 671 672 673 674 675
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
676 677


678
def relu(x, name=None):
679
    """
680
    relu activation.
681

682
    .. math::
683 684 685 686

        out = max(x, 0)

    Parameters:
687
        x (Tensor): The input Tensor with data type float32, float64.
688
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
689 690

    Returns:
691
        A Tensor with the same data type and shape as ``x`` .
692 693 694 695

    Examples:
        .. code-block:: python

696 697
            import paddle
            import paddle.nn.functional as F
698

699 700 701 702
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
703 704
    """

705
    if in_dygraph_mode():
W
wanghuancoder 已提交
706
        return _C_ops.relu(x)
707 708 709 710 711 712 713 714
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'relu'
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
715 716


717
@inplace_apis_in_dygraph_only
718 719 720 721 722
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
723
    return _C_ops.relu_(x)
724 725


726
def log_sigmoid(x, name=None):
727
    r"""
728
    log_sigmoid activation.
729

730
    .. math::
731

732
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
733

734 735
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
736
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
737

738 739
    Returns:
        A Tensor with the same data type and shape as ``x`` .
740

741 742 743
    Examples:
        .. code-block:: python

744 745
            import paddle
            import paddle.nn.functional as F
746

747 748
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
749 750
    """

H
hong 已提交
751
    if in_dygraph_mode():
752
        return _C_ops.logsigmoid(x)
753 754 755 756 757 758 759 760 761 762
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
763 764


765
def maxout(x, groups, axis=1, name=None):
766
    r"""
767 768 769 770 771 772 773 774
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

775 776 777 778 779 780 781 782 783
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

784 785 786 787

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
788
        groups (int): The groups number of maxout. `groups` specifies the
789
            index of channel dimension where maxout will be performed. This must be
790
            a factor of number of features.
791 792 793 794 795
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
796
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
819
    if in_dygraph_mode():
820
        return _C_ops.maxout(x, groups, axis)
821 822 823 824 825 826 827 828 829
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
830

831 832 833 834 835 836 837 838 839
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
840 841


842 843 844 845 846 847
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

848
        relu6(x) = min(max(0,x), 6)
849

850
    Parameters:
851
        x (Tensor): The input Tensor with data type float32, float64.
852
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
853 854 855 856 857 858 859

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

860 861
            import paddle
            import paddle.nn.functional as F
862

863 864 865 866
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
867 868
    """
    threshold = 6.0
869
    if in_dygraph_mode():
870
        return _C_ops.relu6(x)
Z
zhiboniu 已提交
871
    if in_dynamic_mode():
872
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
873 874 875 876

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
877 878 879 880 881 882
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
883 884 885
    return out


886 887 888 889 890 891
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
892
    r"""
893 894 895 896
    selu activation

    .. math::

897
        selu(x)= scale *
898 899 900 901 902 903
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
904

905
    Parameters:
906
        x (Tensor): The input Tensor with data type float32, float64.
907 908
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
909
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
910 911 912 913 914 915 916

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

917 918
            import paddle
            import paddle.nn.functional as F
919

920 921 922 923
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
924
    """
925 926
    if scale <= 1.0:
        raise ValueError(
927 928
            "The scale must be greater than 1.0. Received: {}.".format(scale)
        )
929 930 931

    if alpha < 0:
        raise ValueError(
932 933
            "The alpha must be no less than zero. Received: {}.".format(alpha)
        )
934

H
hong 已提交
935
    if in_dygraph_mode():
936
        return _C_ops.selu(x, scale, alpha)
937 938 939 940 941 942 943 944 945 946 947 948 949
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
950 951


M
minghaoBD 已提交
952
def silu(x, name=None):
953 954 955 956 957
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
958
        silu(x) = \frac{x}{1 + e^{-x}}
959

960 961
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
962 963
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
964
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
965

M
minghaoBD 已提交
966
    Returns:
967
        A Tensor with the same data type and shape as :attr:`x`.
968

