activation.py 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhiboniu 已提交
15 16 17
from ...fluid.layers import sigmoid  # noqa: F401
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
26
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
Z
zhiboniu 已提交
29 30
from paddle import _C_ops, in_dynamic_mode
from paddle.framework import core
31
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

66
    if _in_legacy_dygraph():
67
        return _C_ops.celu(x, 'alpha', alpha)
68 69
    if in_dygraph_mode():
        return _C_ops.final_state_celu(x, alpha)
70 71 72 73 74 75 76 77 78 79 80 81

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='celu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


82
def elu(x, alpha=1.0, name=None):
83
    r"""
84 85
    elu activation.

86
    .. math::
87

Z
zhupengyang 已提交
88 89 90 91 92 93 94
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
95 96 97 98 99 100

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
101

102 103
    Returns:
        A Tensor with the same data type and shape as ``x`` .
104

105 106 107
    Examples:
        .. code-block:: python

108 109
            import paddle
            import paddle.nn.functional as F
110

Z
zhupengyang 已提交
111
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
112
            out = F.elu(x, alpha=0.2)
113 114
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
115 116
    """

117 118 119 120
    if in_dygraph_mode():
        return _C_ops.final_state_elu(x, alpha)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
121
        return _C_ops.elu(x, 'alpha', alpha)
122 123 124 125 126 127 128 129 130 131 132 133

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


134
@inplace_apis_in_dygraph_only
135 136 137 138 139
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
140
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
W
wanghuancoder 已提交
141
    return _C_ops.elu_(x, 'alpha', alpha)
142 143


144
def gelu(x, approximate=False, name=None):
145
    r"""
146 147 148
    gelu activation.

    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161 162 163 164
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
165

166 167
    Returns:
        A Tensor with the same data type and shape as ``x`` .
168

169 170 171
    Examples:
        .. code-block:: python

172 173
            import paddle
            import paddle.nn.functional as F
174

Z
zhupengyang 已提交
175 176 177 178 179 180 181
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
182 183
    """

184 185 186 187
    if in_dygraph_mode():
        return _C_ops.final_state_gelu(x, approximate)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
188
        return _C_ops.gelu(x, 'approximate', approximate)
189 190 191 192 193 194 195 196 197 198 199 200

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


201
def hardshrink(x, threshold=0.5, name=None):
202
    r"""
203 204 205 206 207
    hard shrinkage activation

    .. math::

        hardshrink(x)=
208 209 210 211 212 213 214
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
215 216 217 218 219 220 221 222 223 224 225 226 227

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

228 229
            import paddle
            import paddle.nn.functional as F
230

Z
zhupengyang 已提交
231
            x = paddle.to_tensor([-1, 0.3, 2.5])
232
            out = F.hardshrink(x) # [-1., 0., 2.5]
233 234

    """
Z
zhiboniu 已提交
235
    if in_dynamic_mode():
W
wanghuancoder 已提交
236
        return _C_ops.hard_shrink(x, 'threshold', threshold)
237 238 239 240 241 242 243 244 245 246 247 248 249

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252 253 254 255
    hardtanh activation

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

Z
zhiboniu 已提交
286
    if in_dynamic_mode():
W
wanghuancoder 已提交
287
        return _C_ops.brelu(x, 't_min', min, 't_max', max)
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


303
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
304
    r"""
305 306 307 308 309 310 311 312
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
313 314 315 316 317 318 319
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
320 321 322

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
323 324
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

Z
zhiboniu 已提交
341
    if in_dynamic_mode():
W
wanghuancoder 已提交
342
        return _C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
343 344 345 346 347 348 349 350 351 352

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
353 354
        attrs={'slope': slope,
               'offset': offset})
355 356 357 358
    return out


def hardswish(x, name=None):
359
    r"""
360 361 362 363 364 365 366 367 368
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
369 370 371 372 373 374 375
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

395
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
396
        return _C_ops.hard_swish(x)
397 398
    if in_dygraph_mode():
        return _C_ops.final_state_hard_swish(x, 6, 6, 3)
399 400 401 402 403 404 405 406 407 408

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


409
def leaky_relu(x, negative_slope=0.01, name=None):
410
    r"""
411 412
    leaky_relu activation

413
    .. math::
414 415 416 417 418 419 420
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
438
            x = paddle.to_tensor([-2., 0., 1.])
439 440 441
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
442 443 444 445
    if in_dygraph_mode():
        return _C_ops.final_state_leaky_relu(x, negative_slope)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
446
        return _C_ops.leaky_relu(x, 'alpha', negative_slope)
447 448 449 450 451 452 453 454 455 456 457 458 459

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


460
def prelu(x, weight, data_format="NCHW", name=None):
461 462 463 464 465 466 467 468 469 470 471 472 473
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
474 475
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
476 477 478 479 480 481 482 483 484 485 486 487

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
488 489 490 491 492
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
512 513 514 515 516 517 518 519 520 521 522

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

523 524 525
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
526 527 528 529 530 531 532 533

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
534 535
        mode = 'channel'