M
minghaoBD 已提交
969 970
    Examples:
        .. code-block:: python
971 972 973

            import paddle
            import paddle.nn.functional as F
974

975 976
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
977 978
    """

979
    if in_dygraph_mode():
W
wanghuancoder 已提交
980
        return _C_ops.silu(x)
981 982 983 984 985 986 987 988
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'silu'
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
989 990


991
def softmax(x, axis=-1, dtype=None, name=None):
992
    r"""
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1018
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1067 1068
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1069
        axis (int, optional): The axis along which to perform softmax
1070
            calculations. It should be in range [-D, D), where D is the
1071
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1072
            :math:`axis + D` . Default is -1.
1073
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1074
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1075 1076

    Returns:
1077 1078
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1079 1080 1081 1082

    Examples:
        .. code-block:: python

1083 1084
            import paddle
            import paddle.nn.functional as F
1085

1086
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1087 1088 1089 1090
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1091
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1102
    """
1103 1104 1105

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
H
hong 已提交
1106
    if in_dygraph_mode():
1107
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1108
        return _C_ops.softmax(outs_cast, axis)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'softmax'
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
H
hong 已提交
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1134

1135 1136
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1137 1138
        )
        helper.append_op(
1139 1140 1141 1142
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1143
        )
1144

1145
        return outs_softmax
1146 1147


1148
@inplace_apis_in_dygraph_only
1149 1150 1151 1152 1153 1154 1155
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1156 1157 1158 1159 1160 1161
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1162 1163


1164
def softplus(x, beta=1, threshold=20, name=None):
1165
    r"""
1166 1167 1168
    softplus activation

    .. math::
1169 1170 1171 1172
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1173

1174
    Parameters:
1175
        x (Tensor): The input Tensor with data type float32, float64.
1176 1177
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1178
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1179 1180 1181 1182 1183 1184 1185

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1186 1187
            import paddle
            import paddle.nn.functional as F
1188

1189
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1190
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1191
    """
W
Wang Bojun 已提交
1192 1193

    if in_dygraph_mode():
1194
        return _C_ops.softplus(x, beta, threshold)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softplus'
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1208 1209 1210


def softshrink(x, threshold=0.5, name=None):
1211
    r"""
1212 1213 1214 1215
    softshrink activation

    .. math::

1216
        softshrink(x)=
1217 1218 1219 1220 1221 1222 1223
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1224

1225
    Parameters:
1226 1227
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1228
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1229 1230 1231 1232 1233 1234 1235

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1236 1237
            import paddle
            import paddle.nn.functional as F
1238

1239 1240 1241 1242 1243
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1244
    """
1245 1246 1247
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1248 1249 1250
                threshold
            )
        )
1251

1252
    if in_dygraph_mode():
1253
        return _C_ops.softshrink(x, threshold)
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softshrink'
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1267 1268 1269


def softsign(x, name=None):
1270
    r"""
1271 1272 1273 1274
    softsign activation

    .. math::

1275
        softsign(x) = \frac{x}{1 + |x|}
1276

1277
    Parameters:
1278
        x (Tensor): The input Tensor with data type float32, float64.
1279
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1280 1281 1282 1283 1284 1285 1286

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1287 1288
            import paddle
            import paddle.nn.functional as F
1289

1290 1291 1292 1293 1294
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1295
    """
1296
    if in_dygraph_mode():
W
wanghuancoder 已提交
1297
        return _C_ops.softsign(x)
1298 1299
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1300

1301 1302 1303
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softsign'
    )
1304 1305 1306 1307 1308 1309
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1310
def swish(x, name=None):
1311
    r"""
1312 1313 1314 1315
    swish activation.