536 537 538
    if in_dygraph_mode():
        return _C_ops.final_state_prelu(x, weight, data_format, mode)
    if _in_legacy_dygraph():
539
        return _C_ops.prelu(x, weight, 'mode', mode, 'data_format', data_format)
540

541
    helper = LayerHelper('prelu', **locals())
542 543 544 545 546 547
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
548 549
        attrs={"mode": mode,
               "data_format": data_format})
550 551 552
    return out


553
def relu(x, name=None):
554
    """
555
    relu activation.
556

557
    .. math::
558 559 560 561

        out = max(x, 0)

    Parameters:
562 563 564
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
565 566

    Returns:
567
        A Tensor with the same data type and shape as ``x`` .
568 569 570 571

    Examples:
        .. code-block:: python

572 573 574
            import paddle
            import paddle.nn.functional as F
            import numpy as np
575

576 577
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
578 579
    """

580 581 582
    if in_dygraph_mode():
        return _C_ops.final_state_relu(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
583
        return _C_ops.relu(x)
584
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
585
    helper = LayerHelper('relu', **locals())
586 587 588 589 590
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


591
@inplace_apis_in_dygraph_only
592 593 594 595 596
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
597
    if in_dygraph_mode():
598
        return _C_ops.final_state_relu_(x)
599 600
    if _in_legacy_dygraph():
        return _C_ops.relu_(x)
601 602


603
def log_sigmoid(x, name=None):
604
    r"""
605
    log_sigmoid activation.
606

607
    .. math::
608

609
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
610

611 612 613 614
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
615

616 617
    Returns:
        A Tensor with the same data type and shape as ``x`` .
618

619 620 621
    Examples:
        .. code-block:: python

622 623
            import paddle
            import paddle.nn.functional as F
624

625 626
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
627 628
    """

Z
zhiboniu 已提交
629
    if in_dynamic_mode():
W
wanghuancoder 已提交
630
        return _C_ops.logsigmoid(x)
631 632

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
633 634
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
635 636 637
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
638 639


640
def maxout(x, groups, axis=1, name=None):
641
    r"""
642 643 644 645 646 647 648 649
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

650 651 652 653 654 655 656 657 658
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
695
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
696
        return _C_ops.maxout(x, 'groups', groups, 'axis', axis)
697 698
    if in_dygraph_mode():
        return _C_ops.final_state_maxout(x, groups, axis)
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups,
               'axis': axis})
    return out


718 719 720 721 722 723
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

724
        relu6(x) = min(max(0,x), 6)
725

726
    Parameters:
727 728 729 730 731 732 733 734 735 736
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

737 738 739
            import paddle
            import paddle.nn.functional as F
            import numpy as np
740

741 742
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
743 744
    """
    threshold = 6.0
Z
zhiboniu 已提交
745
    if in_dynamic_mode():
W
wanghuancoder 已提交
746
        return _C_ops.relu6(x, 'threshold', threshold)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
763
    r"""
764 765 766 767
    selu activation

    .. math::

768
        selu(x)= scale *
769 770 771 772 773 774
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
775

776
    Parameters:
777
        x (Tensor): The input Tensor with data type float32, float64.
778 779
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
780 781 782 783 784 785 786 787 788
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

789 790 791
            import paddle
            import paddle.nn.functional as F
            import numpy as np
792

793
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
794
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
795
    """
796 797 798 799 800 801 802 803
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
804 805 806
    if in_dygraph_mode():
        return _C_ops.final_state_selu(x, scale, alpha)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
807
        return _C_ops.selu(x, 'scale', scale, 'alpha', alpha)
808 809 810 811 812 813 814 815 816 817 818 819 820

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


M
minghaoBD 已提交
821
def silu(x, name=None):
822 823 824 825 826
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
827 828 829 830 831 832 833 834 835 836 837 838
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
839 840 841 842 843 844

            import paddle
            import paddle.nn.functional as F
            
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
845 846
    """

Z
zhiboniu 已提交
847
    if in_dynamic_mode():
W
wanghuancoder 已提交
848
        return _C_ops.silu(x)
M
minghaoBD 已提交
849 850 851 852 853 854 855 856

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


857
def softmax(x, axis=-1, dtype=None, name=None):
858
    r"""
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

884
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

933 934 935 936 937 938
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
939
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
940 941 942 943
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
944 945
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
946 947 948 949

    Examples:
        .. code-block:: python

950 951 952
            import paddle
            import paddle.nn.functional as F
            import numpy as np
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
971
    """
972 973 974

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
975
    use_cudnn = True
976

H
hong 已提交
977 978 979 980 981 982
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.final_state_softmax(outs_cast, axis)

    if _in_legacy_dygraph():
983
        outs_cast = x if dtype is None \
W
wanghuancoder 已提交
984 985
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
1014 1015


1016
@inplace_apis_in_dygraph_only
1017 1018 1019 1020 1021 1022 1023 1024
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
W
wanghuancoder 已提交
1025
    return _C_ops.softmax_(x, 'axis', axis, 'use_cudnn', use_cudnn)
1026 1027


1028
def softplus(x, beta=1, threshold=20, name=None):
1029
    r"""
1030 1031 1032 1033
    softplus activation

    .. math::