    .. math::

1316
        swish(x) = \frac{x}{1 + e^{-x}}
1317 1318 1319

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1320
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1331 1332 1333 1334 1335
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1336
    """
1337
    if in_dygraph_mode():
1338
        return _C_ops.swish(x)
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'swish'
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1352 1353


1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1366

1367 1368
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1369
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1380
            x = paddle.to_tensor([-5., 0., 5.])
1381 1382
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1383
    if in_dygraph_mode():
1384
        return _C_ops.mish(x, 20)
1385 1386 1387 1388 1389 1390 1391 1392
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'mish'
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1393 1394


1395 1396 1397 1398 1399 1400
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1401
        tanhshrink(x) = x - tanh(x)
1402 1403 1404

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1405
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1406 1407 1408 1409 1410 1411 1412

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1413 1414
            import paddle
            import paddle.nn.functional as F
1415

1416 1417 1418 1419 1420
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1421
    """
H
hong 已提交
1422
    if in_dygraph_mode():
1423
        return _C_ops.tanh_shrink(x)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink'
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1434 1435


1436
def thresholded_relu(x, threshold=1.0, name=None):
1437
    r"""
1438 1439 1440 1441
    thresholded relu activation.

    .. math::

1442
        thresholded\_relu(x) =
1443 1444 1445 1446 1447 1448 1449
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1450 1451 1452 1453

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1454
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1465 1466 1467 1468 1469
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1470 1471
    """

H
hong 已提交
1472
    if in_dygraph_mode():
1473
        return _C_ops.thresholded_relu(x, threshold)
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu'
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1487 1488


1489
def log_softmax(x, axis=-1, dtype=None, name=None):
1490
    r"""
1491 1492
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1493 1494 1495

    .. math::

1496
        \begin{aligned}
1497 1498 1499
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1500 1501

    Parameters:
1502 1503 1504 1505 1506 1507 1508
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1509
            to ``dtype`` before the operation is performed. This is useful for
1510 1511 1512
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1513
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1514

1515
    Returns:
1516 1517
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1518 1519 1520 1521

    Examples:
        .. code-block:: python

1522 1523 1524
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1525 1526 1527 1528 1529 1530
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1543 1544 1545

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1546

H
hong 已提交
1547
    if in_dygraph_mode():
1548
        if dtype is not None:
1549 1550
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
    else:
        if dtype is None:
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'log_softmax'
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1564

1565 1566
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1567
        if dtype is not None:
1568 1569 1570 1571 1572 1573 1574
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1575

1576
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1577
        helper.append_op(
1578 1579 1580 1581
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1582
        )
1583

1584
        return out
F
Feiyu Chan 已提交
1585 1586 1587 1588


def glu(x, axis=-1, name=None):
    r"""
1589
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1600 1601 1602
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1603
            Default is -1.
1604
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1605

F
Feiyu Chan 已提交
1606
    Returns:
1607
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1608
        halved.
1609

F
Feiyu Chan 已提交
1610 1611
    Examples:
        .. code-block:: python
1612

F
Feiyu Chan 已提交
1613 1614
            import paddle
            from paddle.nn import functional as F
1615

F
Feiyu Chan 已提交
1616 1617
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1618
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1619
            )
1620 1621 1622 1623
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1624

F
Feiyu Chan 已提交
1625
    """
1626 1627 1628
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
F
Feiyu Chan 已提交
1629 1630 1631 1632
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1658 1659
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1660 1661 1662
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1663 1664
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1665
            in autograd. Default is False.
1666
        axis (int, optional): The axis along will be calculated softmax value.
1667
            Default is -1.
1668
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1669

1670
    Returns:
1671 1672
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1673
        probability distributions that sum to 1 across ``axis``.
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1690

1691
    """
H
hong 已提交
1692
    if in_dygraph_mode():
1693
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1694

Z
zhiboniu 已提交
1695
    if in_dynamic_mode():
1696 1697 1698
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1699 1700 1701 1702

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1703 1704 1705 1706 1707 1708
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1709
    return out