1034 1035
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1036

1037
    Parameters:
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1050 1051 1052
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1053

1054 1055
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1056
    """
Z
zhiboniu 已提交
1057
    if in_dynamic_mode():
W
wanghuancoder 已提交
1058
        return _C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
1074
    r"""
1075 1076 1077 1078
    softshrink activation

    .. math::

1079 1080 1081 1082 1083 1084 1085 1086
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1087

1088
    Parameters:
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1100 1101 1102
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1103

1104 1105
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1106
    """
1107 1108 1109 1110 1111
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1112 1113 1114
    if in_dygraph_mode():
        return _C_ops.final_state_soft_shrink(x, threshold)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1115
        return _C_ops.softshrink(x, 'lambda', threshold)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
1130
    r"""
1131 1132 1133 1134
    softsign activation

    .. math::

1135
        softsign(x) = \frac{x}{1 + |x|}
1136

1137
    Parameters:
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1148 1149 1150
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1151

1152 1153
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1154
    """
Z
zhiboniu 已提交
1155
    if in_dynamic_mode():
W
wanghuancoder 已提交
1156
        return _C_ops.softsign(x)
1157 1158 1159 1160 1161 1162 1163 1164 1165

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1166
def swish(x, name=None):
1167
    r"""
1168 1169 1170 1171
    swish activation.

    .. math::

1172
        swish(x) = \frac{x}{1 + e^{-x}}
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1192 1193 1194
    if in_dygraph_mode():
        return _C_ops.final_state_swish(x, 1.0)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1195
        return _C_ops.swish(x, 'beta', 1.0)
1196 1197 1198 1199 1200 1201 1202 1203

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
H
hong19860320 已提交
1204
        attrs={'beta': 1.0})
1205 1206 1207
    return out


1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1235
            x = paddle.to_tensor([-5., 0., 5.])
1236 1237
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1238 1239 1240
    if in_dygraph_mode():
        return _C_ops.final_state_mish(x, 20)
    if _in_legacy_dygraph():
1241 1242 1243 1244 1245 1246 1247 1248 1249
        return _C_ops.mish(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1250 1251 1252 1253 1254 1255
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1256
        tanhshrink(x) = x - tanh(x)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1269 1270 1271
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1272

1273 1274
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1275
    """
Z
zhiboniu 已提交
1276
    if in_dynamic_mode():
W
wanghuancoder 已提交
1277
        return _C_ops.tanh_shrink(x)
1278 1279 1280 1281 1282 1283 1284 1285 1286

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1287
def thresholded_relu(x, threshold=1.0, name=None):
1288
    r"""
1289 1290 1291 1292
    thresholded relu activation.

    .. math::

1293 1294 1295 1296 1297 1298 1299 1300
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

Z
zhiboniu 已提交
1322
    if in_dynamic_mode():
W
wanghuancoder 已提交
1323
        return _C_ops.thresholded_relu(x, 'threshold', threshold)
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


1337
def log_softmax(x, axis=-1, dtype=None, name=None):
1338
    r"""
1339 1340
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1341 1342 1343

    .. math::

1344 1345 1346 1347
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1348 1349

    Parameters:
1350 1351 1352 1353 1354 1355 1356
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1357
            to ``dtype`` before the operation is performed. This is useful for
1358 1359 1360 1361 1362
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1363

1364
    Returns:
1365 1366
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1367 1368 1369 1370

    Examples:
        .. code-block:: python

1371 1372 1373
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1374 1375 1376 1377 1378 1379
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1392 1393 1394

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1395

1396
    if _non_static_mode():
1397
        if dtype is not None:
W
wanghuancoder 已提交
1398
            x = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1399 1400 1401
        if _in_legacy_dygraph():
            return _C_ops.log_softmax(x, 'axis', axis)
        return _C_ops.final_state_log_softmax(x, axis)
1402

1403
    if dtype is None:
1404 1405 1406 1407 1408
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1409

1410
    helper = LayerHelper("log_softmax", **locals())
1411
    out_cast = x
1412
    if dtype is not None:
1413
        out_cast = helper.create_variable_for_type_inference(dtype)
1414 1415
        helper.append_op(
            type='cast',
1416 1417 1418
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1419 1420
                   'out_dtype': dtype})

1421
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1422
    helper.append_op(
1423 1424 1425 1426
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1427

1428
    return out
F
Feiyu Chan 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch 
            of independent distributions and the last dimension represents 
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
        hard (bool, optional): if True, the returned samples will be discretized as 
            one-hot vectors, but will be differentiated as if it is the soft sample 
            in autograd. Default is False.
        axis (int, optional): The axis along will be calculated softmax value. 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution. 
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be 
        probability distributions that sum to 1 across ``axis``.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
        
    """
H
hong 已提交
1536 1537 1538
    if in_dygraph_mode():
        return _C_ops.final_state_gumbel_softmax(x, temperature, hard, axis)

Z
zhiboniu 已提交
1539
    if in_dynamic_mode():
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        return _C_ops.gumbel_softmax(x, 'temperature', temperature, 'hard',
                                     hard, 'axis', axis)

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature,
               'hard': hard,
               'axis': axis})
    return out